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1. Introduction

In this paper we shall study the program whose constraints are given by
(1) Ax + By = b, x _O, y _O
where A and B are known m X ni and m X n2 matrices, x and y are ni and n2-di-
mensional vectors, and b is a random m-dimensional vector with known dis-
tribution. We wish to minimize with respect to x
(2) E min (c'x + f 'y),

V

where c and f are known ni and n2-dimensional vectors, E denotes expectation
taken with respect to the distribution of b, and prime denotes transpose.
As an example of a situation giving rise to such a program, consider the set of

possible polyhedra given by Ax = b, where x > 0, when b is random. Here, in
contrast to the usuial case [6] where one minimizes c'x subject to x lying in the
intersection over b of these polyhedra, one is instead allowed, after selecting an
x and subsequently observing b, to compensate with a vector y _ 0 for infeasi-
bility of the selected x at a penalty cost f'y, where f _ 0. In this case By would
be y+- y- and the vector y which yields the smallest penalty cost for each b
and x would be composed of two parts, y+ = b - Ax, y- = 0 if b _ Ax or
y- = Ax - b, y+ = 0 if b < Ax. As choice of y depends on b as well as x, we
alter the objective from minimizing c'x to minimizing c'x plus the expected
smallest penalty cost.
Many short range inventory problems can be expressed mathematically as

such a program. The vector x may represent an inventory which is to be bought
at cost c'x before the random demand b is observed. Once b is observed, one must
compensate by a vector y, at cost f'y, for imbalances (b - Ax) between the orig-
inal inventory and the demand so as to satisfy (1). For example, coordinates of
this vector y may represent the amount of additional inventory to be bought
immediately to meet the excess of demand over supply or the amount of inven-
tory to discard in case of an excess of inventory over demand.
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As the structure of the problem involves a decision x to be made first, after
which the random vector b is observed and a second decision y is made, we term
this a two-stage problem. It may be that some coordinates of b are not random
and that the corresponding equations do not involve y. We shall call these
equations "fixed constraints" on x.
The structure of the matrices A and B may impose further constraints on x.

For example, B may be a positive matrix, in which case Ax + By = b and
y > 0 imply that Ax < b. We shall call such constraints "induced constraints."
These constraints of course may depend on the value of the random vector b.

If some equations do not involve y but the corresponding subvector of b is
random, we wish to restrict ourselves to the modified problem where we take as
fixed restraints on x that x satisfies some specific one of all these equations.
We further assume that, for each x _ 0 and satisfying all existing fixed and
all possible induced constraints and for each b, there exists a y such that (x, y)
is feasible, that is, satisfies (1).

This last assumption may seem very restrictive, as it says that, given any
feasible x and possible b, the set of linear equations By = b - Ax must have a
nonnegative solution. This assumption is motivated by the desire to solve a
class of problems which can be expressed as the program given in (1) and where
this assumption is necessary for the problem to have a solution. The constraints
of this class of problems have the structure

(3) Alix = bi, x>_, y O
A21x + A22y - ,

where bi is a known vector and b2 is a random vector with known distribution.
It is clear that these constraints can be written as those of the program in (1)
and that in this format, if the objective function for (3) is of the form of (2),
we have a two-stage program with fixed constraints on x. A further description
of the underlying problem which gives rise to the structure in (3) and an example
of such a problem are given in [2].
As an alternative to this assumption, we can define K as the convex set of the

x such that each x E K is nonnegative and has an associated y for each b such
that (x, y) is feasible. The problem is, then, to find x E K which minimizes
c'x + E miny f'y. These x certainly satisfy all fixed and induced constraints.

2. Optimality conditions

Let us first study the program
(4) By = b-Ax, f 'y = min, y _ 0
and its dual for each b, x. We assume the existence of a 7r which is feasible for
the dual of the program given by (4) for each b, x. By the existence theorem for
linear programming, this assumption plus the feasibility property of the convex
set K for the program given by (1) and (2) guarantees the existence of at least
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one optimal dual vector ir = *(b, x) which maximizes Tr'(b - Ax) subject to
7r'B

_
f'.

By the duality theorem,
(5) min f 'y = *'(b, x) (b -Ax),

so that
(6) min c'x + f'y = c'x + 7r'(b, x) (b - Ax) = C(b, x),

say, and
(7) EC(b, x) = c'x + E*'(b, x)(b - Ax).
The optimal x is then the x that minimizes EC(b, x) subject to x E K. When
for a given b and x there are many optimal ir, we shall mean by *(b, x) any vector
chosen from these optima, unless some explicit statement to the contrary is
made.

Following is an immediate necessary condition for some vector x = x to be
optimal.
THEOREM 1. Let x be optimal and let ir(b, xi) be any vector which optimizes

the dual of (4) for given b and x = xi, where xi C K. Then
(8) [c' - Er'(b, xl)A]x _ [c' - E*'(b, xl)A]xl.
PROOF. Since x is optimal and xi is feasible

(9) c'x + E*'(b, x)(b- A) < c'x1 + Er'(b, xi)(b - AX1).
Also
(10) Eir'(b, x)(b -Ax) _ Eir'(b, xi)(b - Ax)
since 7r'(b, x) optimizes the dual of (4) when x = x.
Hence
(11) c'x + Ei'(b, xi)(b - Ax) _ c'xl + E*'(b, xi)(b - Ax1).
The following lemmas enable us to obtain another necessary condition for

some vector x = xo to be optimal.
LEMMA 1. EC(b, x) is a convex function of x.
PROOF. It is easy to check directly from the definition of convexity that

C(b, x) is convex in x for each b [1]. Then EC(b, x) is a convex function of x.
LEMm 2. [c' - E*'(b, xl)A]x + E*'(b, xi)b is a support plane to EC(b, x) at

x = XI.
PROOF. Since at x = xi this plane intersects EC(b, x), all we need show is

that, for x F xi,
(12) [c' - E*'(b, xi)A]x + E*'(b, xI)b _ [c' - Er'(b, x)A]x + E*'(b, x)b.
But this is true if and only if

(13) E*'(b, xi)(b - Ax) _ E*'(b, x)(b - Ax)
and this is so since *(b, x) is optimal for the dual of (4).
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A consequence of these lemmas is the following theorem.
THEOREM 2. Let x be a relative interior point of K and let EC(b, x) be differ-

entiable in the neighborhood of x. Then there exists a ir(b, x) such that c' - Er'(b, x)A
- 0 if and only if x is optimal.
PROOF. Since the convex function EC(b, x) is differentiable at x, the support-

ing hyperplane
(14) z = [c' - Eir'(b, x)A]x + Eir'(b, x)b

is tangent to EC(b, x) at x = x. Hence

(15) OEC(b, x) az =c' -ET'(b, x) =O
ax X=z x X=7

is a necessary condition for x to be optimal. As x is a relative interior point of K,
it is also sufficient.

Returning once again to the program given in (4), let y(b, x) denote the solu-
tion of this program for given b, x. Then i(b, x) and y(b, x) are saddle points of
the function
(16) '(y, irlx) = f'y + 7r'(b - Ax - By).
Let +(x, y, 7r) = c'x + ETI(y, 7rIx). We then have the following results.
THEOREM 3. Let x be optimal for the two-stage problem and y(b, x), ir(b, x) be

optimal for (4) and its dual. Then

(17) +(x, 27, 7r) _< (,Xj r _+(x, ,r)

Conversely, if there exist vectors x E K and #r feasible for the dual of (4) which
satisfy (17) then x is optimal for the two-stage problem and fr is optimal for the dual
of (4) when x = x.

PROOF. Since 1(y, 7rit) _ I(y, irT),
(18) 0(X, 1, 7r) = c'X + E'(y, 7rlt) < c'x + E'(y, flx) = + i, #).
Now write +(x, g, ir) as

(19) +(x, y, Tr) = c'x + Eir'(b, x)(b - Ax) + E[f' -*'(b, x)B]F(b, x).
Since fr(b, x) is optimal for the dual of (4), by the duality theorem f ' -ir'(b, x)B
has the property that, if the ith coordinate of y(b, x) is positive, its ith coordinate
is zero. This and the nonnegativity of p(b, x) imply that

(20) +(x, g, fr) = c'x + Efr'(b, x)(b - Ax) = EC(b, x)
and, by optimality of x,

(21) 0(x, 9, fr) _< +(x, y, ir).
To prove the converse, we must first show that fr(b, x) is optimal for the dual

of (4). Then, since k(x, y, fr) = EC(b, x), it is immediately clear that x is optimal
for the two-stage stochastic program.

Let 7r*(b, x) be optimal for the dual of (4). Then
(22) E7r*'(b, x)(b - Ax) _ Eir'(b, x)(b -A ),
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and also

(23) [f '-w*'(b, x)B]y(b, x) = 0.
But *(b, x) satisfies +(x, y,r*) _ +(x, y, *), or
(24) Eir*'(b, x)(b - Ax) _ E*'(b, x)(b - Ax) + E[f '-*'(b, x)B]y(b, x).
If *(b, x) is not optimal, then [f' -r'(b, x)B]y(b, x) > 0, and hence (24)
contradicts (22).

This theorem is the analogue in the two-stage problem dealt with here of the
duality theorem for the one-stage linear team decision problem under uncertainty
given in [6]. Based on this theorem we can prove in general the following suffi-
cient condition for optimality of x = x.
THEOREM 4. Let fr(b, x) be optimal for the dual of (4) when x = x. If for all

x E K, [c' - E*'(b, x)A]x _ [c' - Ei'(b, T)A]x, then x is optimal for the two-
stage problem.

PROOF. Optimality of ;W(b, x) for the dual of (4) when x = x immediately
yields the inequality

(25) +0(x, y, 7r) _ +0(x, y, *r).
Now by definition, hypothesis, and noting the facts that f'-ir'(b, x)B > 0,
[f' - ir'(b, x)B]y(b, x) = 0 for all x, and b - Ax - By(b, x) = 0, we see that
(26) +(x, y, #) = [c' - Er'(b, x)A]x + Eir'(b, x)b

_ [c' - Er'(b, x)A]x + E*'(b, x)b + E[f' - r'(b, x)B]y(b, x)
= c'x + Ef'y(b, x) + Eir'(b, x)[b - Ax - By(b, x)]
= c'x + Ef'y(b, x) + E*'(b, x)[b - Ax - By(b, x)]

= 0(X, y *).

Hence, by theorem 3, x is optimal.
This indicates that if x E K minimizes the linear form [c' - E*'(b, x)A]x, it is

optimal. It would be worthwhile to know whether the converse of theorem 4 is
true. We have established this converse if EC(b, x) is differentiable and x exists
and is an interior point of K, see theorem 2. We shall consider later the finite
case. A kind of converse of theorem 4 is the following.
THEOREM 5. Let x and y(b, x) be optimal for the two-stage problem for given b,

and let y(b, x) and *(b, x) be optimal for (4) and its dual for given x. Then

(27) E[(c', f')-r'(b, x)(A, B)][x, y(b, x)]
_ E[(c', f')-i'(b, x)(A, B)][x, y(b, x)].

PROOF. It is seen from the definition of 4 and the fact that b-Ax-By(b, x)
= 0 that

(28) 4[x, p(b, x), *(b, x)] = O[x, y(b, x), ir(b, x)].
Now the righthand member of (28) is the right member of (27), plus Eir'(b, x)b,
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and the left member of (28) is +(x, y, Tr), which, by theorem 4, is greater than or
equal to +(x, Y, #r), that is, the left member of (27) plus E*'(b, x)b.
When there are only a finite number of possible b:b1,b *, bN, with associated

probabilities pi, PN, PN, where E, -I pi = 1, then the two-stage program can
be written as follows. Find x, yi, * * *, YN and min z satisfying

Ax + By, = b,
Ax + By2 = b2

(29)
Ax + BYN = bN

c'x + plf'yl + P2f Y2 + * + PNf YN = Z

X > 0, yl _ 0, y2 _ 0, ,YN _O

As an application of the duality theorem and the optimality test of the simplex
method in this special case, we obtain the following theorem.
THEOREM 5. Let Oi(!) be the ith subvector (i = 1, - * *, N) in the vector of

prices associated uith a basic solution x = x, y1 = yi, i = 1, - , N, for (29).
Then 2, {7,}, is optimal if

N N

c'- E O()A _ 0, [c' - 0OX(x-)A]Y = 0
i=1 i=1

(if3'p(X-)B > 0, [pif 0-()B]yi = 0, i = 1,*** ,N.

Further, if x, {yj is optimal, then there exist prices Oj(Y) satisfying (30).
We can easily prove theorem 4 in the finite case.
THEOREM 4'. Let x = x and suppose that there exist optimal prices i-(b, x) for the

program in (4) such that

(31) c' - E7r'(b, x)A _ 0, [c' - Er'(b, x)A]x = 0.

Then x is optimal.
PROOF. Take

(32) oi(x) = psir(bi, x).
Then

N N
(33) E#r'(b, x) = , pjr(bi, x) = E ().

i=1 i=l

Also, since 7'(bj, x) is optimal for the dual of (4), it satisfies

(34) f'-ir'(bi, x)B _ 0, [f' - r'(b , x)B] (bi, x) = 0.

Hence for pi = y(b, x), Oj(T) so defined satisfies (30) and, by theorem 5, x is
optimal.
The converse of this theorem is also easy to prove in the finite case.
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THEOREM 6. Let x be optimal. Then there exist optimal prices #r(b, -) for the
program in (4) such that
(35) c' - E;'(b, x)A > 0, [c' - E*'(b,-)A]x - 0.
PROOF. Let 7r(bi, x) = Gj(x)/pj, where the Oi(x) satisfy (30). Then we have

[f' -7r'(bi, Y)B]yi = 0, so that pi = y(bi, T), and 7r(bi, -) is a set of optimal
prices for (4).

It is interesting to contrast this necessary condition for the finite case with
that of theorem 2. In this case, not only is c' - Er'(b, x)A > 0, but further if the
ith coordinate of -r is positive then the ith coordinate of c' - Er'(h, x)A is zero.
In the case dealt with in theorem 2, all coordinates of c' - E7r'(b, x)A are zero.
Of course, in the finite case EC(b, x) does not satisfy the conditions of theorem 2
because here x is an extreme point of the convex region of interest and EC(b, x) is
not differentiable in the neighborhood of the extreme poiInts of this convex
region.
A simple example of a two-stage problem satisfying the conditions of theorem 2

is the problem solved in [2]. There x' was a two-dimensional nonnegative vector
(xI, x2) with fixed constraint xi + x2 = 100 so that K was a line segment in the
first quadrant, and b was distributed uniformly between 70 and 80, EC(b, x) was
differentiable at the optimum x = (75, 25), a relative interior point of K, and,
though

(36) 7(b, ) {(°, 7r2), b > xi,
was optimal for the dual of (4), where 7r2 could take on any value, the particular
i(b, x) for which theorem 2 held had 72 = 0.

3. Computational procedures
As the determination of an optimal y, given x anid b, is a sti-aightforward appli-

eation of linear programmiing techniques to the program defined in (4), our ob-
jective is to find methods of determining an optimal x other than solving the
large program (29). As will be seen shortly, an application of the decomposition
principle [4] to the dual of (29) will reduce the size of the program greatly and
will directly obtain for us only the optimal x and not the optimal set of y.
By virtue of theorems 4' and 6, the problem dual to (29) can be expressed as

piA'rj1 + p2A'ir2 + * ±+ pNA T7N < C

B3'7ri <.f
(37) B'7r2 - f

B'7rv < f

plb1Xr1 + p2b2'r2 + * + pvbN7rN = max
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We llow note that the dual problem is in the standard form for application of
the decomposition algorithm [4] to solve the program. To utilize the algorithm,
it is convenient to call the last N sets of inequalities in (37) a single subprogram
and the first set of inequalities the master program. This will reduce the program
from one with ni + Nn2 to one with n1 + 1 constraints.

For notational convenience in describing the algorithm, let B3 be a Nm X Nn2
block diagonal matrix of the form

SB O0

(38)

0O BJ
f be a Nn2-dimensional vector of the form f' = [f' *f'], r'= [lr *** 7K],
A' = [pIA' *-- pNA'], and b' = [plb'l ... pNbN]. Then (37) can be rewritten as,
(39) A'ir _ c, B'r _ f, b'r = max.

Let S = {ijfl' ;r _ f} and let W = {Trl, * **, k be the set of extreme points
of the convex set S. We assume here that S is a bounded set. The slight modifica-
tion in the algorithm for unbounded S is given in [4]. Also let Pj = A'ij and
rj = b'iFj for j 1, * * * , k. The extremal problem corresponding to (39) is to find
numbers Xi, X,)k such that

PlXl + P2X2 + + PkXk < C

(40) X1+ X2 + + Xk=

r1XI + r2X2 + * + rkXk = max

XI O_°, X2 O_O, Xk _O.
Then, as is shown in [4], i: = I Xjir- solves (39).
Now this program has even more variables than (39), namely kNm; moreover

k can be very large and hence not practical to determine W explicitly. However,
(40) only has n1 + 1 constraints and one need never carry more than n, + 1
variables in solving (40) when using the decomposition algorithm.
The algorithm is initiated once one has a feasible basis for (40), that is,

(n, + 1) vectors 7rj, to determine the necessary (n, + 1) vectors Pj and (n, + 1)
vectors Xj which are positive and satisfy the constraints of (40). This may be ob-
tained using phase one of the simplex method (see [4]). The prices for this basis
are then determined and are used to generate those extreme points of S that
appear promising and to suppress the others. This is done with each new basis
formed during the process. In this case x will be the price vector for the first
r1 constraints and we will call z the price for the last constraint. When (40) is
solved, the resulting price x is optimal for the original program (29).
As the algorithm is iterative, generating new prices with each iteration, we

shall append the superscript t to x and z to denote the appropriate iteration.
Given the initial feasible basis, we obtain comeomitantly x° and z°. To test
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optimality of x° and, if not optimal, to generate a new basis, one must first
find *r = *r0 which maximimizes 7'(b - Ax)- z subject to 't_*.). If
Tr°(-& xo) - z >_ 0, the algorithm is terminated, and x° solves (29). If not,
a new column is added to the n1 + 1 columns of the initial basis, namely,

(41) [A'°]

and its associated cost 640 is added to the objective function. Using the simplex
method, a new basis and new prices xl, z1 are determined, *r = *V which max-
imizes 7'(b- Ax) - z1 subject to k* <_ f is determined, and once again we
test *1 for optimality. The process terminates when for some iteration t and
prices x', Zt, we have
(42) max '(b- Axt) - zt _ 0.

Notice that all one needs to carry along in the computation are the columns
of the current basis, n1 + 1 in all. At iteration t, if (42) is not satisfied, the
column
(43) [A'*t]

is added to the basis and the simplex method determines the appropriate column
to remove from the basis and hence from consideration in subsequent calculation.

Since
N

(44) b'=i pir'(bi, x)bi = E7r'(b, x)b
i=l

and
N

(45) V'Ax = E p1r'(bi, x)Ax = E,r'(b, x)Ax,
i=l

we see that the test for optimality can be rewritten as

(46) max E'r'(b, xt)b - Er'(b, xt)Axt - zt _ 0.
A'* _-!

Also, it can be shown that, at the optimal Tr
N

(47) z' = min E f'yi

where yi _ 0 satisfies Byi = bi- Ax'. Since, for any feasible yi and 7ri of the
subprogram,
(48) min f'yi _ max p,7r'(bi, x)(b - Ax)

Yi2_0 B'O(bi,x) f
Byi=bi-Ax

summing (48) for i = 1, * , N yields (46) with the inequality reversed.
Hence the test for optimality can be interpreted as checking whether equality
holds in (46) or, substituting the value of zt given in (47), whether {7r(bi, x'),
i = 1, * * *, N} satisfies
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(49) Eminf 'y = Ehr'(b, x')(b - Ax),

that is, is optimal for the dual of (4), and

(50) E7r'(b, xt)A _ c.
In other words, the test for optimality of the decomposition algorithm is an
implementat,ion of the sufficient condition for optimality given in theorem 4'.
As EC(b, x) is a convex function of x defined over a convex set, the problem

of minimizing EC(b, x) is a problem in convex programming. The following
procedure for solving this problem is an application of lemma 2 and a technique
due to Kelley [5] (see also [7]).
We assume here that aside from the condition x _ 0, there are enough fixed

and induced constraints on x so that x lies in a bounded convex polyhedron
defined by, say, Ax = b. The problem is then the following.

Ax = 6,
(51 ) ~~~~~EC(b, x) _ z,

x.0,
z = nin.

To initiate the algorithm, let x° be feasible. Consider the linear program
Ax = 6,

(52) c'x + Eir'(b, x°)(b - Ax) _ z,

(52) ~~~~~~~x>0
z = min.

Let x1 solve this program, aind nlow consider the program
Ax = 6,

c'x + E#'(b, x°)(b - Ax) _ z,

(53) c'x + E7r'(b, x)(b - Ax) _ z,

x > 0,

z = min.
Let x2 solve this program.

One sees that on the kth iteration of this procedure one solves the program

Ax = 6,
c'x + E7r'(b, x )(b-Ax) _ z, i = O, * k 1

x> 0,
z = min.

Kelley has shown that limk-. EC(b, xk) is the minimum of EC(b, x) though
limk-- xk does not necessarily solve the convex program.
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An alternative procedure [3] rewrites (51) as

Xx = b,
(55) x _ 0,

w + EC(b, x) = 0,
w = max,

and uses the decomposition principle with Xx = b, x > 0 as the master program
and w + EC(b, x) = 0 as the single subprogram.
The extremal problem which is equivalent to the master program is

X1 + * * * + Xk = 1,

(56) (1Xl)X1 + ... + (IXk)Xk = b,

EC(b, xl)Xl + * * * + EC(b, Xk)Xk = nin,
where xl, e, x' need not be feasible, provided some convex combination of
them is. Once this program is solved and prices po, pk are generated, one must
solve the subprogram

(57) w + EC(b, x) = 0,
w + pk'4X + pk = max

or equivalently, one must find x = xk+1 such that

(58) 6k(X) = EC(b, x) - p'7X -

is a minimum. If for all x

(59) EC(b, x) > p0Ax+ pt
then EC(b, Xk+1) is minimal. If not, another column

(60) [ ]

is added to (56), EC(b, Xk+l)Xk+l is added to the cost form in (56), and the
algorithm is iterated. In [3] it is shown that limk, EC(b, Xk) is the minimum
of EC(b, x).

4. Discussion

It is well known (see, for example, [2]) that replacing the random b by its
expected value is of little help in solving the stochastic linear program. However,
we have seen from the above discussion that the expected value of the prices,
for a given x, for the program given in (4) play a critical role in solving the
stochastic linear program. In fact roughly speaking, the vector [c' - E*'(b, -)A]'
acts as the gradient of the function EC(b, x). An interesting area for future con-
sideration is the effect of sampling from the distribution of b, estimating E*(b, x)
and E*'(b, x)b for each value of x generated by the iterative procedures given
above, and using these estimates as E*(b, x) and E*'(b, x)b in those procedures.



176 FOURTH BERKELEY SYMPOSIUM: DANTZIG AND MADANSKY

Finally, we would like to acknowledge the valuable comments and suggestions
of our colleagues D. R. Fulkerson and Philip Wolfe.

REFERENCES

[1] E. M. L. BEALE, "On mimimizing a convex function subject to linear inequalities," J. Roy.
Statist. Soc., Ser. B, Vol. 17 (1955), pp. 173-184.

[2] G. B. DANTZIG, "Linear programming under uncertainty," Management Sci., Vol. 1 (1955),
pp. 157-206.

[3] , "General convex objective forms," The RAND Corporation Paper, P-1664, 1959.
[4] G. B. DANTZIG and P. WOLFE, "Decomposition principle for linear programs," Operations

Res., Vol. 8 (1960), pp. 101-111.
[5] J. E. KELLEY, JR., "The 'cutting plane' method for solving convex programs," to appear

in J. Soc. Indust. Appl. Math.
[6] R. RADNER, "The linear team: an example of linear programming under uncertainty,"

Proceedings of the Second Symposium in Linear Programming, Washington, D.C., 1955,
pp. 381-396.

[7] P. WOLFE, "Accelerating the cutting plane method for nonlinear programming," The
RAND Corporation Paper, P-2010, 1960.


