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1. Introduction

Although many philosophers and statisticians believe that only an objectivistic theory
of probability can have serious application in the sciences, there is a growing number of
physicists and statisticians, if not philosophers, who advocate a subjective theory of
probability. The increasing advocacy of subjective probability is surely due to the in-
creasing awareness that the foundations of statistics are most properly constructed on
the basis of a general theory of decision-making. In a given decision situation subjective
elements seem to enter in three ways: (i) in the determination of a utility function (or
its negative, a loss function) on the set of possible consequences, the actual consequence
being determined by the true state of nature and the decision taken; (ii) in the determi-
nation of an @ priori probability distribution on the states of nature; (iii) in the determi-
nation of other probability distributions in the decision situation.

These subjective factors may be illustrated by a simple example. A field general knows
he is faced with opposing forces which consist of either (s;) three infantry divisions and
one armored division, or (s2) two infantry divisions and two armored divisions. Thus the
possible states of nature are s; and s2. The possible consequences are a tactical victory
(v), a stalemate (f), and a defeat (d). He subjectively estimates utilities as follows:
u(v) = 3, u(t) = 2, u(d) = —1. On the basis of his intelligence he subjectively estimates
the probability of s, as %, and of s, as 3. Also in his view there are two major possible
dispositions of his forces (f, and fs). Using military experience and knowledge he now
estimates the probability of victory, stalemate or defeat if he decides for disposition f;
and s, is the true state of nature. Corresponding estimates are made for the pairs (£, s2),
(f2, 51) and (fy, s2). He then presumably decides on f; or f; depending on which yields
the greater expected utility with respect to his estimated a priori distribution on s;
and Sa.

In connection with this example, it may properly be asked why probabilities and
utilities play such a prominent role in the analysis of the general’s problem. The most

‘appropriate initial answer, it seems to me, is that we expect the general’s decision to be
rational in some definite sense. The probabilities are measures of degree of belief, and
the utilities measures of value. To be rational he should try to maximize expected value
or utility with respect to his beliefs concerning the facts of the situation. The crucial
problem is: what basis is there for introducing numerical probabilities and utilities?
Clearly methods of measurement and a theory which will properly sustain the methods
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are needed. Our intuitive experience is that at least in certain limited situations, like
games of chance, such measurement is possible. The task for the decision theorist is to
find unobjectionable postulates which will yield similar results in broader situations. It
would be most unusual if any set of postulates which guaranteed formally satisfactory
measures of probability and utility also was unequivocally intuitively rational. As we
shall see in section 3, compromises of some sort must be reached.

Because of the many controversies concerning the nature of probability and its meas-
urement, those most concerned with the general foundations of decision theory have
abstained from using any unanalyzed numerical probabilities, and have insisted that
quantitative probabilities be inferred from a pattern of qualitative decisions. A most
elaborate and careful analysis of these problems is to be found in L. J. Savage’s recent
book, Foundations of Statistics [17]. The present paper gives an axiomatization of de-
cision theory which is similar to Savage’s. The summary result concerning the role of
subjective probability and utility is the same: one decision is preferred to a second if
and only if the expected value of the first is greater than that of the second.

The theory presented here differs from Savage’s in two important respects: (i) the
number of states of nature is arbitrary rather than infinite; (ii) a fifty-fifty randomization
of two pure decisions is permitted; this does not presuppose a quantitative theory of
probability. More detailed differences are discussed in section 3. Since the present
scheme is offered as an alternative to Savage’s it is perhaps worth emphasizing that the
intuitive ideas at its basis were developed in collaboration with Professor Donald
Davidson in the process of designing experiments to measure subjective probability
and utility [5], [6]. I suspect that experimental application of Savage’s approach may be
more difficult. It should also be mentioned that the approach developed here goes back
to the early important, unduly neglected work of Ramsey [11].

The proof of adequacy of the axioms in section 4 depends on previous work by Mrs.
Muriel Winet and me [18], and unpublished results by Professor Herman Rubin [14]; it
is unfortunate that Rubin’s important results are still unpublished. His work differs
from the present in that he assumes a quantitative theory of probability.

Finally it should be remarked that the theory developed in the present paper is
presumed susceptible of either prescriptive or descriptive use.

2. Primitive and defined notions

The four primitive notions on which our axiomatic analysis of decision-making is
based are very similar to the four used by Savage in [17]. Our first primitive is a set
S of states of nature; the second, a set C of consequences; and the third, a set D of
decision functions mapping S into C. Savage’s first three primitive notions are identical.
His fourth primitive is a binary relation of preference on D. In contradistinction, our
fourth primitive > is a binary relation of preference on the Cartesian product D X D.
(D X Dis the set of all ordered couples (f, g) such that f and g are in D.) This apparently
slight technical difference reflects the introduction of a restricted notion of randomization
which does not require a quantitative concept of probability. Thus if f, g, f’ and g’ are
in D, the intended interpretation of (f, g) 2> (', g’) is that the decision-maker (weakly)
prefers a half chance on fand a half chance on g to the mixed decision consisting of a half
chance on f’ and a half chance on g’. For application of the apparatus developed here it
must be possible to find a chance event which is independent of the state of nature and
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which has a subjective probability of § for the decision-maker.! In most applications of
decision theory it should be relatively easy to find such a chance event, since we are
usually dealing with what Savage calls small-world situations, and not the fate of the
whole universe.

To illustrate the intended interpretation of our primitive notions we may consider
the following example. A certain independent distributor of bread must place his order
for a given day by ten o’clock of the preceding evening. His sales to independent grocers
are affected by whether or not it is raining at the time of delivery, for if it is raining, the
grocers tend to buy less on the reasonably well-documented evidence that they have
fewer customers. On a rainy day the maximum the distributor can sell is 700 loaves;
on such a day he makes less money if he has ordered more than 700 loaves. On the other
hand, when the weather is fair, he can sell 900 loaves. If the simplifying assumption is
made that the consequences to him of a given decision with a given state of nature
(rainy or not) may be summarized simply in terms of his net profits, the situation facing
him is represented in table I.

TABLE 1
di—buy d2—buy ds—buy
700 loaves 800 loaves 900 loaves
s1—rain $21.00 $19.00 $17.00
s»—no rain 21.00 24.00 26.50

The distributor’s problem is to make a decision. Decision ds is a kind of hedge. We also
permit him the hedge of randomizing fifty-fifty between two pure decisions. He may
own a coin which he believes is fair, and he does not believe that flipping this coin has
an effect on the weather. Thus he may choose the mixture (dy, d;) over ds. On a particular
morning he might prefer the possible course of action open to him as follows:

(1) d1> (dy, d9) > (dy, d3) > de> (dy, d3) > ds.

The use of the relation > in this example is made precise by two definitions. Since the
mixture (f, f) in the intended interpretation just means decision (or action) f, it is
natural to extend the field of > to D.

DerntTION 1. (f, 8) 2 kif and only if (f, g) 2 (h, B); h 2 (f, g) if and only if (k, h) 2>
(f, 8); ond h > g if and only if (h, k) = (g, g).

For a and B either mixtures or pure decisions we now define the relation > of strong
preference.

DEerFINITION 2. 0 > B if and only if a > B and not B 2> a.

For later work we also need the definition of equivalence in preference (that is, in-
difference).

DeriNiTION 3. a ~ B if and only if a > B and B > «a.

For the statement of our axioms on decision-making two further definitions are
needed. The first is the definition of a notion we need for the statement of the Archi-
medean axiom (A.7).

1The term “mixed decision’’ is used here in the very restricted sense of referring to gambles involving
just this special chance event independent of the state of nature; formally such gambles are the elements
of D X D.
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DeriniTION 4. (f, g) L (f, ¢') if and only if f~ f' and (f, g) ~ ¢'.

The Archimedean axiom makes use of powers of L. We have that (f, g) L? (f/, ¢') if
and only if there exist decisions f” and g” such that (f, g) L (f”,¢"”) and (f”,¢") L (f’, ¢'),
which situation is represented in figure 1. (Note that f, f’ and f” all occupy the same
position.)

L g g" 9
Ficure 1

The nth power of L is defined recursively:

M) (, & L' (f', &) if and only if (f, ) L(f, &) 5

(2 (f, L (f', ¢') if and only if there are elements f” and g” in D such that
(f, & L~ (f", g") and (f”, ¢g”) L (f’, ¢'). The numerical interpretation of the relation-
ship (f, g) L* (f', ¢') is that f = f and

r-1 o 1 f+§1; g=¢".

Finally, we need the notion of a constant decision function, that is, a function which
yields the same consequence independent of the state of nature,

DEFINITION S. If x € C then x* is the function mapping S into C such that for every
$ES, x¥(s) = x.

As we shall see, the constant decisions play an all too important role in the theory
developed in this paper.

3. Axioms

Using the primitive and defined notions just considered we now state our axioms for
what we shall call rational subjective choice structures.

A system <S,C, D> > is a RATIONAL SUBJECTIVE CHOICE STRUCTURE #f
and only if the following axioms 1-11 are satisfied for everyf, g, b, f', g', ¥, f” and g" in D:

Al (92 (f,g)or (f,8) = (, 8);

A2If(f,9) = (f, 8) and (f', &) 2 (f”, §") then (f, 8) 2 (/”, £");

A3 (f,e)~ (& /)

A4 f2> gif and only if (f, k) = (g, k);

A5 If (f, 8) = (f', &) and (h, g') = (K, g) then (f, ) = (f', ¥');

A6 If (f, g) > (f", &) and g > ¢ then there is an h in D such that g > hand b > ¢’
and (£, 8) = (1", );

AT If f> g and f' > g, then there is an h in D and a natural number n such that
(L (f, b) and (f', b) 2 (f, &);

A.8 For every x in C, x* € D;

A9 If for every s in S, (f(s)*, g()*) = (f'(5)*, g'(9)*), then (f, &) = ([, &);

A.10 There is an k in D such that for every s in S, h(s)* 2 f(s)* and h(s)* > g(s)*;

A.11 There is an h in D such that for every s in S, (f(s)*, g(s)*) ~ h(s)*.

The interpretation of the first two axioms is clear: they require a simple ordering of
decisions. The third axiom guarantees that our special chance event independent of the
state of nature has subjective probability 4. To see this, let f > g, and let E* be our
special chance event. The interpretation of (f, g) is that decision f is taken if E* occurs
and g if E* occurs (that is, if E* does not occur). If the subjective probability of E* (in
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symbols: s(E¥)) is greater than that of E*, (J, g) will be preferred to (g, /). On the other
hand, if s(E*) < s(E¥), then (g, f) will be preferred to (f, g). Hence, A.3 corresponds to
saying that s(E*) = s(E*) = }. (For further discussion of this, see Davidson and
Suppes [6].)

Axiom A.4 states an obvious substitution property. It is a special case (a = ) of an
axiom introduced by Friedman and Savage (see axiom P3, p. 468 [7]). It also is es-
sentially a special case of Samuelson’s strong independence axiom [16]. A kind of domi-
nation property is expressed by A.S5. If the mixture (f, g) is at least as desirable as the
mixture (f’, ¢’), and 4 is sufficiently preferred over %’ to reverse this preference in the
sense that (k, g’) is weakly preferred to (#/, g), then it is reasonable to expect that (f, k)
is weakly preferred to (f’, #'). The content of this axiom is made clearer by considering
particular cases among the possible orderings of the decisions. An example which brings
out the implications of the axiom is given by the supposition that we have the following
ordering: f' > f > g > ¢’- Now we must then have %z > A’ since (k, g) = (*, g);
furthermore, the latter implies that the difference between % and 4’ is greater than be-
tween f’ and f, since when k is coupled with the least desirable decision g’, the mixture
(h, g’) is preferred to (#/, g), but in the case of f’, the mixing with g’ leads to (f, g) being
preferred. Hence, we expect to find that (f, k) is weakly preferred to (f’, '), which is
what the axiom requires.

Axiom A.6 I regard as a blemish which should be eliminated or changed in form.
It says nothing essentially new about the structure of any model of our axioms; just
that if (f, g) is preferred to (f’, g’), then we may find a decision # slightly better than g’
such that we still have (f, g) preferred to the new mixture (f, k). Axiom A.7 is an Archi-
medean axiom of the sort necessary to get measurability. Its existence requirements are
not unreasonable in view of the plenitude of decisions guaranteed by A.10 and A.11.
The meaning of A.7 is very simple. No matter how great the interval between f and g,
the interval may be subdivided sufficiently to find an % closer to f than g’ is to f’. The
axiom could be weakened by adding to the hypothesis the condition that (f, g') > (f, g).

Axiom A.8 requires that all constant decisions, that is, decisions whose consequences
are independent of the state of nature, be in D. The inclusion of such constant decisions,
or of something essentially as strong, is necessary to obtain the summary result we want:
f is preferred to g if and only if the expected value of f with respect to a utility function
on consequences and an @ priori distribution on states of nature is greater than the cor-
responding expected value of g. The inclusion of these constant decisions is not peculiar
to the theory of decision-making developed here, but is also essential to Rubin’s [14]
and Savage’s [17] theories.? The difficulties surrounding the inclusion of these decisions
may be illustrated by considering one of Savage’s colorful examples (see [17], p. 14). We
have before us an egg. One of two states of nature obtains: the egg is good (s1) or the egg
is rotten (s;). We are making an omelet and five good eggs have already been broken
into the bowl. We may take one of three actions: break the egg in the bowl (f), break
the egg in a saucer and inspect it (g), simply throw the egg away (k). The various conse-
quences are easy to describe: f(s;) = six-egg omelet, g(s;) = six-egg omelet and saucer
to wash, etc. But now suppose we add the constant decisions. How are we to think about

2 An analogue of our A.8 is not included among Savage’s seven axioms unless his set F of acts (cor-
responding to our set D of decisions) is meant to be the set of all functions mapping S into C, which is
of course a stronger assumption than A.8. In any case it is essential to his formal developments to have
such decisions at hand (see [17], from p. 25 on).
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the decision which guarantees us a six-egg omelet? If the true state of nature is s, it is
not clear that we are considering an action which makes any kind of sense. Certainly we
are in no position to push the ultrabehavioristic interpretation of decision-making
favored by Savage when we consider the constant decisions. I can, for instance, imagine
no behavioristic evidence which would persuade me that an individual in the situation
just described had chosen the constant decision guaranteeing a six-egg omelet. As far
as I can see, about the most reasonable way to analyze a preference involving a constant
decision such as the above.one is to regard it as a nonbehavioristic subjective evaluation
of consequences. Axioms A.8-A.11 have the effect intuitively of requiring such direct
evaluations of consequences.

Axiom A.9 corresponds closely to Savage’s seventh postulate and to Rubin’s sixth
axiom [14]. If for every state of nature the consequences of the mixture of decisions
f and g are preferred to the consequences of the mixture of f’ and g’, then the mixture
of f and g should be preferred to that of f and g’. As Savage remarks, the kind of sure-
thing principle expressed by this axiom is one of the most acceptable postulates of ra-
tional behavior. Axiom A.10 asserts that given any two decisions there is a third at least
as good as either of the two with respect to every state of nature. This axiom is weaker
than the assumption that the set of consequences of any decision f has an upper bound,
that is, there is an x in C such that for every s in S, * > f(s)*. It is possible that the
main theorem of section 4 can be proved without this axiom, but I have not succeeded
in finding such a proof.

Axiom A.11 should probably be regarded as the strongest axiom of the group. Given
any two decisions f and g, A.11 asserts there is another decision % with the property
that for each state of nature the consequence of 4 is halfway between the consequence
of f and the consequence of g. This axiom may be regarded as a very strong form of
Marschak’s continuity axiom [10]. His axiom is that if f > g and g > & then there is a
numerical probability a such that the mixture of f and % with probability e and 1 — a
respectively is equivalent to g. The significance of A.11 is discussed in more detail below.

Now that the analysis of individual axioms is complete, some general remarks are
pertinent. Compared to Savage’s axiomatization in [17], we may say of the present
theory that there are more axioms but perhaps less complicated definitions. A more im-
portant kind of comparison between Savage’s and the present analysis is the rather
radical difference in what I like to call the structure axioms (as opposed to the rationality
axioms). By and large, a structure axiom is an existential assertion.? Axiom A.11 is the
main structure axiom in the present axiomatization. If we consider the situation facing
the independent distributor of bread, which was discussed in the last section, it is clear
that A.11 is not satisfied. In fact, it is easy to show that if there are two decisions, one
of which is strictly preferred to the other, then A.11 and certain of the other axioms
imply that there is an infinity of decisions. However, I for one am reluctant to call
the distributor irrational because an insufficient number of decisions is available to him.
I prefer to say that the situation the distributor is in does not permit the structure
axioms to be satisfied, and hence the present theory is inapplicable; we cannot use it to
decide if the distributor is regularly choosing an action or decision solely in terms of its
expected value. In a given axiomatic analysis of decision-making it is not always easy or
even possible clearly to separate the axioms into the two categories of rationality axioms

3 This is certainly not always the case. The strong structure axiom in [6], which asserts that conse-
quences are equally spared in utility, is not existential in character.
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and structure axioms. Of the eleven axioms used in this paper, I would say that A.1-
A5 and A.9 are “pure” rationality axioms which should be satisfied by any rational,
reflective man in a decision-making situation. On the other hand, A.8, A.10 and A.11 are
‘“pure” structure axioms which have little directly to do with the intuitive notion of
rationality. They are to be considered as axioms which impose limitations on the kind
of situations to which our analysis may be applied. Axiom A.6 is a technical structure
axiom which tells us little intuitively about restrictions on applicability of the theory.
Without A.11, the Archimedean axiom, A.7, would need to be considered a structure
axiom, but in the presence of A.11, I regard it as a rationality axiom.

Of Savage’s seven postulates, two are structure axioms (P5 and P6), and the rest are
rationality axioms. His P5 excludes the trivial case where all consequences are equivalent
in utility and thus every decision is equivalent to every other. Postulate P6 is his power-
ful structure axiom corresponding to my A.11. Essentially his P6 says that if event B is
less probable than event C (B and C are subsets of S, the set of states of nature), then
there is a partition of S such that the union of each element of the partition with B is less
probable than C. As Savage remarks, this postulate is slightly stronger than the axiom
of de Finetti and Koopmans which requires the existence of a partition of S into arbitrari-
ly many events which are equivalent in probability. Thus the consequence of his P6
is that there must be an infinity of states of nature, and as a consequence an infinity of
decisions; whereas the consequence of A.11 is that there must be an infinity of decisions,
with the number of states of nature wholly arbitrary. Such infinite sets, either of de-
cisions or states of nature, can be eliminated by various kinds of special structure axioms.
Davidson and I [6] eliminated them by requiring that all consequences be equally spaced
in utility—an assumption which has proved manageable in some controlled experiments
on decision-making at Stanford [5], but is not realistic in general.

Savage defends his P6 by holding it is workable if there is a coin which the decision-
maker believes is fair for any finite sequence of flips (see p. 33 [17]). However, if the
decision-maker does not believe the flipping of the coin affects what is ordinarily thought
of as the state of nature, such as raining or not raining in the case of the bread distributor,
then it seems to me that it is misleading to construct the states of nature around the fair
coin. Once repeated flips of a fair coin are admitted, we can extend the single act of ran-
domization admitted in the interpretation of the axiomatization given here, and directly
introduce all numerical probabilities of the form %/2". With this apparatus available we
can give an axiomatization very similar to Rubin’s [14] and drop any strong structure
axioms on the number of states of nature or the number of decisions.

To illustrate further the nature of the structure axiom A.11, and at the same time to
argue by way of example that it does not make our theory impossible of application,
I would like to modify one of Savage’s finite examples (see pp. 107-108 [17]) which does
not, even as modified, satisfy his P6. A man is considering buying some grapes in a
grocery store. The grapes are in one of three conditions (the three states of nature):
green, ripe, or rotten. The man may decide to buy any rational number of pounds be-
tween 0 and 3. If, for example, the state of nature is that the grapes are rotten and he
makes the decision to buy two pounds, then the immediate consequence is possession of
two pounds of rotten grapes and the loss of a certain small amount of capital. If the man
is at all intuitively rational in his preferences concerning the amount of grapes to buy,
it will not be hard for him to satisfy A.1-A.11—provided, of course, that he has at hand
some simple random mechanism, such as a coin he believes to be fair for single tosses
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(he need not believe that any finite sequence of outcomes is as likely as any other). This
example is discussed further in section 5.

By way of summary my own feeling is that Savage’s postulates are perhaps esthetical-
ly more appealing than mine, but this fact is balanced by two other considerations: my
axioms do not require an infinite number of states of nature, and their intuitive basis
derives from ideas which have proved experimentally workable.

4, Adequacy of axioms

We now turn to the proof that our axioms for decision-making are adequate in the
sense that decision f is weakly preferred to decision g if and only if the expected value
of f is at least as great as the expected value of g. The actual result is not quite this
strong. As might be expected, the theorem holds only for bounded decisions (precisely
what is meant by a bounded decision is made clear in the statement of the theorem).
On the basis of A.1~A.11 uniqueness of the a priori distribution on the states of nature
cannot be proved, since the constant decisions alone constitute a realization of the
axioms. If S is assumed finite, various conditions which guarantee uniqueness are easy
to give. In stating the theorem, we use the notation: Uof for the composition of the
functions U and f.

TueEOREM. If <S8, C, D, > > is a rational subjective choice siructure, then there exists
a real-value function ¢ on D such that

() for every f, 8, f' and g in D (f, g) = (f', &) if and only if ¢(f) + ¢(g) = (/)
+ 4(¢),
(i) ¢ is unique up to a linear transformation, and
(iii) if U is the function defined on C such that for every x in C

n U(x) =¢(x*),

then there exists a finitely additive probability measure P on S such that for every f in D if
Uof is bounded, then

) $(N = [ (Uof)(5)dP(s).
S
Proor. The proof of (i) and (ii) follows rather easily from some previous results ob-
tained by Mrs. Muriel Winet and me. Using a notion R of utility differences and a
notion Q of preference, we established in [18] that, on the basis of axioms similar to

A.1-A.7 and A.11 of this paper, there exists a real-valued function ¢ unique up to a
linear transformation such that

(3) fQgifandonlyif¥(f) = ¥(g),
S g Rf’, ¢ if and only if [¢(f) — ¢(@) | = [¥(f) — ¥(@)|.
If we introduce the two defining equivalences*
(4) fQgifandonly if (f,f) = (g 2) ;
(5) f,gRf, g if and only if either (i) f> g, f' > ¢’ and (f, &) = (f', g), or (ii) g = £,
ffzg and (g g) = (f, f) or (i) f=g & =f and (f, f) = (& &),
or (iv)g>f,¢ 2fand (& f) 2 (f¢),

4In [18] the inequalities of (3) are actually reversed, but trivial changes in the axioms given there
yield (3) as a consequence.
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then on the basis of A.1-A.7, A9 and A.11 we may prove the axioms of [18] on Q and
R as theorems, as well as the equivalence

(6) (f,8)=(f,g)if and only if either (i) f > g,f' > g’ and f, g Rf', g/, or (i) f > g

and g’ > flor (i) g>f, ¢ =>fandf, g Rf, g.

Parts (i) and (ii) of our theorem then follow immediately from the main theorem in [18].

The proof of (iii), concerning the existence of an a priori distribution on S, essentially

uses Rubin’s results in [14]. However, certain extensions of D are required in order to
apply his main theorem.

By means of the utility function U on the set of consequences C, as defined in the
hypothesis of (iii), we define the set F of all numerical income functions

N F = {p: there exists f in D such that p = Uof},
and we define the functional 7 on F

(8) n(Uof) =¢ (/).

We observe first that if p, ¢ € F, then

) irtic€EF,

for let p = Uof and ¢ = Uog, then by (i) and (ii) of our theorem, A.9, and A.11, there
exists an % in D such that for every s in §

(10) 3 (U°)) (s) + % (U°g) (s) = (U°k)(s).
Hence,
(11) $o+io="Uoh,

and Uo# is in F. Also, since
(12) 7 (UOk) = ¢ (h) =3¢ (f) +3¢(8) =39 (Uos) +3n (U0,
we have

(13) n(Gep+ie) =39(p) +31(0).

From (9) and (13) it easily follows that if p, ¢ € F and % and » are positive integers such
that 2 < 27, then

k k
(14) ot(1-%)oer,
and
k k k k
(15) 1[zet(i-m) ] =m 10 +(1-5) 1(0).

We now extend F by the following definition: p € F if and only if there is a finite se-
quence <day, * * *, @,> of real numbers and a finite sequence <py, * * -, p,> of elements
of F such that

(16) p= 2 aip;.

(It is clear from (16) that F is a linear space.)
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In order to extend 7 in a well-defined manner to F, we need to prove that if

(17 D aipi= D bjo;

then

(18) Damp) = bin(ay).
Clearly without loss of generality we may assume

(19) a;, 5;>0 for1<i<n, 1< j<m.

We shall first establish (18) under the restriction that
(20) Dai=Db;.

If a; and b; are rational numbers of the form k/2* with ¢ < 27, then (18) follows from
(15) by a straightforward inductive argument (which we omit), provided

(21) Dei=Dbi=1.
But the requirement of (21) is easily weakened to

(22) Dei=>8;<1,

for we may add cowith ¢ =1— E a; toboth sides of (17), and then (21) will be satisfied.

Furthermore, (22) is readily extended to arbitrary positive rationals, since two finite
sequences of positive rationals can be reduced to (22) by multiplying through and
dividing by a sufficiently high power of 2.

We are now ready to consider the case where the a/’s and b;’s are arbitrary positive
real numbers. There are rational numbers 7; and s; such that

(23) f;<l1,' and Sj> bj.
It is an immediate consequence of A.10 that there is a 7 in F such that
(24) T_>. Pi and TZ Gj.

From (23) and (24) we have, by a regrouping of coefficients

25 Dt [ D @)+ (5= 8 |72 X s
Since the coefficient of 7 is rational, we obtain by our previous results
(26) Drm(e) F M (D2 sim(ay) s

where

(27) A= (ai—r) + D (5= 8)).
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By suitable choice of the /s and s,’s, we may make X arbitrarily small, and we thus
infer from (23) and (26)

(28) Dam(p) 2D bin (o).
By an exactly similar argument, we get

(29) D bin(e) 2D e (py).

To establish (18) in full generality it remains only to consider the case where

(30) ‘ Z a;# 2 b;.
Suppose, for definiteness, that

(31) Dai> Db

There are elements x and y in C such that U(x) > U(y) (if there are no two such ele-
ments, the proof of the whole theorem is trivial). Furthermore, in view of A.11, we may
choose # and y such that U(x) > 0 and U(y) > 0, or U(x) < 0 and U(y) < 0. Let
u = Uox* and v = Uoy*. Then p and » are in F, and there are nonnegative numbers
a and &, such that

(32) a0+ D ai=bo+ D b;

and

(33) Gop = bov .

Then by our previous result under the restriction (20), we have
(34) aon (8) + D a:n(pd) = bon &) + D, b;1(a)),
but from (33), (8) and the definition of U

(35) aon (u) = bon (),

and thus

(36) Dain(ed) = D bin(a),

which establishes (18) in full generality.

On the basis of (18) we extend 5 to . The argument from (30) on has closely followed
Rubin’s proof in [14]. His proof may now be used to complete the proof of (iii). We
sketch the main steps. Clearly 7 is a linear functional on F, and it is easily shown that
nis nonnegative, and hence that n(p) is between igg p(s)and 51611; p(s). Let G be the space

$ s

of all functions on S bounded by elements of F. Then by the Hahn-Banach theorem
(see pp. 27-28 [1])) 5 can be extended to G. Finally, it can be shown [12], [13] that
such a linear functional on G is, for bounded functions in F, their expected value with
respect to an @ priori distribution on S which is in general finitely additive. (A result
closely related to the existence of such a distribution is established in theorem 2.3 [19].)
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b. Critical remarks

The theory of decision developed in the previous sections is no doubt defective in
a number of ways, some of which I am well aware of. In this final section I briefly
examine what I consider to be its gravest weakness, at least for normative applications.
It is laudable to wish to base a theory of decision on behaviorally observable choices,
but the decision-maker is interested in something more. He wants advice on how to
choose among alternative courses of action. He wants to have at hand a theory which
tells him how to use initial information. The result of the analysis in this paper and in
Savage’s book is that if certain structure axioms are satisfied, any rational man acts as
if he had an a priori distribution on the states of nature. But what the rational man
wants is a method for selecting that @ priori distribution which bdest uses his a priori
information. The present theory or Savage’s offers little help on this point. The im-
portance of this problem is testified to by the over-all situation in statistical decision
theory: we have clear ideas of optimality only when given an a priori distribution on
the states of nature. Bayesian principles of choice seem naturally to dominate the scene.
(For some penetrating reasons, see chapter 4 [2].)

In recent years a serious attempt has been made by philosophical logicians to develop
a theory of confirmation which is closely related to the problem under discussion. The
theory of confirmation is concerned with precisely characterizing the degree to which
a given hypothesis is supported by given evidence. The confirmation function which is
usually introduced is very similar in its formal properties to the standard notion of
conditional probability. Perhaps because the theory of confirmation has usually been
stated in logical or linguistic terms, its connections with decision theory have not been
made as clear as they could. Thus viewed, the purpose of confirmation theory is to
develop methods for codifying prior information to yield an @ priori distribution on the
states of nature. The available evidence is our prior information, and a hypothesis cor-
responds to asserting that a given state of nature is the true one.

For concreteness we may consider the grape example of section 3. In Savage’s dis-
cussion of this example (see p. 108 [17]) he assigns subjective probabilities to the three
states of nature, and then goes on to consider what action the decision-maker should take
after observing a sample of one grape. But the point at issue here is: given certain prior
information is one a priori distribution as reasonable as any other? As far as I can see
there is nothing in my or Savage’s axioms which prevents an affirmative answer to this
question. Yet if 2 man had bought grapes at this store on fifteen previous occasions and
had always got green or ripe but never rotten grapes, and if he had no other information
prior to sampling the grapes, I for one would regard as unreasonable an a priori distribu-
tion which assigned a probability of 3 to the rotten state. Unfortunately, though I am
prepared to reject this one distribution as unreasonable, I am not prepared to say what
I think is optimal.

The most thoroughgoing analysis of confirmation theory has been made by Carnap
(3], but his chosen confirmation function ¢* is beset with many technical difficulties
which give rise to counterintuitive examples (see, for example, [8], [9], [15]). Here I am
not concerned to scrutinize the current problems of confirmation theory but merely
to argue for the relevance of the theory to decision theory.® An adequate confirmation

§ A central problem in confirmation theory is what a prioré distribution to choose when there is no
information whatsoever. Chernoff {4] has shown that if certain reasonable postulates are accepted and

if the number of states of nature is finite, then the distribution to choose is that one which makes each
state equally probable.
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theory would not discredit the kind of axiomatization of decision-making given in this
paper; it would not disturb the central role of subjective probability and utility.® It
would stand to the theory of this paper more as statistical mechanics stands to macro-
scopic thermodynamics: a decision theory which included a confirmation function would
have the axioms of the present paper (or of a similar theory such as Savage’s) forthcom-
ing as theorems. Such an enlarged decision theory would remain subjective but an im-
portant element of counterintuitive arbitrariness would have been eliminated.

In conclusion, I should like to acknowledge my indebtedness to Professor Herman
Rubin for a number of helpful suggestions, as well as to Professor Donald Davidson,
Professor Robert McNaughton and Dr. Jean Rubin for their useful comments.
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