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1. Introduction

The problem of the growth of a stochastic epidemic in a closed population is a
very challenging one; from one point of view it is almost trivial, for we have only
to deal with a temporally homogeneous Markov process having a finite number of
states, and yet there is great difficulty in finding out anything useful about the
sample “‘epidemic curve” (the plot of the number of infectious individuals in circu-
lation in the population as a function of the time!). We are much better informed
about the ultimate behaviour of the system; the ordinate of the epidemic curve must
eventually fall to zero and then the system will be ‘“frozen” with say X () ‘‘sus-
ceptibles” and Z(«) “removed” persons, where X (o) + Z(«) is equal to the
(fixed) population size, and the form of the distribution of the random variable
Z( =) has been investigated by McKendrick [9] and by Bailey [1], [2]s the latter
has even given an explicit formula for this distribution (due to F. G. Foster). So we
know the ultimate fate of such a system, but little about how that state is attained.
The difficulties blocking the way to an analytical solution are made clear by Pro-
fessor Bartlett in his contribution to the present Symposium. In this paper I wish
to sketch some approximate procedures which give a partial answer, which may be
of value in more complicated situations of the same sort and which it would be
interesting to replace by a mathematical argument. It is to be hoped that no one
will apply them without reflexion, for there is nothing to be said in their favour
beyond a certain intuitive plausibility and the questionable confirmation afforded
by an armchair Monte Carlo experiment.

2. Deterministic epidemics

We must begin by making a thorough study of the corresponding deterministic
- system; this is the closed epidemic in the form in which it was studied by Kermack

and McKendrick [8]. These writers partitioned the population of n individuals
into three classes:

z susceptibles,

y infected persons in circulation in the population, and

z “removed”’ persons (recovered, dead or isolated),
so that

(€)) x4y + 2z =mn = constant .

1 This definition of “epidemic curve” and the definition of the “notifications curve’ in section 2
may differ from the reader’s own usage.
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It is supposed that there is migration from the z-class to the y-class (infection) at a
rate proportional to zy, and removal from the y-class to the z-class (recovery, etc.)
at a rate proportional to y; there is no exit from the z-class and no entry into the
z-class. Thus we have the Kermack-McKendrick (K and K) equations,

% = —fzy,
(2) % =Bzy — vy,

dz

dt =Y,
where 8 and v are constants, and immediately it follows that
®) T = e~ O

where p = y/8. If initially £ = 2, ¥y = yo and z,= 0 then

d_z _ —z/p
4 a5 = yin —z — zee” %) .
K and K dealt with this equation by replacing the exponential by the first three
terms of its Taylor series; the resulting equation can be integrated explicitly to
give, as an approximation to the epidemic curve,

(5) y = Csech? (af — ¢)

where C, « and ¢ are constants. It has often been noted that in practice we observe
not y(f) but (d/dt)z(t) (the “notifications” curve?); however the ordinates of the two
curves will be in a constant proportion in virtue of the third of equations (2)
(although they will not be so related in the stochastic case). It is curious that the
K and K approximation (5) should have been accepted without comment for nearly
thirty years; the exact solution is easily obtained and the difference between the two
can be of practical significance.

An indirect way of examining the appropriateness of an approximation is to de-
termine the modified model to which it is the exact solution. To this end let us
temporarily assume that the infection-rate 8 varies systematically with z (this is
almost equivalent to a dependence of the infection-rate on the ‘‘age” of the epi-
demic). In place of (3) and (4) we shall now have

(6) log (x/x0) = — }; fn ’ B(w)dw

and

@) Z—j = (n — 2 — Zp exp I:— %j: ﬁ(w)dw]) .

The differential equation (7) will coincide with the K and K approximation to (4)
when

_ 26
® O = T2/ + 0 — 2/
3 See footnote 1.
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and so 8(z) = Bwhenz = 0and B8(z) < 8 when0 < z=< p. From this we infer that
the K and K approximation consistently underestimates the infection-rate and so
it will underestimate the total size z( =) of the epidemic, as may also be seen more
directly from (4). It will correspond to a hopelessly unrealistic model if at any
time z > p (for then a negative infection-rate will be in operation), and the infec-
tion-rate will be kept within 10 per cent of its initial value only if 2(») < 0.373 p.
Now the K and K approximation leads to the formula

9) lim 2() = 2p(o — p)/Zo @ > 9,

yo—~0
=0 (o = p),

and so, accepting this as a rough relation between z, and z( =), we cannot expect a
consistent approximation if £y > 2p, and we must be prepared for appreciable errors
in the infection-rate if o > 1.23p. In previous work, values of z,/p up to 4 have
been considered ; this makes evident the need for an accurate treatment of equations
(2), and we shall now give one.

3. The exact solution to the Kermack-McKendrick equations

It is usual to discuss the epidemic generated by the addition of a given (small)
number of infectious persons to a population consisting entirely of susceptibles.
However it is a feature of the deterministic model that some of the formulas give
meaningful results even in the limit when the initial number of infectious persons
(yo) is allowed to tend to zero; thus it is possible to predict the size of epidemic (that
is, the total number of “cases’”) resulting from the introduction of a mere trace of
infection into a wholly susceptible population of size x, when the constant p is
given. This is, in fact, what the K and K formula (9) does, for their approximating
model. We have seen that (9) must not be used if 2o >> p and in practice it is most
frequently of interest when z, 22 p; in this case a further approximation is possible
and we can write
(9a) lim z(®) = 2(z0 — p) (o > p),

yp~0
=0 (Ioép).

Equation (9a) asserts (i) that there will be no epidemic if z, is less than p (the so-
called threshold) and (ii) that in all other cases the number of susceptibles will fall
as far below the threshold as it was initially above it. These two statements consti-
tute the celebrated threshold theorem of K and K. One of our tasks will be to examine
the exact behaviour of the deterministic model in these respects, and we shall then
have to enquire what sort of threshold phenomena may be expected in the stochastic
situation.
Let ¢» be the (unique) positive root of the equation

10) z=mn— zoe™** ;

then we shall have, on integrating (4),

® d
(1) yi= | 0sz<i),
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and this when taken in conjunction with (4) gives a pair of parametric equations
for the notifications curve relating dz/dt to ¢. The whole curve for 0 < ¢ < « isso
represented because the integral in (11) diverges when z — ¢5; ¢, is accordingly the
correct value of z(«). If now we put y, = 0 (so that n = z,) in (4) and (11), the
integral also diverges at its lower limit and we are in trouble because the epidemic
takes an infinitely long time to get started. We can avoid this difficulty by a change
of time-origin. K and K in 1927 noted that

a2 2(&) - (2-1),

so that the peak of the notifications (and so also of the epidemic) curve occurs when the
number of susceptibles is equal to the threshold (p). Let us call this epoch the cenire of
the epidemic and adopt it as the origin of time. We shall now have z, = p; the value
of yo will be an important parameter distinguishing between epidemics of varying
severity (it is, with the natural time-unit 1/v, the peak height of the notifications
curve) and without any loss of generality it will still be convenient to take z, = 0.
The numerical value of z(t) will then be the number of removed cases in (0, t) if £ is
positive and in (¢, 0) if ¢ is negative. The notifications curve will now be given para-
metrically by the pair of equations

t=fz dw
K o Yo+ p(l —evl) —w’

=y + ol —e) -2z,

(13)

I&

t

Qi
&

where — ®» <t < o and —¢; < 2z < ¢3, and —¢; and ¢, are the (unique) negative
and positive roots of the equation

(14) et —14¢/p = yo/p.

The complete change in our point of view should be noted; to begin with we
followed the customary procedure of studying the development of an epidemic sub-
sequent to its artificial creation by the introduction of y, infectious persons into a
population of z, susceptibles. We are now considering an epidemic as an entity
existing from { = — o tot = + «, and we have for convenience located our time-
origin at the epoch of greatest activity. When we come to examine the analogous
stochastic system we shall return to the earlier point of view, and examine epidemics
started up artificially at ¢ = 0.

It will be seen from (13) that

(15) limz() = —¢, limz(f) = ¢,
Lo

t-e—c0

and so {; and ¢, are the numbers of cases removed from circulation before and after
the central epoch, respectively. The asymmetry of the notifications curve will be
betrayed by an inequality between {; and ¢, (we shall find that {; < {2), and this is
the first point at which we notice a qualitative departure from the K and K solu-
tion (5).
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The approximate shape of the notifications curve near its peak (at ¢ = 0) can be
found by applying a K and K type of approximation to (13); this gives

l@N 2 &}
(16) 7dt=yosech {'yt K

an approximation valid so long as |z|/p is small.

TABLE I
DeTeErMINIsTIC EPIDEMICS OF THE K AND K TYPE
Proportion Infectious Proportion of
Popuistion Attarked | as Mulbiplost | - Contmal® Boooh " | before  Contral Epach
per vent TR ol A g

0 1.00 0.0 50

10 1.05 0.1 49
20 1.12 0.6 49
30 1.19 1.3 48
40 1.28 2.5 48
50 1.39 4.3 47
60 1.53 6.8 46
70 1.72 10.3 45
80 2.01 15.5 43
90 2.56 24.2 41
95 3.2 31.9 38
98 4.0 40.3 35

When ¢t = — », the number N of susceptibles must have been p 4+ yo 4+ {1, and
this now plays the role of the total population size. Thus
an = G+ &
pt+ v+ O

is the fraction of the total population which succumbs to the disease (either before
or after the central epoch) and we shall call T the iniensity of the epidemic.

In table I will be found a few figures which illustrate the exact behaviour of a
K and X epidemic. It will be found useful in performing such calculations to take
the intensity I as a basic parameter. If I and p are given we consider first the
transition:

Epoch t=—o =4
z-men N N — NI
y-men 0 0
z-men 0 NI

Equation (3) then gives at once

(18) N — NI = Ne™M'/*
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so that
N 1 1
(19) p—Ilogl_I.
We next consider the transition:
Epoch l=—o t=0
T-men N _ p
y-men 0 Yo
z-men 0 $1
and this time (3) gives
(20) p = Nef1/* |

Now I = (¢1+ ¢2)/N, and so as a measure of the asymmetry we have

_ & _ e,y N
21 n+ o NIE, -

Finally the number of infectious persons in circulation at the central epoch will be

(22) Yo=N—p—{1,

and the peak height of the notifications curve will be

(23) (%)m — YN ==t

These figures are very instructive and throw a good deal of light on the Kermack-
MecKendrick threshold theorem. The first thing to notice is that N = p, so that the
initial number of susceptibles in an epidemic generated at an infinitely remote epoch
by the introduction of a trace of infection must always exceed the threshold. The
number of susceptibles will fall to the threshold value when the peak occurs on the
notifications curve, and it will then continue falling to a final value ¥(1 — I). To
take an example, let p = 100 and suppose that the population starts with N = 105
susceptibles and a trace of infection; in the resulting epidemic (which will take an
infinitely long time to develop) 10 per cent of the population will succumb to the
disease and so the final number of susceptibles will be 94.5. In this example, there-
fore, the crude K and K formula,

(24) p— () Xa(—») — p,

works very well. But if the intensity of the epidemic is large then the K and K rule
fails. Thus, if p = 100 and if now the population starts at { = — o with N = 201
susceptibles and a trace of infection, we see from table I that the epidemic will have
an intensity I = 80 per cent; the final number of susceptibles will thus be 40. The
crude K and K rule would have predicted zero as the final number of susceptibles
and the more accurate approximation (9) would have predicted a figure of 100. For
epidemics of considerable severity, therefore, neither of (9) and (9a) can safely be
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used and the exact value should either be read off from table I or calculated by the
method just explained.

The last column of table I provides information about the asymmetry of the noti-
fications curve; this shows that when the initial number of susceptibles is as large
as 4p then nearly two-thirds of the removals occur after the peak of the notifications
curve. It would be of interest to know whether empirical notifications curves are
skewed in this direction.

Table I is concerned only with epidemics extending from ¢ = — » tot = 4 o, but
exactly the same principles can be used to find the subsequent behaviour of an
epidemic which is artificially started at ¢ = 0 by the addition of @ infectious persons
to a population of m susceptibles; a worked example will be found in the next section
of this paper. In these circumstances an epidemic will always be generated, whether
or not m exceeds the threshold; however, the peak of the notifications curve will not be
observed unless the induced epidemic is in a precentral phase. This means that, for all
values of a, the notifications curve will be peaked if m > p and J-shaped if m < p.

4. Stochastic epidemics

Let us turn now to the stochastic model, first considered by McKendrick [9] and
amplified by Bartlett [3], [4] which is the natural stochastic equivalent to the de-
terministic scheme of sections 2 and 3. The numbers of susceptible persons, of in-
fectious persons and of removed cases will now be integer-valued random variables
to be denoted by X(#), Y (£) and Z(t), respectively. The epidemic will be thought of
as having been artificially started at the epoch { = 0 with the initial conditions

X(0)=m, Y0 =a, Z(0) =0,

and a distinction will be drawn between the primary cases introduced into the popu-
lation from the outside and the secondary cases, m — X (=) in number, which occur
among the m original susceptibles. The stochastic process is to be a Markovian one
with a finite number of states and its character will be sufficiently indicated by
listing the transitions possible in the time interval (¢, t 4 dt):
(i) aninfection (X - X — 1and Y — Y + 1) with probability XY dt + o(dt);
(i) aremoval (Y—Y — 1and Z— Z + 1) with probability vY dt + o(dt);
(iii) a variety of multiple transitions, with total probability o(d¢) ; and
(iv) no change, with probability 1 — (8X + ¥)Y dt + o(dt).
The ratio p = v/8 is again important and will still be called the threshold. (Bailey
[2] calls it the relative removal rate.)
Bailey [1], [2] has investigated the distribution of the total number

(25) w=m— X(o)=2Z(x)—a

of secondary cases and his calculations confirm and extend preliminary conclusions
already reached by McKendrick [9]. Bailey’s results were presented graphically
in a form which proved difficult to describe in simple terms; the following reclassi-
fication of his results tells a clearer story. (Here and elsewhere, when referring to
Mr. Bailey’s work, I am indebted to him for permission to include some unpublished
material.)
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The J-shaped distributions have a peak at w = 0 and the ordinate then falls off
steadily as w increases. The bimodal distributions have one peak at w = 0 and the
ordinates then assume very small values until a second peak appears at or just be-
fore w = m. For m/p = 4 the two peaks are of comparable height and the distribu-
tion is U-shaped. Bailey’s calculations thus suggest the occurrence of a definite
change in form at m = p; it would be of interest to investigate this stochastic
threshold phenomenon analytically, using the formula developed by Bailey and
Foster, but this has not yet been done.? We can summarise Bailey’s findings in
another way and say that (i) there will be a minor epidemic if m = p, and (ii) there
will be either a minor or a major epidemic if m > p, epidemics of intermediate
magnitude being very unlikely.

TABLE 1I
CHARACTER OF THE DISTRIBUTION OF THE TOTAL
NUuMBER, w, OF SECONDARY CASES
(Number, a, of primary cases = 1)

m/p
m
0.67 08 1 | 1.33 2 4
10
20 All J-shaped All bimodal
40

(Based on calculations by N. T. J. Bailey.)

A moment’s reflexion shows that this mode of behaviour might well have been
expected. At ¢ = 0 the population of infectious individuals (¥Y-men) is subject to a
“tangential”’ birth-and-death process with a constant death-rate equal to v and a
stochastic birth-rate equal to 8X (¢). Thus, if m is reasonably large, we shall for a
short time have in effect a birth-and-death process in which the ratio death-rate/
birth-rate has the value

(26) p/N = v/(Bm) = p/m.

The chance of ultimate extinetion in such a birth-and-death process is (p/m)* if
m > p, and is unity if m =< p. Thus, if m < p, we may expect a small number of
secondary cases and then quiescence. If m > p, however, the tangential birth-and-
death process will either die out quickly or grow indefinitely. Thus we may then
expect with complementary probabilities that the number of Y-men will either fall
speedily to zero, producing a small number of secondary cases, or build up to large
values, so that a major epidemic results. If this view is correct, then the area under
the first peak of the w-distribution should be approximately equal to (p/m)* when
m > p. Very roughly, this is so; particulars will be found in table III. The agree-
ment is quite reasonable for m = 2p and sufficiently so to make our idea seem
worth pursuing.

Now when m > p and when by chance the system displays its second mode of be-
haviour (large numbers of infectious persons being built up) then we can reasonably

3 An important contribution to this problem has now been made by P. Whittle [10]; see, also,
the paper by F. G. Foster [6].
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approximate by assuming quasi-deterministic behaviour, and adapt the formulas
of sections 2 and 3. If, however, the first mode of behaviour (almost immediate
removal of the infectious persons) occurs then we can approximate by assuming
that the number of Y-men will follow the tangential birth-and-death process con-

TABLE III

Tae Caance oF Nor MoRre THAN ONE SECONDARY CasE, COMPARED
WITH (p/m)® (SHOWN IN PARENTHESES)

(@a=1)
m/p
m
1.33 2 4
10 0.55 (0.75) 0.42 (0.50) 0.24 (0.25)
20 0.54 (0.75) 0.41 (0.50) 0.23 (0.25)
40 0.54 (0.75) 0.41 (0.50) 0.23 (0.25)

(N. T. J. Bailey’s calculations).

ditioned by the requirement of ultimate extinction. In fact we propose the following
stochastic system as an approximation to the one actually being studied:
Specification of the approximating stochastic system:
@) If m < p, then ¥(¢) is the number of individuals in a population con-
trolled by a simple birth-and-death process with birth-rate = mg and
death-rate = v, satisfying the initial condition ¥ (0) = a.

(ii) If m > p, then the system has two modes of behaviour, A and B, with
(27) pr(4) = (p/m)* and pr(B) =1~ (o/m)

Inmode A, ¥ (t) behaves as if it were the number of individuals in a
simple birth-and-death process with birth-rate = mp and death-
rate = v, satisfying the initial condition ¥(0) = a and further
conditioned by the requirement that ¥ (=) = 0.

In mode B, ¥ () behaves as if it were the function y(f) describing
the evolution of the corresponding deterministic epidemic.

Before discussing the behaviour of the approximating system it will be necessary
to know how a birth-and-death process for which the birth-rate A(=mg) exceeds
the death-rate u(=+) is affected when one is required (as in mode A above) to reject
all sample-functions which do not eventually attain and thereafter remain con-
stantly at the value zero. The solution to this problem has recently been found by
W. A. O'N. Waugh [10] : a birth-and-death process with a birth-rate N\ which is greater
than the death-rate u cotncides, when subject to the requirement of ultimate extinction,
with an unconditioned birth-and-death process for which u is now the birth-rate and \
the death-rate. Thus in the definition of mode A we can drop the condition of ultimate
extinction and write instead

birth-rate = v, death-rate = mp.

With the aid of this rather surprising result the discussion of the approximating
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model becomes quite simple. For example, we can calculate the distribution of & =
Z(=) — a and compare E(®) with Bailey’s values for E(w). If m < p, then E(®%)
is the expected number of births in the appropriate birth-and-death process, so that

ma
- m

28 E@®) = 5

A

p) -

(m

We must therefore expect the approximating model to be quite unrealistic when
m = pand E(@) = «.If m > p, then

@ - () e [i- () ]e-o,

where { is the (unique) positive root of the equation

(30) m+a—§¢=m"",

obtained by a straightforward application of (3). In table IV we compare E(@) with
the values of E(w) calculated by Bailey. No entries of E(@) are made when m = p
because then the approximation manifestly fails.

TABLE 1V
CompARISON OF E(w) wite E(w) (SHOWN IN PARENTHESES)
@=1
m/p
m
0.67 0.80 1 1.33 2 4
10 1.08 (2) 1.38 4) 1.89 274 (3.8) 4.33 (4.8) 7.13 (7.5)
20 1.30 (2) 1.77 (4) 2.62 4.32 (5.1) 7.97 (8.8) 14.40 (14.9)
40 1.50 (2) 2.18 (4) 3.58 6.94 (7.4) 15.31 (16.8) 29.12 (29.6)

(N. T. J. Bailey’s calculations.)

Once again the agreement in order of magnitude is quite as good as one could have
hoped for apart from the breakdown when m =~ p (that is, at the threshold itself).

5. The growth of a stochastic epidemic in time

The success of the approximating model in reproducing the main qualitative
features of the original stochastic system when m £ p now suggests that we may be
able to use it to gain some rough information about the growth of a stochastic
epidemic in time. We should expect when m > p that the sample epidemic curves
will fall broadly into two classes: those (corresponding to mode A) which peter out
fairly quickly, and those (corresponding to mode B) which approximate to the
deterministic epidemic curve associated with the K and K equations (2). In order
to test this conjecture we must appeal to Monte Carlo information. By a method
described in detail elsewhere (Kendall, [7]) I have constructed a “random sample”
of twenty artificial realisations of the McKendrick-Bartlett process (X(¢), Y(f),
Z(t)) with the following values for the parameters. ’

=1, y=10, p=10,



0 0 0 00'1
1 ¢ I

I I 1 G6
0 0 0

1 ! 1 06
0 0 .0

1 1 1 4]
0 0 T

1 1 [4 08
0 0 T

1 0 T g 0 gL
0 1 0 0 !

T I 1 9 I 0L
0 I I I 0

T (4 (4 4 I $9
0 0 0 0 (4

I 0 4 0 (4 € € 09
0 I 0 I 0 I (4

I 1 I T (4 € ¥ Y
0 0 4 0 I I 4

I ! g ! € i 9 0g°0
4 I i|! 0 I € [4

g 4 ¥ 0 T 4 g 0 g i
I 0 0 I 4 1 € 1 I

€ 4 ¥ ¢ T € L T 14 o
¥ ¥ 0 I I 1 € T 4

9 9 g I 4 € 6 4 9 g
¥ 14 3 0 4 4 1 T |7¥

6 6 g I 9 b ¥ 4 g 0¢
4 4 ! 4 ¥ € 4 (4 I

9 01 0 9 4 6 L L4 0 € I 74
g 4 I g 1 ! € 0 4 4 1

9 11 ! 6 4 4 6 ¥ I g 1 02
0 € 0 (4 T 0 g 0 € I 0

€ ) T L € g 11 € € g 1 St
4 4 ! 4 € 9 4 I I 9 0

1 L k4 [4 0 g g L T g 0 6 1 0| O1
1 4 (4 0 1 1 1 . 0 0 0 4 0 1 !

1 9 4 (4 T 0 € g 0 0 0 ¥ T 1 0 4 S (4 1| <0
0 0 0 0 ! I T I I I 4 0 0 1 1 ! 0 1 0 0

I 1 I I I 1 I I I 1 1 I I I 1 1 1 1| 000
ZV A2V A2V X |2V X |2V X |2V X |2ZV XA |2V A|2ZV X |2V X |2ZV X |2ZV A|2ZV A |2V & |zZV zv 2Zv X|2v X{2V A|2Zv X| woodd
® ® @ ® @ ©) (@ () o (C)] 0] ® @ @ ® ® ® ® @ () |ormoprdy

£13uo puooas oy) pus ‘yoode poe3s)s oyj 38 UOIIE[MOIID Ul BUCSIad SNIOTJO9FUT JO JOQUINU 977 SIALS LI1JU0 ISIY 87} UWIN[0? UIBTI YO8 UJ)
0=(02z7T=(04‘%=(OX01=20=4T=9)
OINEAILH OLLSVHOOLJ V 40 SNOLLVZIIVEY TVIOIAIIYY (g 40 SETYOLSIH 4ar]

(‘TeAIS)UY P9YB)S 9y} BULIND , POAOWISL,, S988D JO JOQUINY YY) SOALS

A HTIVL



160 THIRD BERKELEY SYMPOSIUM: KENDALL
and with the following initial values,
X0)=m=20, Y0 =a=1, Z0)=0.

It will be observed that m/p = 2, so that we may reasonably expect modes A and B
to be well separated. The life-histories of the twenty epidemics are summarised in
table V for the benefit of those who may wish to try out estimation techniques. For
reasons of economy the data have been presented as concisely as possible. It will be
noticed that Z(¢) can be calculated for each multiple of Atz = 0.05 by cumulating the
entries of AZ, and that X (¢) is then determined by the conservationlaw X + Y + Z
= 21. The entries in the columns headed AZ, when plotted against the time, consti-
tute the empirical notifications “curve,” while the graph of Y against ¢ is the epi-
demic curve. There is of course no reason why ¥ and AZ should remain in a con-
stant proportion for a stochastic epidemic.

We can check the representativeness of this random sample of 20 stochastic
epidemics by examining the empirical distribution of the number of secondary cases
and then comparing it with the theoretical distribution determined by Bailey. The
result of the comparison is shown in table VI.

TABLE VI
ComPARISON OF EMPIRICAL AND THEORETICAL DISTRIBUTIONS OF w
Values of w 0-2 3-17 18-20
Observed (Kendall)........................ 9 5 6
Expected (Bailey).................oooiit 9.0 7.2 3.8

The method of grouping has been chosen so as to isolate the two peaks at the ex-
tremities of the range. The value of x? (with 2 degrees of freedom) is 1.95, which is
satisfactory so far as it goes.

t
Figure 1
The epidemic curve (the number of infectious individuals in circulation, plotted against the
time). The arithmetic mean of a sample of 20 artificial realizations of Y(¢) (linked spots) is com-
pared with E{¥ ()} (continuous curve).
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We next invite the reader to examine table VII, which compares (z, y, 2) for the
associated K and K deterministic epidemic (exact solution as given in section 3)
with the arithmetic means of (X, ¥, Z) for the twenty artificial epidemics, for
various epochs ¢. It will be seen that the two epidemic curves have notably different
peak heights and this is not surprising; Feller [5] has remarked that in such non-
linear systems the stochastic mean will not normally coincide with the deterministic
equivalent.

TABLE VII

A DETERMINISTIC EpipEmic AND THE (EMpIRICAL) EXPECTATION BEHAVIOUR
OF 118 STOCHASTIC COUNTERPART
(For details, see text. The values of z, # and z have been obtained from the
exact formulas of section 3; the values of X, Y and Z are the arithmetic
means of X, Y, and Z for 20 artificial stochastic epidemics.)

Epoch z X ¥ Y z z
0.00 20.0 20.0 1.0 1.0 0.0 0.0
05 18.8 18.9 1.6 1.6 0.6 0.6
10 16.9 17.9 2.4 2.0 1.7 1.2
15 14.8 16.2 3.2 2.4 3.0 2.5
20 12.4 15.2 3.8 2.7 4.8 3.2
25 10.2 14.4 4.1 2.4 6.7 4.3
30 8.4 13.4 3.9 2.4 8.7 5.3
35 7.0 12.7 3.4 1.9 10.6 6.4
40 5.9 12.5 2.9 1.3 12.2 7.3
45 5.2 12.1 2.3 1.2 13.5 7.8
50 4.7 11.8 1.8 1.0 14.5 8.3
55 4.3 11.8 1.4 0.7 15.3 8.6
60 4.1 11.7 1.0 0.6 15.9 8.8
65 3.9 11.6 0.8 0.5 16.3 8.9
70 3.7 11.6 0.6 0.4 16.7 9.1
75 3.7 11.6 0.4 0.3 16.9 9.2
80 3.6 11.6 0.3 0.2 17.1 9.2
85 3.6 11.6 0.2 0.2 17.2 9.3
© 3.5 11.6 0.0 0.0 17.5 9.4

It will now be appropriate to compare the empirical mean stochastic epidemic
curve of table VII (the graph of ¥(f) against ¢) with the calculated mean of ¥ (¢)
(the corresponding random variable in the approximating system). The comparison
is shown in figure 1; the curve gives the calculated mean value of ¥ () and the linked
spots locate empirical values of ¥ (£).

The agreement so far as the post-peak behaviour is concerned is most satisfac-
tory, and if it is confirmed by a more extensive series of Monte Carlo experiments
then we can claim to have constructed a rough approximation to the expectation
behaviour of a stochastic epidemic.

It must be realised, however, that the mean stochastic epidemic curve when taken
by itself gives no indication of the large fluctuations which may be shown by indi-
vidual epidemics. In order to illustrate this we show in figure 2 (a, 8, ¥) the 20
individual epidemic curves, plotted as if observed at regularly spaced epochs, and
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on each figure we have drawn for comparison the conditional mean epidemic curves
for the behaviour of the approximating system in each of the modes A and B. (The
peaked curve gives the conditional mean for mode B while the J-shaped curve
relates to mode A). The violent fluctuations are very striking. Epidemics e, f, 7, k,
l, 0; a, p; d; g; and r (on figure 2(a)) may be said to display mode A behaviour
while epidemics ¢, n, m, s, b, ¢, h, 7 and ¢ display mode B behaviour. The numbers
in the two classes are 11 and 9, respectively. It will be noted that with the given
values of the constants, pr (A) = pr (B) = %, so that equal frequencies for the two
modes would be expected.

In conclusion I should like to thank Mr. N. T. J. Bailey, Professor M. S. Bartlett,
Mr. J. Hajnal, Mr. G. E. H. Reuter and Dr. W. A. O’N. Waugh for helpful dis-
cussions in connexion with the present work. Professor Bartlett has developed inde-
pendently and rather differently the idea of using an approximating stochastic
system ; details of his work will be found in his book [4] and in his contribution to
this Symposium. '
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