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1. Introduction
As pointed out by Khinchin [ 1 ], statistical mechanics presents two fundamental

classes of problems for mathematics:
(a) the problems which are closely connected with the ergodic theory, and
(b) the problems which stem from the fact that the systems considered have many

degrees of freedom.
The latter problems are concerned with the creation of an analytic method for

the construction of asymptotic formulas.
The present work deals only with the problems of the second class. In order to

describe the macroscopic properties of a given mechanical system composed of a
very large number of particles with negligible interaction, one often defines the
so-called most probable macroscopic state, namely, the distribution of particles (in
their different possible states) having the largest probability of realization.
The mathematical expression for the probability of a macroscopic state uses

formulas of combinatorial analysis which contain the factorial function, and, in the
determination of the most probable state, Stirling's approximation [2] of N !. This
method is relatively simple but it is not rigorous. Moreover, it is necessary to show
in a rigorous way why the most probable state is indeed characteristic of macro-
scopic properties. The most probable value is not sufficient to determine all the
properties of a random variable. However, under rather general conditions, the set
of all the moments characterizes the probability distribution. Fowler makes use of
the method of steepest descent to determine the values of all moments [3] . How-
ever, when he devised his analytical method, the theory of probability was not so
developed as it is today. Hence, Fowler did not use certain methods of the theory
of probability which, as we shall see, are particularly convenient and efficient. The
main problems of statistical mechanics can be reduced to certain fundamental
questions of probability theory. This procedure avoids the use of the certainly in-
genious but often artificial tools used by Fowler. A number of papers have been
published concerning this reduction of statistical mechanics to the theory of proba-
bility. A basic point is the following: the problems of statistical mechanics can be
reduced to classical problems of conditional probability. For instance, it may be neces-
sary to know the statistical properties of a system under the condition that its
energy is supposed given.

This paper was prepared with the partial support of the Office of Naval Research.
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The comparison of the recent papers on the subject suggests a classification into
two broad categories. Khinchin's paper exemplifies the first category, characterized
by the use of probability distributions and by the direct application of the central
limit theorem in order to obtain asymptotic formulas of statistical mechanics. The
second category of papers, exemplified by those of Bartlett [4], of Blanc-Lapierre
and Tortrat [5], [6], is characterized by the use of characteristic functions. The
essential point in this method of approach is the fact that, under suitable conditions,
the product of a large number of characteristic functions is asymptotically equiva-
lent to e-, where 4 is a certain positive definite quadratic form. Although formally
different, the two methods are essentially equivalent because both are consequences
of the central limit theorem.'

2. General remarks
We begin by reviewing some classical properties of phase space which are direct

consequences of the fundamental principles of dynamics. Let (q, p) denote the co-
ordinates of the point M representing the state of a given system S in its phase
space r. The letter q will represent the coordinates of position and the letter p
those of momentum.

The following results are fundamental for further developments.
(a) If S is an isolated system, then its representative point M, or its image, de-

scribes, in the phase space, a curve which is entirely contained in the surface 2;
corresponding to the energy H(p, q) = E = constant.

(b) As time increases, r is transformed into itself by a volume-preserving map-
ping,

(2.1) dV = dq - *dp.

(c) It follows from (a) and (b) that, on ZE, there exists an integral invariant with
respect to time,

(2.2) dE = drE
igrad HJ1H_E

where doE is an element of surface on ZE, and grad H is the gradient of the function
H(M) on ZE.

(d) We suppose that every surface ZE is bounded. Then, under certain conditions
of metric indecomposability, the probability that M belongs to a given domain
AZE of Zg is proportional to

(2.3) fAZ d4-

In order to be more precise, we introduce the function

(2.4) Q(E) = f d0E.

Then the probability element becomes

(2.5) d7r E

'We must mention an interesting survey of the subject [8]. Obviously the reader will see in our
paper many connections with Gibbs' classical work.
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It is important to point out the following remark, previously emphasized by Khinchin.
The image M of a given isolated system must remain on the surface 2. which cor-
responds to the value of the initial energy. Then the only probability which haus phys-
ical significance is the probability which is distributed on this surface 2a:. There exists
'no physical necessity to consider a probability distribution on the whole phase space.

The probability distribution on Zs is completely characterized by (2.5). This
formula emphasizes the role played by the function Q(E). We remark that, as a
consequence of (2.2) and (2.4), this function can be expressed by

(2.6) Q(E) = dV

where V(E) is the volume inside 2E.
Actually, the fundamental problem consists in obtaining an approximation for

Q(E) for large values of E. Essentially this problem is one of computation of volumes
based on the expression for H(p, q). Generally, the system S can be decomposed
into components Si, S2, S3, *, with negligible interaction among them, so that
we can set H = E Hj(pj, qi).
A priori, it is not evident why probability theory is useful to us in obtaining the

solution of this problem of computation of volume. As pointed out by Khinchin,
it is mainly in the search for the asymptotic properties of a large number of com-
ponents that some typical methods of probability theory are useful. Hence, the
reduction of our problems of statistical mechanics to probability theory results
more from the similarity of the mathematical expressions than from the nature
itself of the problems.

In order to reduce our problem to classical results of probability theory, it is
convenient to consider a fictitious probability distribution II in r in such a way that
the distribution 7rs on ZE is the conditional distribution of the a priori distribution
II, relative to the fixed value E of the energy. Indeed, only WE has a physical mean-
ing; there is some freedom in the choice of II. The only condition on II is that it
reproduce the distribution 7r5 on Ze in the above sense.
What is the advantage of introducing II? As we have seen, S can be divided into

components S1, S2, * - * with negligible interaction so that we have H = H1 + H2
+ * - -. With the jth component Si, we associate its image Mi in its own phase
space r1. Let dV, be an element of volume in rF. Then obviously

(2.7) dV=dV1*dV2*dV3* - -

Consequently, the composition law of the volumes, (2.7), defines the law of compo-
sition of the Di associated with the rj of the different Si. In the simplest case of two
components, this law is

(2.8) Ql(E) = f 2,(E1)Q2(E - E1)dE, .

In the general case of N components, we have
r{N-1 A N-I

(2.9) Q(E) = J11i 2n(E.)dEi JQN(E - E E,).
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Because of the conservation of the volume in the phase space r, it may be a great
temptation to choose dV for the element of probability in the definition of the
probability distribution II; this is not possible since fdV = o; but, let us put this
difficulty aside for the present. If dV is the element of probability, Q(E) is the proba-
bility density of E(M). If we adopt the same definition in each space ri (with dV,
and Q;(E,)), then it is easily seen that (2.7) expresses the independence of the com-
ponents M1, M2, * - * of the random variable M. If we recall that E = 2Ei, we see
that (2.9) expresses the independence of the random variables E,(M). Hence (2.7)
and (2.9) show the independence of all the components Si of S. Of course, we shall
have to eliminate the difficulty due to the fact that fdV = .

After these preliminary remarks, we can say that the advantage of the introduc-
tion of the a priori probability distribution II is the fact that the independence sug-
gested by (2.7) and (2.9) can be preserved and the conditional distribution on ZR
will coincide with the distribution 7rE as we shall see.
The importance of the choice of II lies in the simplicity with which formulas of

composition can be obtained for systems with a very large number of components.

3. Statement of the principal problems
The principal problems we shall consider can be reduced to the following two

types:
Problem 1. Statistical properties of one component or of one set of components. As

before, let S be a system and S1, S2, * * * be its components with negligible inter-
action. Let us consider a particular component S, or a certain particular set S*
of components Si, S2, ** *, SN.. Problem 1 consists in studying the statistical prop-
erties of S, (or S,*) when the value E of the total energy is given. To be more precise,
we shall study the statistical properties of M1 (in rl) or of MC = (M1, M2, * * *, MN.)
(in rI X r2 X * X r1c) when the value of E is given. It may also be necessary
to find the probability distribution of the energy E1 (or EC). Problem 1 is exactly
the problem studied by Khinchin.

Problem 2. The distribution of the different components among the different possible
states. In problem 1 there was no necessity of assuming that all the components are
identical. Now we shall make this assumption. Let N denote the number of iden-
tical components and let ao (energy e,) denote the different possible quantum states
for one component. We shall always assume that the interaction between the differ-
ent components is so small that each component has its "private" quantum states.
We can then describe the situation for the set of N components by giving the num-
bers N, of components which are in the different states ai. To be more precise, let
us consider a particular state a, (or a particular set a,* of states u,). Our problem is
to study, for given values of H = E and N, the statistical properties of N1 (or of
the set of the N, which correspond to the as of a'*). Problem 2 is the one studied
by Fowler.

Remarks. (a) In problem 1 it is necessary to suppose that the components can
be distinguished; in problem 2 this assumption is not necessary.

(b) We shall denote by S the total system and by a* the set of all states and, in
both problems, we shall use the notation
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4. Reduction of the preceding problems to problems of probability theory. Advan-
tages of exponential weights

Problem 1. We wish the conditional probability distribution associated with II and
with a given value E, to be 7rW. If we consider the derivation for the expression of
dwr,g [see (2.2) ], we see immediately that, in II, the density of probability in r must
be a function of E only. We shall denote this function by f(E). Hence, we have
equiprobability near every surface ME. This equiprobability insures that we shall
have the correct law for d7rE. We must now choose f(E) so as to satisfy the obvious
condition

(4.1) ff(E)dV = 1

In addition, if the density of a priori probability in every space r1 is to have the
same properties as in r, that is, be a function of E1 only and preserve the independ-
ence between the different components, then it is necessary that

(4.2) f(E)dV = 11fj(E)ddV,
N

forE = E1 + E2 +** + ENanddV = dVs. For that, we must have
,_,

e-aE e-aE i
(4.3) f(E) = 4(a) and fj(Ej) = ,

where a is a positive real number and 4) and -b are normalization factors which are
functions of a. The explicit expressions for 4' and for 4', are

(4.4) 41(a) = f e-aEdV and 4'(a) = f e-aEidVj.

We shall assume the convergence of the integrals of (4.4) for every a; it is easy to
verify this point in the concrete cases considered.2 From (4.2) and (4.3), it follows
that

N

(4.5) C(a) = 4II (a)

Under this probability distribution in the phase spaces r and rF, the M, are inde-
pendent random points. Hence, the variables E, are also independent. With these
variables are associated the probability densities

(4.6) yj(E3) = Qj(Ej)e,
and we know (because of the independence of the S) that the composition law of
Q2 [see (2.8) and (2.9) ], which is a direct consequence of the properties of the phase
spaces, is again valid for the 7y(Ei). To summarize, we shall introduce an a priori
distribution II of M, defined by the two conditions:

(a) The Si components are independent.
2 It is easy to see that in concrete cases Q(E) increases only as a finite fixed power of E.
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(b) In every space rP, M, is distributed with the probability density

(4.7) fi(Ej; a) = e a > O,

and the corresponding energy distribution has a density

(4.8) 'j(Ei; a) = g,(Ea)eaEi
The probability distribution for the system of a given energy E is then the condi-
tional law which is derived from II for the value E. Of course, this result is independent
of the chosen value of a.

Therefore, our problem takes the following form:
We consider a certain number, generally large, of independent random multivariables

Ml, M2, - - * and we wish to know the conditional probability distribution of this set
of variables, or of a certain subset, when a function of the energies associated with the M,
has a given value. This condition is E, E,(Mj) = E.

In what follows we shall refer to the above question as the fundamental problem.
We are especially interested in its solution when the number of variables M, is
very large.

Problem 2. Now what corresponds to 7rE? It is the fundamental postulate of quan-
tum statistics. All the quantum states of the total system S, consistent with the conditions

(4.9) E= EEi and N = E Ni,

have the same probability (see [2], p. 59). When we say "all the quantum states,"
we mean "all the possible different quantum states," taking into account the par-
ticular physical nature of the N identical systems of which S is composed. If these
systems are not distinguishable, all the possible sets (N1, N2, - - *) which differ by
at least one N, correspond to distinct states for the total system and are equiprob-
able. We can attribute to every one a weight

(4.10) A = 1.

If the systems Si are distinguishable, then we must use

1 1

In Bose-Einstein's statistics, N1 can take on every value 0, 1, 2, * * *, whereas in
Fermi-Dirac's statistics, N1 is 0 or 1. The a priori probability distribution must
satisfy the following condition: the quantum states of the total system which are in
the same neighborhood as the quantum states defined by (4.9) must be equiprob-
able. Using the same derivations as in problem 1, we are led to define I in the follow-
ing way:

(a) The different variables N1 are independent in the II distribution.
(b) The probability of having N, = k is

(4.12) p,k = eaEj-PkM,k1/.,( a)
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where Aj,k iS

(a) 1 for k = 0, 1, 2, * (Bose-Einstein).
(b) 1 for k = 0 or 1, and 0 for k _ 2 (Fermi-Dirac).
(c) l/k ! (classical statistics).

cDi(13, a) is a normalization factor so that

(4.13) E pj,= 1
k-0

and a and ,B are real parameters with the only condition that the series of (4.13)
converges. It follows from the relation Es = ejN; that for 4j(a, ,B) we have

(4.14a) bj = 1 + e (aEi+O) (Fermi-Dirac)

(4.14b) i 1-e-(aj+) (Bose-Einstein)
i -(ae*s+#)

(4.14c) (Di= e (classical statistics).

As in problem 1, we introduce

(4.15) 4(j, a) = rI c1(,3 a)

The domains of variation of a and ,B can be limited by the condition of the existence
of c1, so that,

(4.16) log 4{i3, a) = E log j(D, a).
i=o

The convergence of the series (4.16) depends on the particular properties of the
sequence {es}. The domain of variation of a is certainly at most equal to the half-
axis a > 0. If the sequence {es} increases fast enough, a can be equal to any arbi-
trary positive value. For a = 0, we have 'I = -. In Fermi-Dirac's statistics, ,B can
have any arbitrary value. In Bose-Einstein's statistics, it is necessary that, for
every j, ae2 + i > 0. If the es are ordered so as to increase with j, then the condi-
tion is ,B > -aeo. For ,B = -aeo we have 4 = o. In the classical theory there are
no limitations on 13.

Results. Now we wish to emphasize certain results which will be useful for what
follows. For problem 1 some of these results can be found in Khinchin's book, but
in a different form.

Problem 1. The a priori probability density for the energy E is

(4.17) y(E; a) = e Q(E)
(D(a)

(We remarked above that we assume the existence of a positive number A so that
Q(E) increases no faster than EA.) From (4.17) it is easily seen that the charac-
teristic function O(v, a) of E is

(4.18) 4(v; a) = 4(a - iv)/4(a) .
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4O(v, a) is an analytic function of z = a - iv in the domain a > 0, so that 4 can be
expanded in series in a neighborhood of every point of this domain and, particu-
larly, near v = 0. Then, we have

Aa ~~Aa2 ,2(a+(4.19a) -(a + Aa) = 4(a) + Ac' 4(1)(,) + 2 2 (a) +

f Aa-Aa2-(4-19b) (b(a + Aa) = 41(a) {1+(1 aE + (1)2 ta E-2 +*

(4.20) (1)= En = f E e Q(E)dE
(b(a) 0~~~~~cL(a

(The existence of the derivatives 41u(n) and the convergence of the integrals are
always insured.) If (4.19b) is applied to the first moments, then

E _ d log b(a) _ 1 d2p(a)
da E b(a) da2'

(4.21)
d2 log 4?(a)

Now let us consider

(4.22) 'i'o(a; Eo) eeEO-i(a)
and

(4.23) Oo(v, a; Eo) e- iEog(v; a),

where eo(v; a; Eo) is the characteristic function of eO = E - Eo; we have

(4.24a) =O -d log cI(a) - = d log 4o(a; Eo)
da da

(4.24b) (eo -o)2 = d log 4?(a)

We remark that 4o is convex and also that it is infinite for a = 0 or a = + C.
Hence, c1 always has a unique minimum on 0 < a < + -. For this minimum we
have

(4.25) E(a) = Eo.

It is always possible to choose a uniquely so that the mean value E(a) in the a priori
distribution II takes on any arbitrary positive value Eo. This result is true for a particular
(D, for a product II '1' of an arbitrary number of ci, or for 4) which is the product of
all the 4',.

Problem 2. In an analogous way, the characteristic function of the joint distri-
bution of N, and Es in II is
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(4.26) g;(u, v; fB, a) = 4i,(f3 - iu; a - iv)/14'(B, a).

Now let us consider an arbitrary set s of oa quantum states. We shall write

(4.27) N. = NE, E. = E, = .

It is seen that the characteristic function of (N., E.) is

(4.28) r.(u, v; ,B, a) = ib.(j - iu, a - iv)/IC(fl, a).

If s contains all the quantum states, then we can remove the symbol s in (4.28). In
that case we have

(4.29) qN(u, v; S, a) = 4(1, - iu, a - iv)/-(,B, a) .

As in problem 1,

(4.30) log4,.(u, v;,,aJ = -iu log D -iv alg t

a{,2 log 2 2 log
U

9 lo p v2 } +

iu-N /U 2 'E'
= iuN, + ivE, - N u2+2N,E uv+v2E,2} +

where

(4.31) Ne = N.-N. and E = E,-E..

We see that

(4.32) NJ = - o E.=- Og"
(4.33) N, = alog 4) NCEt= 2 log 4). = 02 logd

012 012a0a

If s is reduced to a simple element oi, then ejN/' = Es'. In this case the correlation
coefficient between Ej' and Nj' is 1. If s contains two or more elements, then there
is no proportionality relation between N.' and E.' and the correlation coefficient
is not 1; then,

(4.34) a2 log ) 2< 2 log 4) 02 log 4).
49fl3a 032 0a2

(The two derivatives in the second member are positive since they are equal to N'2
or E'2, respectively.) Depending upon the different statistics, we have

log (D. = E log (1 + e-(ae3+°)) (Fermi-Dirac)

(4.35) or log (D. = - E log (1 -e (ai+f) (Bose-Einstein)

or log . = E e- (ofe° (classical statistics).
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The domains of variation for a and , are represented by the following figures.

a a

FERMI - DIRAC EINSTEIN - BOSE

a

CLASSICAL STATISTICS

FIGURE 1

Domain of (a, 0) for different statistics.

Using the same method of derivation as in problem 1, we introduce

(4.36) ' ,o(f, a; No, Eo) = eNlo+E'o.G,(i a .

It is easy to see that, under rather general conditions, log 1a,o is equal to + O at
all the limits of the variation of a and P. Since log c% and log ., 0 are convex, as a
consequence of (4.34) and (4.36), log 4'.,o has a single minimum. If aO and go are
the coordinates of this minimum, then

(4.37) Na(f8o, ao) = No

(4.38) Ea(f3o, ao) = Eo-

It is always possible to choose a and # uniquely so that the a priori mean values Na
and E. take on two given positive values No and Eo, respectively.

5. General remarks on the resolution of the fundamental problem
The fundamental problem can be resolved by using either the method of proba-

bility density or of characteristic functions. First, we shall demonstrate the two
methods in the solution of problem 1.
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5.1. Utilization of probability density. Let S* be the component (or the set of
components) being considered and (M. = M1, M2,* *, MN.) the image of S.* in
rc; we shall denote by NC + 1, NC + 2,* *, N the indices of the remaining com-
ponents. If E has a given value Eo, then the multiplication theorem for the proba-
bility of compound events immediately gives the probability that M, be in an ele-
ment dM, of r,. This probability is

(5.1) f(M./Eo) = PrM CCdMc and Eo < E < Eo + dEl
Pr{Eo<E <Eo+dEj

If we take into account the independence of the a priori probability distribution
of S. and SC*, then

(5.2) f(MC/Eo) = f(Mc)-y[Eo - E.(M,)]yI(Eo)
where f(Mc) is the a priori density of Mc, f(Mc/Eo) is the conditional probability
density, y(Eo) is the value of the a priori probability density of E in r for E = Eo,
and y [Eo - Ec(Mc) ] is the value of the a priori density of Er in r, for Eo- Ec(M.).
The whole problem is to derive -y and -y, which are probability densities of certain

sums of independent random variables E,. For this purpose, it is possible to use an
approximation, by normal law, as pointed out by Khinchin, if S,* contains a large
number of components.

Remark. The relation (5.1) gives the probability density relative to the localiza-
tion of M, in rF. If we are interested in the value of the energy Ec, we have as a
conditional probability density

(5.3) -1.(EC/Eo) = Qc(Ec)f(Mc/Eo)

(5.4) = Qc(Ec)f2,(Eo-Ec)

This relation, which is independent of a, plays an essential role in Khinchin's
theory. We shall return to this point later.

5.2. Utilization of the characteristic functions.
(a) Localization of M. in r,. Let I' be the a priori characteristic function of

(M-, Ec), that is to say,

(5.5) TCOI,,(C; v) = e iCu,,M,+,B,,) - e ("c.Mc+Efc(E.)dv,

where u-c is a point in a Euclidean space of the same number of dimensions as M.,
and v is the parameter associated with Ec. The characteristic function of
(M = kc X M., E=E) is

(5.6) TOZ.u; Ur,; v; a) = *Ytc; v; a)001r; v; a).
It is necessary to derive the characteristic function O(ui, iir/Eo) of M when E has a
given value Eo. Through the use of a slight generalization of Bartlett's results [4]
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concerning the characteristic function of conditional probabilities, one can easily
obtain

fse °vZCu-; Ur,; v, ae)dv
(5.7) O(u. iu/Eo) =

fe zV0*sO, 0; v, a)dv

If we are interested in the component S.* only, it is enough to set u, = 0. In this case

feuO¶I,(uc, 0; v, a)dv
(5.8) 0(u__/Eo) =

fei'Eo,II(o, 0; v, a)dv

(b) Distribution of E0. If we are interested in E¢, it is necessary to obtain the
characteristic function of the a priori joint distribution of E, and E. This charac-
teristic function iso4(v + vC; a)O,(v; a) and we must replace the formula (5.8) by

(fe-iEo,C(v + vC; a)O/)(v; a)dv
(5.9) O(v,c/Eo) =

fe-""0°0,(v; at)<l,(v; a)dv

6. Solution of the fundamental problem (problem 1)
6.1. Hypothesis. We wish to solve this question using either the method of proba-

bility density or that of characteristic functions. Actually we wish to obtain the
asymptotic properties of those systems which have a great number of degrees of
freedom, or more precisely, of those systems in which the number of degrees of
freedom tends to infinity.

It is now necessary to explain exactly what is meant by the expression "the number
of degrees of freedom tends to infinity." Indeed, we cannot talk about asymptotic
properties if we have not completely defined the way in which our system tends to
infinity. In this definition we have to conserve the values associated with the prop-
erties which Fowler calls intensive properties and whose constancy expresses the
stability of the matter of which S is the mechanical image. However, of course, the
extension of our system increases, that is to say, the quantity of matter increases.

Let us consider the decomposition of the given system S into its components {S}
in which SC* is decomposed into the components Si, S2, - - *, SNC and S,* into the
components SN.+I, SN.+2, * *, SN. Hence, the total system is decomposed into
Nc + NT components. The component S* which we are studying can remain finite
(small component interacting with a "heat bath" S*) or tend to infinity (large com-
ponent). We shall always suppose: N, co. Nc may be bounded or may tend to
infinity. In the latter case, we shall suppose that both ratios NT/N and Nc/N have
limits. When we say: N. coO, this is not precise enough because we do not neces-
sarily suppose that all the components are identical. We suppose the following three
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conditions to hold; they express the stability of the intensive properties of the
matter:

E log 4,j(a)
(6.1) N, -a(a)

d

d log 4j(a)
(6.2a) c da,. = -b,(a)

and

(6.3andE dC,2 log k,(a) d2a
(6.3a) da, C0)N,. da2= r)

The relations (6.2a) and (6.3a) are equivalent to the following equations whose
meaning is more easily seen:

(6-2b) 1 Ej- b,a

and

(6.3b) 1 £ (Ej - E)2 cr(a)

We shall make the natural assumption that c,(a) > 0. In the case of a large com-
ponent we shall also impose, on the component S*, the conditions analogous to
(6.1), (6.2a) and (6.3a) which assure the existence of the limits ac(a), bc(a), cc(a).
Our assumptions are also fulfilled by S = S, + S. with the limiting values

( a(a) = k,a, + kca,

(6.4) b(a) = krb, + kcb,

c(a) = k,c, + k,c,

where k, and k,, represent the limits of N,l/(Nc + N,) and Ncl/(Nc+ N,), respectively.
6.2. Method of probability densities. This is essentially the same as the method

developed by Khinchin.
(a) Let us first give some simplified and intuitive considerations concerning

Khinchin's method. It is easy to see that

(6.5) f(M./Eo) = Q2r(EO- E,,)£A(Eo)
and, hence, the problem is mainly to determine Q and Q,. In the simple case in
which E is a quadratic definite form, the volume V(E) is proportional to the volume
of an ellipsoid, given by (VE)N where N is the number of degrees of freedom (see
[2] F. Perrin, chapter 3, section 12); in this case, Q is proportional to E(N12)-1 = E
and it is obvious that
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(6.6) G(2E0 + AE) e exp - (2v)11-'eExp L 2v/ 021

where 0 is defined by 1/0 = Eo/v and AE/Eo is supposed to be a small quantity.
Using heuristic derivation we see that (6.6) leads to a relation which plays an im-
portant role in Khinchin's theory. If we set Eo + AE = x in (6.6), we have

Q(x) e9e 1 e-(x-Eo)2/2.f20
(6.7)

Ql(Eo) e-e2o2; f /27r a

whereal = v/82.
Let us assume that our approximation is correct in an x-domain around Eo so

large as to allow us to integrate both sides of (6.7) from 0 to infinity (actually from
-o to +co). Hence, we have

(6.8) r Q(x)e-"dx
f f(Eo)e- SE

and using (4.4) and (2.6), we see that

(6.9) S2(Eo) -@X___e_(_)
\/22rue

By multiplying both sides of (6.7) by x and integrating them from -o to + ,
we get

(6.10) X(2(X)e() dx -'Eo.
f2Q(Eo)e-eE 72r 9f

Using (6.9), this integral is approximately equal to

C- xQ(x)eO' d
(6.11) J ¢(v) dx = - log i()

so that we have

(6.12) Eo = d log 4(O) .

We shall now show that Gibbs' law can also be heuristically derived from the above
formula (6.6) (case of small component). In the case of a small component we have
N, - N and Nc << N,. In (6.5) we replace Q and (2 by their approximate expressions
following from (6.6) and it is easy to see that we can here use the same value of 0
for S and for S.*. Thus, we obtain

6.13) f(M./Eo) 2r(E.)) e- OE, exp [- E2/]

where 12,(Eo)/Q(Eo) ' 1/4,(O) (as a consequence of (6.9) and of 4> = rcIc). Neg-
lecting the second exponential, which must be very close to 1 for a given value of 0
and for P large, we obtain Gibbs' law.

However, it should be noted that we have not shown that the above approxima-
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tions are available in a large enough domain, and hence we cannot assert, for
instance, that the following integral corresponding to the total probability is unity:

(6.14) f r(Ev) Q c(x)e-x exp [ dx.

From our point of view, Khinchin's method consists in deriving the above formulas
rigorously.

(b) Actual derivation of the conditional distributions. In (5.2) we use the normal
approximation for the densities associated with the systems which have a large
number of components. In the case of a small component, we use this approximation
only for yr and y; in the case of a large component, we can use this approximation for
'Yc, yr and y.

First, we shall present the theorem proved by Khinchin.
THEOREM. Let xi, x2, * * be a sequence of independent random variables (Xk = 0);

let Uk(x) and gk(u) denote their probability densities and their characteristic functions,
respectively. We assume

(1) The derivatives U' exist; the integrals of I UI from - o to + o exist and are
bounded uniformly with respect to k.

(2) For every random variable, the first five moments exist and it is possible to find
two positive numbers X and IA, independent of k, such that 0 < X < x2 < ii; x < A;
x4 < A; ix 51 < A.

(3) There exist positive constants a and b such that gk(U) > b, for uU < a.
(4) For each interval (cl, c2) (with C1C2 > 0) there exists a number p(c,, c2) < 1 such

that for any u in the interval (cl, C2) we have Igk(U) < p (k = 1, 2, * * *).
If Un(x) denotes the probability density of the sum of the first n terms in the given

sequence of random quantities, then
(a) for lx I <2 log2 n, we have

1 -.'/2B S.~+ T,x (1
(6.15a) U.(x) = (2 Bn)1i2e + + + o2l )

n

(b) for any arbitrary x, we have

(6.15b) Un(X) = (2B )2 e2/2Bn + o (-)

n
where Bn = lXk 2, S, and T. are independent of x and do not increase faster than n.

k-I
The case of a small component. In this case, N, is bounded and Nr a:X and it is

natural to assume that the total energy Eo increases proportionally to N, + Nr,
that is, as N - a,

(6.16) limN + Nr=

Let D, (Dr and 4' be the 4-functions associated with S,, Sr and S (4 =) c4,.), respec-
tively. It follows from (5.2) that
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0
aE c Fd2 log/pd2_log 4,l

(6.17) f(Md/E2) = [______f(mclE a)L da2,, / J
e[(xPA+( ))/(B+(1xp

N/N, ~ ~ v/
with

I ~~~dlog (A2/ d2 log -t(6.18) A = - Eo- E d+ 22 2

and

(6.19) B o+ da 2)/ da2

This relation is true for an arbitrary value of a. Actually, we shall see that it has a
simple and useful expression for only one value of a which is determined without
ambiguity. Indeed, (6.17) is useful only in the case that, at least in the denominator,
the term o(v\/l/N) is negligible as compared to the exponential term. In order to
realize this condition we proceed in the following manner: for N large but finite, we
take for a the single root aN (see equations 4.25) of

(6.20) Eo d log 4I(a; N) E(aN) ,

so that the exponential term in the denominator is always equal to 1. For every N,
we shall have

(6.21) Eo 1 d log b(a; N) (a =N)(6.21) ~~N N d a=N)

If N .- + c, the first member tends to eo and

(6.22) lim 1 d log b(a, N) (a = aN) eo.
N-- N da

Under rather general regularity conditions on the functions 4(a, N), b,(a) and c,(a)
introduced in (6.2) and (6.3), and supposing that c,(a) > 0, which is almost a
consequence of the meaning of c,(a), it is possible to show that:

(1) AsN * , aN tends to a unique limit, a(oa),
(2) a((co) is the single root of

(6.23) eo = b,(a(-o)).

In order to justify this result, it is enough to suppose that the convergences
which occur in (6.2a) and (6.3a) are uniform on a segment > 0 surrounding a(03).
Choosing a = aN, the exponential in the denominator is equal to 1.
Now considering the numerator, we want a good approximation for f(Mc/Eo) in

the set of points Mc for which Qc(E,(M,))f(M,1Eo) is not negligible. For such points,
the exponential in I I is surely dominant. However, because the exponential
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exp (-aNE,) exists in (6.17) and because Q,(E,) increases only as a finite fixed
power of Ec, it is sufficient to consider the values of E, bounded, for instance, by

(6.24) <E 00)

If N - , then using (6.2a), (6.3a) and (6.24), it is seen that

(6.25) li ~(dz2log ,.)/ (d2 log =) 1(6.25) lrnim 12 /
N--~

(6.26) lim (Eo - E + d log ,t)2/ (d2log Ir) 0

Besides, under rather general conditions, if aN is interior to a certain domain sur-
rounding a(ca) then the terms o(1i/VIN) in (6.17) can be bounded uniformly with
respect to a. Hence, we obtain

(6.27) im f(M E = [a(=)]

which is exactly Gibbs' law.'
THEOREM. The conditional distribution for a small component S is equal to the

a priori distribution under the condition that a is chosen so that

(6.28) E = E(a)

where E(a) is the a priori mean value of E.
A remark of K. It. We are indebted to Professor It6 for a very interesting remark

made during the discussion of our paper; this remark leads to the idea that we do
not need to use the central limit theorem as we did above to derive the asymptotic
expression (6.27). Intuitively speaking, this remark is the following: We wish to
derive the asymptotic expression for f(M,/Eo); such a density of probability is
defined by

p {MeC dMc and eo- < < eo +
(6.29) f(MC/Eo)dMc ' { E}

p ttO- < N< eO + e}

Now, let us consider the a priori distribution of the sum E = E1 + E2 +
where the random variables are independent. Using the law of large numbers we
see that, when N - , we have lim[ (E-E(a))/N] =0, that is, lim[ (E/N)-br(a)]
=0.
Now, let us suppose that we have chosen a so that b,(a) = eo, that is, a = a( o-);
3 It is obvious by comparison with (4.4) that the expression defined by (6.27) yields the value 1

for the total probability. If, for N sufficiently large, we assign to a a value a4 * aN so that the
argument of the exponential in the denominator tends to a finite limit exp (- 52/2), it is easy to see
that aN also tends to a( ) and that, in the limit, both the numerator and the denominator of (6.17)
are multiplied by e-P/2 and we obtain the same result as before.
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the condition eO- E < E/N < eO + e is automatically fulfilled and we can eliminate
it from (6.29). Then we have

(6.30) f(Mc/Eo) = f(Mc)-
For this particular choice of a, the a priori density is the same as the conditional
density. This derivation is not rigorous but it seems that it would not be very diffi-
cult to put in a rigorous form.

The case of a large component. We are interested in the energy of a large compo-
nent. We begin with the following relation, established above,

(6.31) y(E /EO) _ 'yc(Ecy a)-y,(Eo - Ec(M,)),y(Eo)
If we apply Khinchin's theorem to yc, y,, and -y, we then have

(6.32) y(E /EO) d 2 / d2 d2log

e( A+( e))(C+( e))(B+o())
V/27r -VN,. N VN

where A and B are defined in (6.17) and where

(6.33) C - [EC+dl ]/2 da2

We choose a as before, and suppose that

(6.34) limk = e lim e, limN= k
Nc ~~N,. N,.

Following Khinchin's notation we set

Nc Nr
(6.35) BC,NC =A (EC-E )2 Br,.,N = (Er-Er)2 BN = BC,NC + Br,.v,

In addition we have Ec + Er = Eo, that is, Ec- - - (Eo-Ec- ,). Setting
A, = c -d log 4c/da, we have, for Nc and N, - X

(6.36a) yc(Ec/Eo) x( BN ) [_ (E2 B AC)2 _ (EC-
27rB,,.v, B 2B c,.,,, 2B,, .v,

or

(6.36b) -y(Ec/Eo) ,exp ( (E )2

where

(6.37) B = (BC,NC - B,.N,)/(Bc,NC + B,.,N,.)

6.3. Method of characteristic functions.
(a) Small component. We use (5.8), where
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(6.38) I(Cue 0; v, a) = '(Zc v; a) II {14(a -iv)/4y(a) I(r)
qS can be developed in power series of v in the neighborhood of v = 0. Let us

write the limited development of the third order4

d1log,( V2 d21log41j TV
(6.39) log (v; a) = - d 2 d& + 3 (p + iP)
where

(6.40) d=lo{dSg D (a- iO)}; p = ;{d 3 ii -

(O < 0; < 1; 0 <0s < 1). First, we make the following remarks:
(i) 4O(v; a) attains its maximum (equal to 1) at v = 0. The probability distri-

bution being supposed continuous, 0 cannot attain the value 1 for any other value
of v. Then, for v 2 and i sufficiently small, we have 1,(V, a) < 1 - ,j/ =
max of lji on lv I tq, and also t>' has the same order as - r72 (d2 log 4',/da2). A
priori, v may depend on j; if we can choose a common value of q for all the 4,, we
have for lviI ?

(6.41) | j .| Ifi -11

[exp(-2 E d2l)gI) 'exp ( Nrcr(a)f2)

This bound for the modulus can be used for every positive value of a. Now, let us
consider the integrals as in (5.8) and assume that the integral fr 'I(uC, v; a) dv
exists.

Thus, it is sufficient that Nr 12 should be large enough so that, in the integral of
(5.8) relative to v (between - to + co), only the part of these integrals in the
neighborhood v _ q of v = 0 makes a significant contribution (under the condi-
tion that the contribution of this part is not negligible).

(ii) To obtain a simple asymptotic estimate of our integrals it is necessary that
the third term of the different developments (6.39) are bounded uniformly in j in a
certain neighborhood Iv .< small enough; for instance, it is sufficient to have

(6.42) d3ogcI!,(z) < M with z = a -iv

for all j, for all v such that v _ 71, and for the a, values concerned. The sum
iv3(p + ip')/3 ! of these terms in the expression of log Jl(r,)j is bounded by v3NrM/3 !
in modulus and we shall choose tq (decreasing with 1/Nr) so that Nrt73 -) 0 while
Nr 2 -a7. Then we may neglect these terms in the integration.
Then the integrand in the numerator of (5.8) can be written

(6.43) P(ic v, a,)

exp [-iv (E0 + E d log 4j) - v2 d2 log cPy + iv3 1 +

4 We call aR(z) the real part of the complex number z and I (z) its imaginary part so that z
aR(z) + iJ(z).
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Besides, for estimating the value of the integral on -i7, +q, in a simple way it is

necessary to eliminate the first oscillating term exp iv (Eo + E d log Dj)
then we put

(6.44a) Eo + E d log (j = 0
r da

or, equivalently (s, being a small component),

(6.44b) Eo+ dog =o 0
N cia

aN being chosen in this way, only the parts of the integrals in the neighborhood of
v = 0 are important; we can take the term s6(uc, v, a) out of the integral sign by
letting v = 0 and a = aN. Then, we obtain the result that if N - equation (5.8)
tends to

(6.45) oCuc/Eo) = 'c(uc, 0, a( Cr)) .

We again obtain the result of (6.20): The conditional distribution for the small
component Sc* is equal to the a priori distribution under the condition that a is
chosen so that Eo = E(a), where E(a) is the a priori mean value of E.

(b) Large component. We now use (5.9) with

(6.46) 0¢(v + v., a) = IL 4j(v + vc, a) )r(V, a) = H j(v; a)
(c) (r)

As in the case of a small component, we use limited developments,

d log 4)j (v + v,), d' log SDlogoc(v + v., a) - -i(v + v,) E lo 2 E dC2cida 2

(6.47) + 3rd order,

log 4(v, a) --iv log Ev2 d2 + 3rd order
cida 2+rdrdr

Under some rather general conditions used in the case of a small component and
under some assumptions concerning the decrease of the 4, functions at infinity, it
is easily seen that the integrals of (5.9) depend only on the values of 4 in the neigh-
borhood of v = 0 or of v = vc. In these neighborhoods we use the same uniform
bounds for the third derivative that we used in the case of a small component. Then,
the effect of the terms of the third order is negligible. Moreover, as before, let us
shift the origin as follows:

(6.48) E'c = E, - Ec = Ec~- A,c = Ec + E d log 4)j.
Then, in the numerator of (5.9), we have an expression equivalent to

(6.49) [exp (-iv [E + Eo])]* exp (_ ( + BdNBCN -C2 B,Nr)
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and, in the denominator, an expression equivalent to

(6.50) [exp (-iv [ d l + Eo])] exp - 2 [BC,NC + Br,N,).

Now, we eliminate the oscillating term by choosing aN so that

(6.51) E d log_ o dlog -E.
N da - da

Then, we have

[exp - B,,NC- -B,N dv
(6.52) 4[v,/Eo] = 22

fJw0 [exp (-2 [BC,NC + Br,Nr)] dv

= exp [(-v Bc,N, * Br,N,)/2(Bc,g0 + B.Nr)] - e/c

This is exactly the characteristic function relative to E. consistent with (6.36b).
6.4. Comparison. We have used in parallel ways probability density and charac-

teristic functions to make it clear that these two methods are equivalent to each
other. In both cases we obtain the same results:

(a) For a small component the conditional distribution is equal to the a priori
distribution under the condition that we choose a according to equation (6.20).

(b) For a large component, the energy E is normally distributed and the param-
eters of this normal distribution can be expressed in a very simple way if a is again
chosen according to equation (6.20).

7. Solution of the fundamental problem (problem 2)
The fundamental problem here is to derive the distribution of N, or of E, when

E and N are given (E = Eo and N = No).
(7.1) N.+N2+ =No

f ~~El + E2 + ***=Eo
(7.2) or

t ElNi + e2N2 + ***=Eo .

As in Fowler's book, we can assume, with no loss of generality, that the {es} are
integers.

First, we must solve the fundamental problem in the case of a system S with a
finite number of components. We shall later consider the asymptotic problem.
We assume that el co if 1 -o Co. Then, for sufficiently large 1, we shall have

(7.3) EL > Eo
and, indeed, no component is in the quantum states for which (7.3) is fulfilled.
Then, in (7.1) and (7.2) we can restrict the summations to be over a finite number
of terms, say L. As in Fowler's method we assume that the { fE } are relatively prime.
We shall use here the method of characteristic functions.
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The characteristic function of the joint distribution of the random variables
{N3} (j = 1, 2, *,L) is

L

(7.4) O(UI, U2, * , UL; 3, a) = I oj(Uj, 0; 0, a) X

L L
and that of N1, N2, ,NL; SI = E Nj; S2 = EejNj is

L

(7.5) I(ul, *,UL; W, t; 3, a) = fl,0(Uj + w, t;f, a) .
j= 1

Let p(Si, S2) be the a priori probability that S1 and S2 have a given pair of values.
Then we have

(7.6) = E p(SI, S2)ei(ws1+ S2)0,(ul, UL/ Si S2)
S1.S2

where k(ul, *, UL/S1, S2) is the characteristic function of N1, *, NL, under the
condition that SI and S2 have given values.
By (7.6) it is easy to see that

(7.7) 4(ul, , UL/No, Eo)

fJ f i/(u, .*.,. UL; W, t; ,, a)e i(WNo+ tEo)dwdt

f] " 0(°, * *, 0; w, t; #, a)ei(UNO+tEo)dwdt

This formula plays the same role in the development as did (5.7) previously. If we
are only interested in a particular set of quantum states (j = 1, 2, - * ., c), we re-
place by 0 all u's corresponding to the other quantum states, and we consider

(7.8) (u1, * * , u,; 0, 0, * . *, O/No, Eo) .

If we wish to obtain the distribution of N1 + N2 + * * * + Ne, we put u, = U2
= . * *= u, = U in (7.8). If we wish to obtain the distribution of e1Ni + * * * +
e,N,, we replace in (7.8) u1, u2, .* u,, by elu, f2U, * * *,Xeu, respectively.
Now we must study the asymptotic properties and for this purpose we must

assume some hypotheses concerning the increase of our system. First, we make
some preliminary remarks.

(i) L being defined as before and Eo being given, we can obviously replace L by
any L' > L. ¢0(ul, U2, * * *, UL'/No, Eo) does not depend on the ui for j > L. Hence,
we can set L = - so that it is not necessary to limit the number of the {u;}. It is
in this sense that we introduce o(ul, u2, ** INo, Eo).

(ii) Now we shall discuss the assumptions regarding the increase of our system.
To do this we must first consider several examples.
Example 1. Let 1 be the system concerned, Eo and No be the given values for E

and N and {fril be the set of the quantum states for one component. We consider
(n - 1) systems 12 23, * * *, In identical with 2:1 (they have the same No and the
same Eo). We suppose these systems to be distinct in the space, so that we can dis-
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tinguish their quantum states {fa}. Now, we assume that 21, ,2** , 2, can ex-
change some particles and some energy. Of course, we suppose that the interaction
between these systems is so small that the total energy can be considered as the
sum of the energies of all the systems. Then we suppose that we are interested in
the set a,* (j = 1, 2, ** *, c) of 11 and we wish to derive the asymptotic properties
of a,* as n o . To summarize, a,* consists of a particular set of c quantum states
of li, and a,* consists of all the other quantum states of LI and all the quantum
states of Z2, Z3, * * *,X,; now we shall let n tend to infinity and we assume that the
total energy of 21 + 22 + + Zn is equal to nEo and that the total number of
components is equal to nNo.
Example 2. This example is analogous to the above one, but now a* is the set

of all the quantum states j = 1, 2, * cc corresponding to all the systems Z1,
22, * * *, 2n. Of course, in this case, v* consists of all the quantum states j > c
corresponding to all the systems 11, * * *, 2n.
Example 3. Let us consider the gas composed of identical particles in an equipo-

tential box. Let 1,, 12, 13 be the lengths of the sides of this box. The eigenvalues of
the energy of one particle are

(7.9a) EJ.k.=8 (L+ + 1)

where h is Plank's constant and j, k, q are positive integers. Let No be the number of
particles in the box and Eo the total energy. Now let us consider another box whose
sides are 211, 24, 213 and which contains 8No particles and having an energy equal
to 8Eo. If we pass from the first box to the second, we extend our system in such a
way that it conserves the values associated with the intensive properties. For the
second box, the eigenvalues of the energy are

(7.9b) k -=(q12 + 412 2

where j', k', q' are positive integers. If we make the box larger and larger in this
way, we see that the sequence of the eigenvalues of the energy becomes more and
more dense.

In the definition of ac* we must distinguish two cases: In the first case we are
interested in all the quantum states whose energies belong to a certain range of
energy (eo < ej,k,q < ei). In this case, when the system tends to infinity, the number
of quantum states in ac* also tends to infinity. We shall call this case "case (a)." In
the second case, we are interested in a constant number of quantum states in the
above range. For instance, we are interested in the quantum states that have the
smallest energies in the above range. In this case, the number of quantum states in
Of remains constant and equal to c. We shall call this case "case (b)."
The rigorous derivation of the asymptotic properties may be different according

to the model chosen but the final results are essentially equivalent.
Moreover, it is necessary to point out that examples 1 and 3 (case b) are related

to problems of small components while examples 2 and 3 (case a) concern problems
of large components.

(iii) In order to solve the asymptotic problem, we first consider the case of one
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small component and we derive the result for example 1. (The general aspects of
the derivation are also applicable to example 3 (case b).) Using the equations (4.28),
(7.6), (7.7) and (7.8) we have

(7.10) k(ul, *, u,; 0, 0, 0 *. ./n, No, Eo)

J *(ul .., uc; o0, . . ; w, t; j, a)e in(WNo+tEo)dwdt

' 46(O ., 0; 0, 0, 0 . . ; w, t; fl, a) e- n(wf°+tE°)dwdt
and

(7.11) t/(ul* *,u. ; 0, 0, *;w, t; , a) = Joj(uj + w, t; ,, a)
j=1

*II j,(w, t;1,a) * 1(w t; 3, a) .
j=¢+ l j_1

It is possible to proceed in the same way as in section 6.2. However, there is a little
difference between these two problems. In section 6.2 the range of variation of v
was (- c, + co). Here the functions considered are periodic with respect to w and t
(period 2ir). We cannot say that Oj has one, and only one, maximum attained at
w = t = 0 but we must say, now, that Oj has a maximum at all points w = 2irM1
and t = 27rM2 (Ml and M2 being arbitrary integers). But it has one and only one
maximum in the range of integration, and, in the neighborhood of w = t = 0, we
can use the same method as in section 6.2

(7.12) logj(Uj,vj;B,a)fly -i Uj log CD + vj /logj Ij

1Q(a, log ~ +2 a2 log Ob 2 log,2)i2( 2 U2; + 2 juvj + 2 V2

+ terms of the 3rd order.
Then

(7.13) log IIfl4j(w, t;j, a) = -i(n - 1) w log ' + t E a log4%]

1(n W2 E a i + 2wt Ea log 'I + t2ZaE logbci

+ terms of the 3rd order.

Now we must take the term exp -in(wNo + tEo) into account. In the same man-
ner as we did for section 6.2, we impose the conditions

(7.14) nNo+ (n- 1) a log 0 =nEo+ (n-1) =a ,

where b = II T'i as before. If we choose a and t3 such that (7.14) be fulfilled, only
the part of the integrals in the neighborhood of w = t = 0 makes a significant
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contribution and, in (7.10), we can take the terms related to 21 out from under the
integral sign. Finally, we obtain

(7.15) k(ui, **,u; 0, 0 . .*/n, No, E.) -/)4(uj, t; 13,.,, a,,)

We have always the same result; the conditional distribution for the small com-
ponent ac* is equal to the a priori distribution under the condition that a and 13 are
chosen according to

(7.16) No = N and Eo =E
(compare with (7.14) for n - ).
Now, we consider briefly the case of a large component. For instance, we shall

study example 2. In the case of a large component we may be interested either in
the number N, or in the energy of the set of components whose quantum state is
contained in ac*. Let N. be this number of components. The formula (7.7) must be
modified as follows:

(7.17) O(u0, vc/n, No, Eo) =

ffJ #0C(uc + w, vc + t; ,8 Wa)tr(w, t; 1, a)ein(WNo+tEo)dwdt
-J J fc4,(w, t; ,S, a)4A,(w, t; /3, a)e- in(wNo+ tEO)dwdt

where
c

I (u0+ w, vc + t; 3, a) = rI ;(uc + w, v0 + t;1,a)
j=l

(7.18)

I.7(w,t; , a)= r ;(w,t;1, a).
Now we put

c

(7.19) Tc = II (I) IIr=n(D X=bb
j=1 j=c+

(7.20) Ec = Ec-E0; Nc =Nc -N0;
and we choose a and 13 according to the equations

(7.21) Eo +
a = 0, No + d log -0.

Let ao and 13o be the solution of this system of two equations. Now we introduce the
mean values of the a priori joint distribution of (E', N') corresponding to ao and P3o

_ 2 log= N 92 log ; .EN'2=__ 02 log 4E0ca2 013#2 C 0 a1

(7.22)
Er_lo 02 log 4';, a_ lo_g02lo2, N2 In03 ''= 2o~&0 90 r 0aaa#
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Now if we denote by G,(w, t; ao, iSo) and Gr(w, t; ao, io) the characteristic func-
tions of the normal distributions which correspond, asymptotically, to (N', E') and
(N', E'), respectively, then, for the conditional joint distribution of (E', N'), we
obtain the following expression:

f+rftJr Gc(uc + w, vc + t)Gr(w, t)dwdt
(7.23) 0(u., vc/n, N., Eo) -T -

f J]" G,(w, t)G,(w, t)dwd t

Indeed, after integration, we obtain for 4(uc, v,/n = a, No, Eo) the characteristic
function of a normal distribution.

8. Conclusion
We have shown that the introduction of a priori probability permits us to reduce,

in a natural way, several problems of statistical mechanics to some typical questions
in the theory of conditional probability. The expressions of the asymptotic proper-
ties of systems with many degrees of freedom are always simple if we use the a priori
distributions for which the average values E and N are equal to the given values
Eo and No, respectively.
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