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1. General Poisson distributions
Recently, A. Blanc-Lapierre and I remarked that we were not aware of any definition

of a general Poisson distribution, that is to say, of a Poisson distribution not, as usual,
on the straight line or on some Euclidean space, but on a perfectly general space. Such a
definition may be useful, and can be given in the following obvious way.

Let X be any space of elements x,B a Borel field of subsets e of ;, and m(e) a meas-
ure on B (not necessarily bounded or finite). A random family F of elements of J is a
Poisson distribution on T [with respect to eB and m(e)] if, M(e) being the number of
elements of F belonging to e E A, we have the following properties [1]:

1) If m(e) < + co, the random variable M(e) is almost certainly finite and its distri-
bution function is the Poisson law with parameter m(e).

2) If k is any integer and if el, e2,* * *, ek are any disjoint sets belonging to B, with
m(e,) < + -, j = 1, 2, *, k, the k random variables M(ey) are independent.

The classical properties of Poisson distributions on the straight line remain true. For
instance, it is easy to see the following.

1) If e E BQ with 0 < m(e) < + c, then conditionally when M(e) = k, with k any
integer >0, the distribution on e of the k elements of F belonging to e is statistically
equivalent to the choice at random, independently, of k elements x on e, with
Pr{x E e'} = m(e')/m(e), where e' is any subset of e belonging to A.

2) Let et be a family of sets belonging to B, 0 _ t < + -, such that (a) e, C e, if
t < T; (b) eo reduces to an element xo E X; (c) m(eg), as a function of t, is continuous
even for t -* +0 with m(eo) = 0. Let T be the random variable defined by the following.
If t < T, no element of F belongs to et; if t > T, at least one element of F belongs to ei.
The distribution function of T is

(1.1) 1- e-m(el)

3) Let 2) be a second space, e a Borel field of subsets w C ), let p(x; W) be a prob-
ability measure on e corresponding to every x E 2, and let Y(x) be a random element
taking its values on 2) obeying the law p(x; w). I assume that the different Y(x) for
different x are mutually independent. Let e E B with m(e) < + , let X1, .,* *, Xi,
* be the elements of F belonging to e. Then the Y(Xi) are Poisson distributed on D
(with respect to e) and the mathematical expectation of the number of the Y(Xj) be-
longing to co is
(1.2) fp(x; w) m(dx).
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This last property is useful in some physical problems (in such problems, usually Xand 2)
are the time axis, or some Euclidean spaces).

2. Random distributions (by Gelfand)
We saw in section 1 that it is possible to define, and to Aandle directly, Poisson dis-

tributions. It may be expected that the same is true for all random distributions which
are almost surely (a.s.) purely discrete distributions (these distributions, in the case of
distributions on the straight line, were called "point processes" by H. Wold). But for
some problems it may be easier to use an indfrect way. On the other hand, one en-
counters, in many questions, distributions which are not purely discrete distributions,
and in such a case it seems that we have no way except an indirect one. Roughly speak-
ing, we can consider a distribution as a linear functional on some vectorial function
space _%; this must be the starting point. As an example of what can be done in this
direction, I take a recent paper by Gelfand [2], which is concerned with distributions on
the time axis, - < t < +co.
As a space ._, he takes L. Schwartz's _% space of the functions f(t) which are indefi-

nitely differentiable and equal to 0 outside a compact set with the usual pseudotopology
(see p. 24 and p. 66 in [3]). Any continuous linear functional F on this space .% is an
L. Schwartz distribution. The space of these distributions is the dual space .h' of .1.
Let us consider also two other spaces: the space _%* consisting of all the linear func-
tionals on .3, which are continuous or not, and the space e consisting of all the func-
tionals on ., which are linear or not, continuous or not. We then have .%' C %* C g.

If we think of a random element F taking its values in g, we can consider the family
of the random variables Xf = <F, f >, where <F, f> is the number obtained by ap-
plying to f E .% the functional F E g; and we can say that F, as a random element,
is defined by the family of the k-dimensional distribution functions q (k) [fl f2, -*, fk]
of the k-dimensional random variable {Xfi , Xf,, , Xf,k for every integer k and for
every system Ifi, * * *, fk} of k elements of _%. This family of distribution functions is
something analogous to the "temporal law" of an ordinary random function, and under
an obvious necessary and sufficient consistency condition it defines a measure on C.

If, more particularly, F takes a.s. its values in %*, it is a.s. that F is a linear func-
tional on ._. That is to say, it is a.s. that for all fixed k, all fixed fj, f2, fk, and all

k

fixed numbers al, ak, if f = S a,f.i, then we have

(2.1) Xf = ajXf;.
i-1

A weak consequence of this is that q (k)[fi,...*,fk] have the following consistency prop-
erty.

Consistency property or property (A). For any fixed k, if f = S ajfj, 9(') is related

in an obvious way to q(k) [fi,. *,fkj.
If, more specially, F takes a.s. its values in ._', it is a.s. that for all fixed k and all

fixed f1, f2, **fk, if
(2.2) lim fjn) = f;, i= 1, 2, -, k,

n--+co
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then we have

(2.3) rim {Xfg") , Xk(p)} = {Xf,*, Xfkl-
A weak consequence of this is that the q7(k)[fl,*.* fk] have the following continuity
property.

Continuity property or property (B). For any fixed k and fixed fl, , fk, lir+(k) [f(n),
n-+co

* ,fk^] = O (k)[fi, ** ,fk] in the sense of the usual convergence of distribution functions.
Under the name of "general random process" (G.R.P.), Gelfand considers random

elements F in LC having properties (A) and (B). These properties together do not neces-
sarily imply that F takes its values in ._', or even in . *, but it is worth noticing that
they imply that for any fixed k and fixedf., * *, fk, if

(2.4) lim f)= fi j = 1, 2,* n,

then {Xf'',-., Xf('1} tends in probability to {Xf,, Xfk).
Gelfand defines as the characteristic functional, o(f), of F the functional (defined

on %)
(2.5) yo(f) =E(eixf).

It is not difficult to prove that the necessary and sufficient condition for a functional
,p(f) on .% to be the characteristic functional of a G.R.P. F is that *o(f) be positive
definite and continuous.
An interesting feature presented by G.R.P.'s is that they always possess a derivative.

By one obvious application of the derivation of L. Schwartz's distributions [3], we can
say that the derivative of the G.R.P. F, which has characteristic functional (o(f), is the
G.R.P. F', which has characteristic functional

(2.6) s()(f °-'

f' being the derivative off.
Gelfand applies his notion of general random process to three problems:
1) G.R.P.'s of the second order, that is to say, those for which E[ Xf 12] < + co for

every f E %. A particular case of a G.R.P. of the second order is the case of a Gaus-
sian G.R.P.

2) Stationary G.R.P.'s or more generally G.R.P.'s which are stationary of order n,
that is to say, G.R.P.'s the nth derivatives of which are stationary G.R.P.'s.

3) G.R.P.'s with independent significations which constitute a natural extension of
ordinary random functions with independent increments.

For these three problems, Gelfand obtains many very interesting results that I shall
not reproduce here (proofs are not given in Gelfand's paper). It may be interesting to
compare Gelfand's work with papers by E. Mourier and myself (see, for instance, E.
Mourier [4], R. Fortet and E. Mourier [5]), which concern random elements in Banach
spaces. What appears from these different papers is that a random distribution, as a ran-
dom element, can be defined by its characteristic functional, which itself is often a suit-
able tool. Generally speaking, this characteristic functional is useful and easy to handle
in linear problems, but only in linear problems.
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3. An application to telephone engineering

Unfortunately, we are faced with many applications involving nonlinearity. As an
example, I take the following.

Let us consider a telephone exchange e. The subscribers make calls at instants tj that
have to be considered as random instants, the distribution of which on the time axis is a
random distribution N. More precisely, we put N(r) - N(t) equal to the number of
calls occurring during (t, r), with t < r. Sometimes we have to consider N as the sum
of several random distributions Ni. For instance, N1 may be the distribution of calls
asking for a subscriber of the same exchange, N2 the distribution of out-of-town calls,
and so on. We assume the Ni are mutually independent. For each call belonging to N
and arising at time t, we have to consider its holding time Ti(t). This is a random posi-
tive number with distribution function F1(u) = Pr{ Ti(t) < u}. We assume that the
different Ti(t'), Tj(t"), * * for any i, j, * * * and different t', t", * * * are mutually independ-
ent, and independent of the Nk and of the state of the exchange. Also, for a call in Ni
arising at time t, there may be a nonnegligible interval between the time t and the time r

of the beginning of the conversation. I call T- t = 0(t) the orientation duration. The
Oi(t) are also random variables, mutually independent, independent of the Ni and of
the Ti(t). Assuming the possible states ej of the exchange are denumerable (but this is
only to simplify the writing), we call Gi, j(u) = Pr Oi(t) < u} the distribution func-
tion of Oi(t) if at time I the state of the exchange is ej.

As the telephone exchange has only a finite number of links, whenever too many
people put in calls at about the same time there is some congestion. Either some calls
are delayed, and we have a queuing problem, or a call is lost if it arises at a time when
the exchange is in some "blocking" state (for instance, if all the links are busy). In what
follows, I consider only the second case.

In general, engineers or probabilists interested in this question have treated problems
of the following kind. Under some assumptions on the Ni, Ti(t), and Oi(t) (for example,
assuming stationarity for the Ni's), they have tried to compute, for instance, the prob-
ability Pi (probability of loss) that a call arising at time I will find the exchange in a state
such that the call is lost.

Generally speaking, they have tried to compute mathematical expectations concern-
ing the possible states of the exchange. But other probabilities or information may be
required, for instance, concerning the random distribution 2X on the time axis of the
calls that are not lost, or the distribution R of the calls that are lost, or the number as
a function of t of the conversations held at time t, etc. In order to be studied, such ran-
dom elements have to be taken into account in the reasoning. This can be done in the
following way.

Let Xi(t) be a random function with value 1 if a call belonging to Ni and arising at

time t is not lost, and 0 in the contrary case. Let Y1(t) and Zi(t) be the number of con-

versations and the number of orientations in calls belonging to Ni and held at time t.
Let Ri(t; T) and S1(t; T) be random functions with values

1 if r - tE [Oi (t), Oi (t) + Ti (t)]
(3.1) Ri (t; r) =

O if Tr - t { [Oi (t) , ei (t) +Ti (t) ]

I T-t E [O, Oi (t) I],
(3.2) Si 0; Tr) =

0 f -t[,jt1
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Finally, let Pi(t) be the probability of loss at time t of a call belonging to Ni. Then we
have

(3.3) Yi(t) = Xi(u)Ri(u; t) dNi(u),
to

t-o( 3.4) zi (t) = Xi (u) Si (u; t) dNi (u)

(here we assume that the process is beginning at time to). Obviously these two equations
are not sufficient to describe the whole process. We have three unknown elements,
Xi(t), Yi(t), Zi(t), and only two equations. To get a third equation we have to specify
the kind of exchange we are studying.

However, from equations (3.3) and (3.4) it is already possible to get easily certain re-
sults that are difficult to obtain by classical procedures, and even some results that are
new. For example, assuming that the Ni are stationary Poisson distributions with
parameters ,i and with to = - c, the Pi(t) are some constants Pi. We notice that the
value of Xi(t) depends only on the state of the exchange at time t, and that we have
E[Xi(t)] = 1- Pi. Let pj be the probability that at time u the exchange is in state ej and
let Xi, j be the value of Xi(u) if at time u the exchange is in state ej. Then

+co +coD

(3-5) Xi= fo tdFi(t) fo, [I1-Fi(t) I dt,

+co +co

(3.6) Yi. j= fo tdGii(t) f= [[1-Gij(t) I dt.

Of course, we assume that the integrals (3.5) and (3.6) exist (< + co).
If we compute E[Ri(u; t)dNi(u)] conditionally when the exchange is in state ej at

time u, we get
(3.7) E [Ri (-u; t) d Ni (u) ] =ssE [Ri (u; t) ]du ,

with
Pe-u

(3.8) E [R,(u; t) ] = [1-Fi(t-u-a)] dGi,(a).
Here we have a priori

(3.9) E [ Yi (t)] Aife [E5 p,Xi, [1-Fi (t-u-a)] dGij (a) du

= pi, pjXi jf+ f[f [1-Fi (t-a-u)] du] dGi, (a)

=lsi7;Pjxij]

= Ai-i (I1-Pi).-
By a similar computation, we get

(3.10) E [Zi (t)] = A pjXizij,

and if we assume, as usual, that yij = -yi does not depend on j, we have
( 3.11 ) E [Zi (t) v=beikni( 1-Pi) .

The useful formulas (3.9) and (3.11) have been known for particular cases only.
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4. On a stochastic integral equation
In many cases it appears that the assumption that the Ni's are Poisson distributions

does not agree with observation. We have to investigate whether equations like (3.3)
and (3.4) can give results without precise assumptions about the Ni. To do this we
simplify the model, reducing it to the classical Erlang model; that is to say, (a) we
neglect the Oi(t) and (b) we assume Fi(u) and Xi, j are independent of i. It is no longer
necessary to distinguish between N1 and N2, and so on. Let Y(t) be the total number of
conversations held at time t, and let X(t) be the random function with value 1 if a call
belonging to N and arising at time t is not lost, and 0 in the contrary case.
We have

rt-0
(4.1) Y(t) = f X(u)R(u; t)dN(u).

On the other hand, in the Erlang model, there is a positive integer n (number of links)
such that

I if Y(t)<n,
(4.2) X (t) =

0if Y(t) =n,

and such that Y(t) cannot be larger than n. If V(x) is any function such that V(k) = 1
when the integer k = 0, 1, 2,*, n - 1, and V(x) = 0 for x 2 n, then we can write

(4.3) X(t) =V [Y(t)].

Assuming to finite (for instance, to = 0) with initial condition X(O) = 1, or Y(0) = 0,
equations (4.1) and (4.3) can determine X(t) and Y(t). I do not say that X(t) and Y(t)
are the only elements we need, for practical purposes, but I restrict myself to this prob-
lem, as an example.
From a theoretical point of view, the first question that arises concerns the existence

and the unicity of the solution of the system (4.1) to (4.3), but this question is imme-
diately answered. The mathematical procedure to prove existence and unicity of the
solution is the same as the mechanical procedure of telephone exchanges, and we get
the following.

Under the assumption that a.s. N(t) - N(O) is finite for every finite t, the system (4.1)
to (4.3) has a.s. a unique solution.

This is one way to build the solution, another way is the following. Let Y(t) be the
unique solution of the system that can be reduced to the equation

i-O
(4.4) Y (t) = f V [Y (u) I R (u; t) dN (u)
with
(4.5) Y (0) = 0 .

We can choose
(4.6) V (x) I1 if x r n-1

n-x if n-I:!'.x ,

which satisfies the following Lipschitz condition
(4.7) V (x') - V (x") I _ x'-x".
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We put

rt-0
(4.8) Y0(t) =J R (u; t) dN (u).

We are sure that
(4.9) Yo(t) _ Y(t) foreveryt,
and we define

.t-0

(4.10) Yk+l(t) =,fV [ Yk(u)IR(u; t) dN(u),

(4.11) Dk(t) = I Yk(t) - Yk-1(t)I with Do(t) < 1

Hence we have with (4.7)
Pt-0

(4.12) Dk+l(t) 5fJ Dk(u)R(u; t)dN(u).

Since R(u, t) 5 1, we find, on iterating (4.10),

(4.13) Dk (t) < () k= 1, 2,---,

and we have a.s. Yk(t) tends to Y(t) uniformly in t on every finite interval.
We can notice that, since V(x) is a nonincreasing function, we have Yk(t) < Y(t) if k

is odd, and Yk(t) 2 Y(t) if k is even,

(4.14) Y2k(t) _ Y2(k-1) (t) , Y2k+l (t) 2 Y2k-.1(t) .

Now if we want to consider the case to = - - we can start with to finite. Making to tend
to -o we have Y(t) tending to a limit in some stochastic sense when we make a con-
venient assumption on N(t), and the limit process is the suitable solution of (4.4).

5. The stationary case with n = 1

As an example, we can treat in this way the case n = 1, assuming that N(t) is sta-
tionary (but not necessarily a Poisson distribution) and that to =- . This particular
case (n = 1) is of interest in the theory of Geiger counters. It is also of interest in tele-
phone engineering because sometimes it is possible to solve the general case when the
case n = 1 has been solved (see C. Palm [6]).

If n = 1, we can choose V(x) = 1 - x, and the limit Y(t) of the Yk(t) is given by

(5.1) Y (t) = R(u; t) dN(u) - f f'R(ui; u2)R(u2; t)dN(u1)dN(u2)
_co _~~~~~cD-co

+---+ C- l)k+lj f .. fJ R(ul; u2)R(u2; u3) . R(uk; t)dN(ui)

.-- dN(uk)+
However, if we try to deduce some useful information from this formula (5.1), we have
to specify the probability law of N(t). Let pk(t1; t2;- * ; tk; Tr) be defined by the relation
that pk(tl; t2;* *; tk; r) d7 is equivalent, as dT -r +0, to the probability that a call will
arise at time r, knowing that calls arose at times t1, t2, * *, tk, with t<< t2<... < tk < T.
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The probability law of N(t) is defined if the pk's are given. Since N(t) is stationary, Pk
depends only on the differences, 12 -tl, , T - k, and we write it in the following way,

( 5.2) Pk (t2-t1; t3 -t2; * *'; tk - 4-1; Tr tk);

po is a constant (the average number of calls per unit time).
From this we obtain, for instance,

(5.3) E[ Y (1)1 = pO )(-1)kf f G(aD)G(a2) ... G(ak) pl(a,) p2(a,;a2)
k

Pk (a,; a2; .; ak) dalda2 dakX
where

t+co
(5.4) G(a) =E[R(t-a; t)], X= f G(a)da.

Noticing that Y(t)dN(t) is the distribution of lost calls, and computing in the same
way E[Y(t)dN(t)], we obtain

(5.5) E[Y(t)dN(t)] = po-
E Y() Idt.

In the particular but important case where N(t) is such that the intervals between two
consecutive calls are independent random variables with the same distribution function
(see C. Palm [6]), we have

(5.6) pk( al; a2; * *; ak) = pi ( ak),
and consequently
(5.7) E[Y(t)] = XPo

1 +ft G(a) p1(a) da
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