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Introduction
In 1935 J. L. Doob published a paper [21 in which he derived the limiting

distribution of a function of four sample means from one homogeneous sample.
This work is susceptible to an easy generalization and supplies a powerful
weapon with which to find the limiting distribution of a vast number of
statistics. But since publication its importance seems to have been overlooked.
A generalization of Doob's theorem to any number of sample means was given
by the author [71.

In the first part of this paper two theorems are proved which embody a
further generalization of Doob's result to the case of several samples of dif-
ferent sizes, and numerous examples are given to illustrate their wide appli-
cability.

These examples are confined to the limiting distributions of given statistics,
but in the second part a much more important constructive application is
made. Two hypotheses of a general character, concerning one sample and
several samples respectively, are formulated, and a systematic method of
constructing a test function for each hypothesis included in the two general
ones is given. The construction is done in such a manner that, as a consequence
of the results obtained in the first part, (i) the test function has for its limiting
distribution the x2 distribution with a known degree of freedom when the
hypothesis tested is true, and (ii) the power of the test tends in general to
unity as its limit. Special hypotheses and their large sample tests are treated
as examples in the second part of the paper.

I

The limiting distribution of functions of sample means
1. The mathematical model of k samples.-Let there be given k random

vectors of m components each,

(1) U. = [Ula, U2., * * *, U.a.], = 1, * ky

possessing finite second moments. Let

(2) E (Uj.) = jlia, E(UaUj.)-/iagia = t7isa.
1Boldface numbers in brackets refer to references at the end of the paper (p. 402).

[359]
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By a sample of size Na of ua is meant a system of N. mutually independent
random vectors,

(3) Uar = [Ular, U2ar, . . ., Umarl, y=1, . .*, Na

each of which is distributed the same as Ua. Thus the k vectors (1) give rise to
k samples, namely, the vectors (3) wherein a takes the values 1, - , k.
The total number of such vectors is

N=N1+N2+ ***+Nk.

We shall also assume that two vectors belonging to two different samples
are always independent. Then about the distribution of the N vectors ua, we
know the following facts: (i) ua, and up. are independent if either a id P or
r Pd s; (ii) for every fixed a the vectors uar (r = 1, * * *, Na) are equi-dis-
tributed; (iii) each uar has finite moments of the first two orders given by (2).

2. Sample mean and normalized sample mean.-If U is any random variable
and if U,, . * *, Un are a sample of size n, we shall term the quantities

-= - (U1 + + Un) and n'{U - E(U)} the sample mean and the nor-

malized sample mean of U respectively. Thus the samples (3) give rise to the
sample means

1 Na

Uja. = E UiarN.

and the normalized sample means

Zia = N ia(Ua- tIta).
Hence

(4) UJia lia + Na-1 Zia.

We recall here the well-known central limit theorem :2
As Na rxOc, the distribution law of the vector [Zia, * * * , Zma] tends to the

i-dimensional normal law with zero means and the dispersion matrix [iji a].
3. The statistic T.-Consider a function of mk real variables,

(5) f(xll, . . ., Xmi; . . *; Xik, ,* * Xmk),

defined in the whole mk-dimensional space and possessing continuous deriv-
atives of every kind of order two or three, as the case may be, in the neighbor-
hood

(6) |ia-[ iaC <0, i =10 m; a = 1, *ak.
2 Cf. (Cramdr [1], Chap. 10, theorem 20-a.
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Write

fi =A,-X a32f h = X
axia aXi~xaxip, aziaaxipaxhj,'

a =f(js, *,f Jm1; . . .;Llk, . . .

p,mk)

bin1= fia (is, , Mml; ; ,lk, * * nk)}

CiijaPg = fiiaP (91p, . , mi ;**l *; Alkn, * /lmk).

If infeach argument xia is replaced by UJa, the result is a statistic,

(7) T = f(U*1, , Ur1; * ; £k, * * Urk).
By (4) we have

(8) T = f (ull+NCZil,.*,Ilmk + Nk'Zmk).

The main purpose of the first part of this paper is to derive the limiting
distribution of T when the sample sizes become infinite simultaneously. It is
necessary to impose a restriction on the manner in which these sizes grow.
We put

(9) N. = Ng, ac=1,* *, k; 91+ + 9k

regard the g9, as fixed, and allow N to grow indefinitely. The method is based
on the Taylor expansion of (8) in the neighborhood of

(10) | Na' Zia | _6, i = 1,* * * X m; a = 1, *,k.

If all the second derivatives exist and are continuous in (6), then in (10) we
have

(11) T = a + N-' R + N-'ZE Pii iaZji,
ijS,Q,

where
R = E ga-} bia Zi.,

i, a

(Piia6 = 2(gagp)'fiia0 (Mul1 + ON1' Zll. *;mk

+ ONJ, Zk), |01 _1.

Again, if all the third derivatives exist and are continuous in (6), then in (10)
we have

(12) T = a+N` R+ N-'S + N-# E 'Piiha#e Zia ZiO Zhe,
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where

S = /2E (9g91) Cii, Zi. ZP,,

TPiihaft =*f (9g99g7) 'fiihp, ($ll + ON1E' Z1 .,. . mck
+ ONkCZmk), | <1.

4. The limiting distributions of R and S.-In view of the central limit theorem
(sec. 2) and the independence of the vectors [Z18, * * * , ZmaJ for different
values of a, we obtain immediately the following lemma:
Lemma 1. As N-X. C, the distribution law of R tends to the limit

(13) ,-*Je e-t'dy,
where

(14) 2 Eg-' bitbi. Lisa. ,

provided a2 i 0. If a2 = 0, then R = 0 with unit probability.
On the same ground we conclude:
Lemma 2. As N-. oX, the distribution law of S tends to a limit which is the

distribution law of the quadraticform

(15) E(gag,6) `cijixP Will Wip,

where the Wia are normal variates having zero means and the same second mo-
ments as the variables Uia-gi.

It turns out that the limiting distribution of S is the distribution of a certain
quadratic form in normal variates. In most of the actual cases that we en-
counter this form is semi-definite. Hence we shall complete the solution of the
limiting distribution of S by a lemma, given, in the next section, about the
distribution of semi-definite quadratic forms in normal variates.

5. Distribution of semi-definite quadratic forms in normal variates.-Suppose
that a semi-definite form Q in normal variates with zero means is reduced in
any manner to a sum of squares,

(16) Q = W12 + W22 + + Wj

where the W's are themselves normal variates with zero means. Let

(17) E(WiWi) = ii.

Let the dispersion matrix [wis] be of rank p>0 and let its non-vanishing
latent roots, which are necessarily positive, be X,, * , p. Then it is always
possible to apply an orthogonal transformation on W1, * , Wq to get a new

3 If Q is negative, we have only to give the right-hand side of (16) a minus sign.
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set of normal variates with zero means, W'1, , W',, such that Q =
W'12 + * * + W',' and

(18) E(W'iW',) = 0, (i F6 j); E(W'i2) = X, (i = 1, ,);
E(W'.2) = O. (i = p + 1, ,q).

The last equation of (18) implies that all the W'i (i>p) vanish with unit
probability. Hence Q is essentially equal to W'12+ + W'p2 and so its
distribution law is

(19) (2ir)-'P(Xi* X J exp ( _ .-.dy dyp.

If, further, the relations

q

are satisfied by the wii, then [w.] - [wvt] and so all the X, are unity. Then
(19) reduces to the familiar x2 distribution with p degrees of freedom,

{21Pr(Tp)}JC yiP e-idy.

In this case it is also easy to find p. In fact, p = lX, = 2;wii.
We have therefore established the following lemma:
Lemma 3. The distribution law of Q is (19) in general. If, in particular, the

relations (20) are satisfied, then the distribution is the X2 distribution with p
degrees offreedom, where p = wll + * * * + 'W~

6. Limiting distribution of T.-We shall use E to denote the negation of an
event E, (E,; E2) the conjunction of two events E1 and E2, and P (E) the proba-
bility of E.
Theorem 1. If the function f in (5) possesses continuous second derivatives of

every kind in the neighborhood (6), then the limiting distribution of NI(T-a) is the
same as the limiting distribution of R. Consequently this limit is the normal law
(13), provided the quantity U2 in (14) does not vanish.
PROOF. We have seen that, when Z . satisfy the inequalities (10), T may be

expressed as in (11), namely,

(21) T = a+ N-'R + N-1 Ri,

where N-1R1 denotes the last term in (11). Let us denote by E the event that
all the inequalities (10) are true, and by F(x) the distribution law of NI(T-a).
Then

F(x) = P{N'(T-a) t x; E} + P{NI(T-a) _ x;E}.
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But

(22) P(E1;E) _ P(E) < E P(Za2 > N <2) 1 g i =o(1)
,a ~~~~N621,d

for every event E1; hence

(23) F(x) = P{NI(T - a) < x; E} + o(1).

Using (21), we have

N'(T - a) = R + N`R1 in conjunction with E.

Besides, in the neighborhood (10) the functions pii are continuous and there-
fore bounded. Let A be a common upper bound of the absolute values of all
these functions. Then we have

|R1| < A(E Zi in conjunction with E.
Hence

P{R + N-A ( Zi|)< x;E P{NI(T-a) < x;E}

P - N (AE( I.)) X;E}

Using (22), we get

(24) P{R + N-A Zia) <} + o(l) < F(x) _

P{R-N-'A ( Zia) _x} +o(1)

Now it has been shown by Doob [2] that if X has a limiting distribution and
if Y tends to zero in probability, then X + Y has the same distribution as X.
This theorem may be applied to the two extreme terms in (24), because
evidently N-(2 Zial )2 tends to zero in probability. Hence both these terms
are equal to P(R _ x) + o(l) and consequently

F(x) = P(R _ x) + o(l), q.e.d.

Theorem 2. If the function f in (5) possesses continuous third derivatives of
every kind in the neighborhood (6), and if quantity a2 in (14) vanishes, then the
limiting distribution of N(T-a) is the same as the limiting distribution of S.
Consequently this limit is the distribution law of the quadraticform (15).
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We shall merely sketch the proof, which is similar to that of theorem 1.
Denoting the distribution law of N(T-a) by F1(x) we have, as analogy of (23),

Fi(x) = P{N(T - a) < x; EJ + o(l).

In conjunction with E, T may be expressed as in (12), whereby the second
term may be dropped, since now a2 = 0 and so R is essentially zero. Hence

N(T-a) = S + N'S1,

where N-1 S1 denotes the last term in (12). As before, we have

B(E I.

in conjunction with E, where B is some constant. Then we obtain the analogy
of (24),

P{S + N-IB (Ei Zi|) < } + o(l) _ F1(x)
< P{S - NIB(X as)E xG} + o(1),

which leads as before to the result

Fi(x) = P(S _ x) + o(1), q.e.d.

With the help of lemma 3 the limiting distribution of T is completely solved,
provided the quadratic form S is semi-definite.

Let us summarize the results contained in theorems 1 and 2: In order to
obtain the limiting distribution of T, which is a function of the sample means
Uj, make the substitution (4) and compute the Taylor expansion in powers of
N-' to three terms,

(25) a + N`R + N-1S.

If the quantity a2 in (14) does not vanish, the limiting distribution of N'(T- a) is
the normal distribution with mean zero and variance a2. If a2 = 0, then N(T-a)
has the same limiting distribution as that of S, and this latter is the distri-
bution of a certain quadratic form in normal variates. If the form in question
is semi-definite, the explicit formula of its distribution law is given in lemma 3.

In what follows, when we are dealing with cases of a single sample (k = 1),
we shall drop the index a from all the letters.

7. Probabilities of events.-Consider a set of events, E1,, Em, forming
a complete disjunction and having the probabilities pi, , pm. Let Xi be
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the random variable such that Xi = 1 or zero according as Ei happens or does
not happen. Then we have a random vector [X1, , X,.] with

(26) E(X,) = pi, E(Xj2) = pi, E(Xi X,) = 0, i76j.

A sample of size N corresponds to N trials of experiment, and the sample
means Xi, * * *, Xm are the relative frequencies nI/N, * , lmn,/N, where
ni denotes the number of happenings of Es in N trials. The quantity U2 in (14)
has a simple expression. We have, by (26),

(27) a'2 = s bi2pi(1-p pi)- bibipipi = Pib-( p$bi
i *Fdj i \i /

= Spi(bi-Z pib )2.

8. Example 1: The X2 statistic.-This classical statistic is defined as

T1 M<(ni-pN)2
i~ pi0N

and is used to test the hypothesis that p = p ., (i - 1, , m). As explained
in section 7, we have ni = NXi. Hence

Tm (Xi-p.-)
N 1 P.0

The expansion (25) of T1/N is
m Im+N 2

a N 1 biZi + N-1E p=o

where

a = m (p0)2 bi = -
PtP.

If the hypothesis is false, pi A p.0 for some i. Then, by (27), the quantity cr2 in
(14) takes the value

m m \~~~~~~~~~2
al2 = Pp (bb - £ i F 0.

For, if a12= 0, bi would be independent of i and so pi= Xpi° for all i. Since
lpi = 1 = 2p°,, we would have pi= p.0 for all i, contrary to our assumption.
Hence the limiting distribution of NI(N-lT - a) is the normal distribution
with mean zero and variance or12.

If the hypothesis is true, then a and all the bi vanish. Hence the limiting
distribution of T1 is the same as that of

m{ Z, 2
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This limit is the distribution law of W12 + * * * + Win2, where [ W1, * * ,
Win] is a normal vector having zero means and the same dispersion matrix as
the vector

[X - P10 Xm - Pml

Hence

wii = E(WiWi) - 1-pi., (i =j), =-\/popjO, (i #j ).

It is easy to verify that the relations (20) are satisfied, and that 2coii = m - 1.
Hence the limiting distribution of T1 is the x2 distribution with m-i degrees
of freedom.

9. Example 2: The mean square contingency.-Let E1, * , E. and E'1,
** p E't be two sets of events, each forming a complete disjunction. Then

the st events Eii = (Ei; E',) form a complete disjunction. Let

P(E,,) = p,,, P(Ei) = pi, = pi, P(E',) = 2 pi = ppi.

Let ni, be the number of occurrences of E,, inN trials, and let

nj ni, n'= nii.

The mean square contingency is defined as

nn'. 2

It is used to test the hypothesis of complete independence of the two sets of
events, that is, that pii = pip', for all i andj.
We define st random variables Xii such that Xii = 1 or zero according as

Eii happens or does not happen. A sample of sizeN gives the sample means

n3..
"N

Let also

Xj= AI Xi = N X P = A~-i NN' ~~N
Then

T2 E(I -XX' 2

N j., X'

Upon substituting pii + N-IZii for Iii we obtain the three-term expansion
of T2/N,

a + N`R + N-'S,
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where
(Pis - p',i)2

a = E p

I,, Pi 1 P.pi=5 Pip",2'2ppt',ii;- (pii + p,,p'i) (piZ'i+ p'iZi)lt

s - -{ piZ,-p ,Z,)2

zi= 2Zii, z'= zi,
1

and the Qii are certain quadratic forms in the Zii.
We have

R = E bi, Zii,t,,
where

bi =Pi _ E Pni _ 1 p
PiPsP pi =p',v P' =P,

According to (27) the quantity a2 in (14) has the value

a22 = p, (bij- pb12).

But

~~ p~~=2 ~ p, pp2,, 0

piibii = 2 Pz_ i _ p
t,, ~t,' PiP tsv Pp,' 9 P,.Pi

Hence

a22= piib t;.
i,j

If the hypothesis is false, Pij 0 Pip'i for some (i, j). Then a22$O. For a22 can
vanish only when all the bii = 0, and this implies that

° =E pip'bi = 2 _--P22 _E Pr=2-2E p2L7
i,j i,, PiP, U,' pp7p ill pipji

-2- (p,i-pjp)2

that is, pii= pip', for all (i,j). Therefore in this case the limiting distribution
of NI(N-T - a) is the normal distribution about zero with variance a2c.

If the hypothesis is true, pij= pip'i for all (i, j). Then a and all the b j vanish.
Hence the limiting distribution of T2 is the distribution of

E w132,
14
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where the Wii are normal variates with zero means and the same second
moments as the system

Xii-pii-pi(X' -p';)-p'j(Xi-pi) Xi = v X X'i = v.V i v i,-, i 4

Direct computation gives the values of these moments.:

(1 -pi) (1 - p's if i = j,gj =v

| (1 _ pi.)v P"P,; if i = ju,j 9 v
wii,, = E(WijWJW) =

Vp-p p'tp',. if i JA,i v.
It may easily be verified that relations (20) are satisfied:

E (J)iighlwpwgh = WjP, i,il = 1, ., S; jv = 1, . . *, ty
gh

and that Moiij2 = (s-1) (t - 1). Hence the limiting distribution of T2 is the
x2 distribution with (s - 1) (1 - 1) degrees of freedom.

10. Example 3: "Student's" t-statistic.-Let X be a random variable having

E(X) = t, Et(X_ )2} = 1, Et(X_-Z)I = ah, E(X-t)4}= a4< ao.

Let X1, * * *, XN be a sample. Then "Student's" is defined, except a factor
depending on N, as

-T

where X and V are the mean and the variance of the sample.
Consider the random variables

U1 = X, U2 = X2.

They have the means

E(U1) = t, E(U2) =1+ t2,

and the sample means

U1= X, U2= X,2 = V +U12.
Nr
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Hence
T, = CT,(CT,-Ul)

The two terms of the Taylor expansion are

Z + N-' 1 (1 + 42) Z1 - Z2}.

The quantity a2 in (14) is the expectation of the square of

(28) (1 + C (X- )- 2 (X2

and has the value

a82= (a4- 1) t2_ a3 + .
4

If (28) does not vanish with unit probability, then .320 and the limiting
distribution of NI(T3- Z) is the normal distribution about zero with the vari-
ance a32.

If (28) is essentially zero, then o32 = 0 and therefore Z # 0. The random vari-
able X can take precisely two values, namely,

_1 + t2 + 2 2_1+ t2a- and b +

Let

P(X =a) = p, P(X = b) = 1-p.

Then we must have

_1+~+2p- 1)V+ ~2=pa + (1-p)b= 1 + t2 + (2p-1) +/

whence

2V+02p
A/
+ 42

Among the N numbers X1, , XN, let n have the value a and N - n have
the value b.
Then

b + (a-b) n

I I(N N

Na-b
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As explained in section 7, n/N is the sample mean of a random variable which
takes the value one with probability p and zero with probability 1 - p. On
substituting p + N-'Z for n/N, we obtain the expansion

+ 2(1 + t2)2 Z2.
Ne3

Hence the limitingdistribution ofN(T3- t) is the same as that of 2t-(1+ f)2Z2.
But limiting distribution of Z is the normal distribution with mean zero and

1
thevariancep(l-p)=-t2(1+t2)-1. Hence the limiting distribution of 2Nt
(1+ t2)-1(T3- t) is the x2 distribution with one degree of freedom.

11. Example 4: The ratio of moments.-Let X be a random variable having

E(X) = 0, E(X2) = 1, E (Xi) = as, a2m < c from some integer

m _3, and X1,i , XN be a sample. Consider the statistic

T4 Sm
S22

where
lN

Si=N
=

X-ni

Whenm = 3 andm = 4, T4 becomes the familiar bi and b2 of K. Pearson.
The random variables

Ui= Xi, i=l, *. *.pm,
have the means ai and the sample means

Ui= 1 -

We have
T -mUUm~i+

([72- 1712) t

Making the substitution

U= N-'Z, U2= 1 + N-'Z2, Ji= ai + N-'Zi, i=3,*

and computing the two-term expansion we obtain

a. + N-1(Zm- Y2mamZ2 - matz1Z).

The quantityo2 in (14) is the expectation of the square of

(29) Xm- a- mam(X2 - 1) - mac1X,
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and has the value

cr42 = a2m - mamam+2 -2mam-lam+, - (m-2)2a.2 +1 m2aa4 2

+m2a3a.m.1a + m2a2mi.

Hence, if (29) is not essentially zero, the limiting distribution of NI(T4 - am) is
the normal distribution about zero with the variance c42.

12. Functions of variances and covariances; a simplification.-We are going
to study a pair of statistics, denoted by T7 and T6, which are formed of one
homogeneous multivariate sample and are functions of the variances and
covariances.

Let

(30) [X1, XA

be a random vector having finite fourth moments and not satisfying any
linear or quadratic relation with unit probability. Let

E(Xj) = {i, E(XX,) - ,is = ai.
Let

[Xr, * *Xpr],X = 1,

be a sample of size N and let

1rN1 N

Nr=1 ' i =NE

Let Tbe any statistic which is a function of the vi3 only:

(31) T = F(vln, V12, * * p,,).

The bp(p+ 1) random variables

ui= Xi-Dtim uii= (Xi-ti) (Xi- 0) i:5j,

have the means

E(U,) = 0, E(Uij) = oi,

and the sample means

cU = Xi-(ti, CUii= vij + Ui CUj.
Hence

T = F(U11- UJ2, UT2- U1U2*, * , pU-Up2).
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On substituting N-'Zi for U, and aii+N-'Zii for Ui we obtain the three-term
expansion of T,

(32) A + N'-jE BiiZii+ N-1 V2 Cii,,ZiiZ, -B- i

where
A = F(all,a12,

B,, = cl F(Oi11l all,2 . . ,

012Cisw= 8 F(ori, a12, * ,,).
a 10cr.

If Bi, # 0 for some (i, j) then the term

EBjj,

being the normalized sample mean of

E Bii{ (Xi -h (Xi -to m

cannot vanish with unit probability. Therefore it is sufficient to have the two-
term expansion,

(33) A + N-1 E B,,Z,,.

If B,, = 0 for all (i, j), then (32) becomes

(34) A + Ce'. ,zi,
2N ~,U:

But (33) and (34) are precisely the expansions that we shall obtain if we make
the direct substitution vii=oii+N~IZii in F. Hence we have the following rule
of simplification:
In order to obtain the limiting distribution of (31), make the substitution

v;;==i + N-1Zii and then follow the steps described at the end of section 6.
This rule of simplification can be extended immediately to the case of k

samples.
13. Example 6: The hypothesis of independence and Wilks's test function.-

Consider again the random vector (30). The hypothesis of independence is the
following: Xi, * , X,, are classified into Kc mutually independent sets con-
sisting of si, * , s members respectively:

(35 [X, Xj or[ X1~l .. yrX8+ri [X+.+.1+ r
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This hypothesis was first studied by Wilks [101, who applied the principle of
likelihood on the assumption of normality of (30) and obtained the test
function which we now define.

Let the matrices
V= [vie], M= [nii]

be so partitioned that

V11 V12 . Vg FM1 M12 * M12
V = V21 V22 . . V2j M - M21M22 M2|

and ~~V.. *j *. .a_.K M.X

where Va, and MP, have s, rows and s, columns, (ps, v = 1, K,K). Let also

V11 , M 1 0

, Mv, MI

Then Wilks's test function is

T6= VI.

Let us now study the limiting distribution of T5. Suppose first that not only
is the hypothesis of independence false but actually some of the covariances
aii lying in the matrices Ma,, (p,#v), are not zero. Following the rule of simpli-
fication in section 12 we make the substitution vii= oi, + N`Zii in T6 and ob-
tain the two-term expansion,

a + aN-1 E (aii - ii)Zii,
where

a M|
IMI

aii is the element (i, j) of the matrix M-' and Pij that of Ml-l. By our assump-
tionM AM,, hence air - p,, cannot vanish for all (ij). The quantity u2 in (14)
is the expectation of the square of

(36) a E (aii - ,) (Uii-a,, ) = aE (ais-ai) Uii
1J sj

and has the value

a52 = a2 a (aii - Pi) (a,. -o) oi,
,},p,gv
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where

(37) ai,= E{(Xi- ) (Xi - i) (X,,- ) (XI - ,)

Since (36) cannot be essentially zero, the limiting distribution of NI (T77 - a)
is the normal distribution about zero with the variance a,22 0.

Suppose next that the hypothesis is true, so that the sets (30) are independ-
ent. Then we can assume without loss of generality that vi;= 1 and o-ri =0 for
i 0 j, (i, j = 1, * * *, p). For, if these are not true, we can subject each set in
(30) to a linear transformation so that for the new variables the variances are
one and the covariances are zero. The new sets of variables are still independ-
ent whereas T7 is invariant under such a transformation. Hence our problem
reduces to finding the limiting distribution of T7, under the assumption that

(38) M = I

and that the sets (30) are independent.
Remembering the rule of simplification (sec. 12) we make the substitution

Vii = 1 + N-'Zii, vii = N-'Zii, (i $£ j), in T7 and obtain

(39) T= jI+ N-ZZ

where Z and Z, are the matrices obtained on replacing each vii by Zi, in V and
V,. The three-term expansion of (39) is the same as that of

1 + N-b + N-lc
1 + N-Ib1 + N-ic,'

where b is the sum of the diagonal elements of Z, c is the sum of the two-rowed
principal minors of Z, bi and c, are the same functions of the elements of Zi.
Since evidently b = bi, we have the expansion

1 - - (c, - c).
N

Obviously

(40) cl-C= Ejm,
i<3

where V' denotes summation extended to those (i,,) for which the position of
Zi, in Z is the position of a zero in Z1. Hence the limiting distribution of
N(1 - T6) is the same as that of (40), that is, the distribution of

(41)
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where the Wii are normal varieties having zero means and the same second
moments as the set Ujs. Under the assumption of independence and (38) we
have, for all the Wii in (41),

E(Wi,2) = aim = oaiii = 1,

E(WiiW,) = aiipV = = 0, (i,j) $6 (C, v).

Hence the Wis in (41) are independent unit normal variates. Thus the limiting
distribution of N(1 - Ts) is the x2 distribution whose degree of freedom is the
number of terms in the sum (41), namely, Zsiss (i5j; i, j = 1, * * *, I).

14. Example 6: The hypothesis of independence and homoscedasticity and the
likelihood ratio test.-Consider the following hypothesis: The random vari-
ables Xi in (30) are independent and all = a22= = app. If we regard the
distribution of (30) as normal and apply the principle of likelihood we easily
obtain the test function

p(Vu1 + + Vpp)
p

which is the ratio of the geometric mean of the latent roots of V to their
arithmetic mean.
Suppose first that not only is the hypothesis false but the relations

(42) all = *= p, aii = 0, i #i,

are not all true. Making the substitution vis = aij + N-'Zii we get the two-term
expansion

a + aN- A b,,Zii, Z,, = Z
ij-1

where

(c MIP-
(all + * * * + Tfpp)

p

aus=-ais- 1 bii = - aii, i F0 j,
P all+ +p app p

and the aii are the elements of M-'. Since some of relations (42) are not true,
the bii cannot all vanish. The quantity r2 in (14) is the expectation of the square
of

(43) aE bi (Ui;-ate) = aE bisU
and has the value

o-62 = a2 E2 busb y
"",,;v



LIMITING DISTRIBUTION 377

where ois, is defined in (37). Since (43) cannot be essentially zero, the limiting
distribution of NI(T6 - a) is the normal distribution about zero with the vari-
ance 762 $d 0.
Suppose next that the hypothesis is true, so that X1, , X, are inde-

pendent and have a common variance q. Making the substitution vii =
+ N-'Zii, vii = NZi,(i #d j), in T6we get the three-term expansion

1- 1
{

Z 12 _-! (z Z )
+
Z

z 2

pN~q2 2.2 2p \i / )

Hence pN(1 -T) has the same limiting distribution as that of

1 2 EZii --EZii) + _EZ.2 = E y.2
where

Yii = / Zii--A Zii) Yij = Z4, i<j.

The Y's are the normalized sample means of the following system of variates:

(44) ui(i-1 EUii) Uii, i<j.

The limiting distribution in question is the distribution of

(45) E ,
i~j

where the Wii are normal variates with zero means and the same second
moments as (44). Under the assumption that the hypothesis is true, we have

E(Uii2) = A4i- n2 E(U~J2) = n2, i<j,
E(Ui1U,.;) = 0, (i,j) $! (,0, v),

where
A4i = E {(Xi- Q4}.

Then it is easy to compute the second moments of the Wii:

E(W,,2) 1Ekz 4+P2 M4i P-1
=2p2 E 2 2p X2 2p

1 1A~1 9.4i+ MA4i' +ijE(WiiWj2) = 22 E 2 2p q2 / 2

E(WiiW,^) = 0, < v,

E(Wij2) = 1, i< j,

E(WiiW,>) = 0, i<j, g < v; (i,j) $ ( v).
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It is thus seen that the distribution of (45) is the composition of two inde-
pendent parts: the part contributed by 2Wi42, (i < j), and that contributed by
2;Wii2. The former is x2 distribution with YMp(p - 1) degrees of freedom; for
the latter we apply lemma 3. Let wi = E(WiiWii) and Xi, . * *, X,, be the
non-vanishing latent roots of (wii), which is of rank p - 1. Then the distribu-
tion of (45), that is, the limiting distribution of pN(1 - T6) is

1 X
(2.)I(P-l)2iP(P-l)P p(p- .))(x.- Xp-1

fjp(p-1)-1 ex Y1-~2 _Yp-12 - . y d,1zJZppl- exp-Y - **-Yl Zdyl . . . dyp-ldz.
.1+. . . +zp-+<x 2Xl 2Up-1 2

A sufficient condition for this distribution to be the x2 distribution with
Y2(p + 2) (p - 1) degrees of freedom is that g4i = 3n2 for all i, for then Xi

* = x1-i = 1.
It may be noticed that, although the limiting distribution of N(1 - T72) is

always the x2 distribution when the hypothesis of independence is true, re-
gardless of the distribution of (30), the limiting distribution of pN(1 - T6),
even when the hypothesis tested is true, still depends on the fourth moments
of (30), and becomes the x2 distribution under the condition that

t(- = 3 [Et(Xi - )2}]2for all i.

15. Problems of k samples and the statistics L and L,.-Let

be k random variables having

E(Xa) = a E{(X. - )21 = 7 0, tE (. - Q)3} = a.

1a-2E { -(X.- Q 4 = b.<

Let

Xa***X XaNap aa = 1, * * k,

be k samples of sizes N1, , Nk. Consider the following two hypotheses:

H: k= = Okand 71 = =k,

H': 77= * * * = 7k.
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With the help of their method of likelihood ratio applied to normal distribu-
tions, Neyman and Pearson [9] obtain the following test functions for H and
H' respectively:

k \ f k k _)-
L = (f Ea9aYa+ 'g.(Xa-X)

a~~l a=l a=l

= (. yaa) (E g )

where the g, are defined in (9),

1Na k 1NaXa = - aX. = : gayx Ya= N (X,.,- Xa2 .

Nar=l ax=l Ya

We shall call L and L1 respectively T7 and T8 and find their limiting distri-
butions when the sample sizes Na become infinite in the manner specified in
section 3, from arbitrary parent distributions.

16. Example 7: The L-statistic.-The random variables

Ula = Xa - {ay U2a = (Xa - Q2

have the means
E(Ula) = 0, E(U2a) = ha,

and sample means

ClTa = Xa - Ca,U2a = Ya + Uia2.

Hence

(46) T7=L TI (U2a - U1a2)g } { U 2 -U12-2 g(- )U Ta +,we
a=l a=l

where

Ui = gaUia, i = 1, 2,

= Zga9a, a,2 = g.a(ta -t)2.

If the hypothesis H is false, we make the substitution

Uia = Na }Zia, U2a = 1a + NaJZ2a,

in T7 and obtain the two-term expansion

a + aN` E (AaZla + BaZ2a),
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where

a = (TJ""') (Eggrl +qg{2)1

A6= >,!(6g 6),
+

= 92'a a n )

a a

The Aa and Ba cannot all vanish, for otherwiseH would be true. Let

V, = A,(X.-ta) + Bat (X. -{)2-a .

The quantity o2 in (14) is equal to a2IE(V62), (a = 1, , k), and has the
value

772 = a2E {A62q6 + 2A.Baa.q76' + BoaXi2(b -1)}

Suppose that one at least of the V. is not essentially zero. Then the limiting
distribution of N'(T7 - a) is the normal distribution about zero with the
variance o72 id 0.

If the hypothesisH is true, so that

{a = t,X 17a = r7 a = 1, * ,k,

then (46) becomes

T7 = { I (U2a- UTa2)g} (U26-L22)-1 .

Making the substitution UJ6 = Na-lZi6 and U2. = v1 + N-IZ2. we obtain the
three-term expansion

1a2- (Egzi6)2 + 2!- EZ26 -2 (Egz2a)2}.

Hence the limiting distribution of N(1 -T7) is the distribution of

Q = EW 2 - (a giw1) + E W262 - ( ga W2.)X

where Wi., W2. are normal variates with zero means and the following second
moments:

E(WiaWip) = O, a pl#6; i,j = 1, 2,

E(W1a2) = -E(U1.2) = 1, E(W2.2) =- E{ (U2a2 - 7)2 = (b. - 1).E(WlaW2a = 1 E2

E(W1aW2a) = l E(U1. ) =-a
V/2i 6x/2
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Let us treat in detail the particular case where the a. and the b. are inde-
pendent of a:

=ba. =1A,-(b.-1) =B, a=1, ,k.

It is possible to perform an orthogonal transformation to each of the vectors
[Wil,***, Wik ]:

[[Wil, * W [Wil, Wik] i = 1 2),
so that

E(W MWp) = Os a 0P#1; i,j= 1, 2,
k-1

E(W'1 2) -1 E(W'1.W'2.) =A, E(W'2a2) =B, Q E (WIlV 2+IVI2.2).
a l

We now apply lemma 3. The dispersion matrix being

I AIll
AI BI J'

its X-equation is easily reduced to

(47) {X2-(1 + B)X+ B-A21k-= o.

If each X. can take essentially two values, then B = A2 and so the only non-
vanishing root of (47) is 1 + B of multiplicity k - 1. In this case Q/(1 + B)
has the x2 distribution with k - 1 degrees of freedom. In the contrary case,
B > A2 and the equation (47) has the roots

'Yi=341+B+ {(1-B)2+4A2}i], Y2=[ 1+B- {(1-B)2+4A2111,
both of multiplicity k - 1. The distribution law of Q is then

(48) (4y12) (k-){r k 1)} (yUy2)'(-)exp(-2 - 2-)dyidY2X

where R is the region 0 _ yl, 0 < Y2, Y1 + Y2 . x. The necessary and sufficient
condition for 'Y = 72 is that B = 1 and A = 0, that is, b. = 3 and a. = 0 for
all a. If this condition is satisfied, then 71 = 82 = 1 and (48) becomes the x2
distribution with 2k - 2 degrees of freedom.

17. Example 8: The L1-statistic.-We have

T8 = L,= (A Y (a gY ).

Following the rule of simplification in section 12 we make the substitution
Y. = n7. + N4J'Za and expand the result.
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If the hypothesis H' is false, the two-term expansion is
k

a + aN E AaZa,
a=1

where
( a ) (gfa>)

Aa=ga(1 1 )
ra E9g.7a

a

The Aa cannot all vanish, for otherwise H' would be true. Let

Va = Aa {(X. -{ -)2-7a

The quantity a2 in (14) has the value

a82 = a2 EE(Va2) = a2 EAa2ra2(ba-1).
a a

If the V, are not all essentially zero, the limiting distribution of NM(T8 - a)
is the normal distribution about zero with the variance 82 id 0.

If the hypothesis H' is true, then 1a = 7, (a = 1, * * *, k). Making the sub-
stitution Ya = in + NaJ Za in T8 we obtain the three-term expansion

1 {: Za2(_lga 1z )}12N 72 .
Za-Ea Z).

Hence the limiting distribution of N(1 - T8) is the distribution of 2Wa2-
(2;giWJ)2, (a = 1, * * *, k), where the Wa are independent normal variates
with zero means and E(Wa2) = (272)-'E[ {(Xa - a)2 -71}2 = '(b - 1). In
particular, if each b. = 3, the limiting distribution of N(1 - T8) is the x2
distribution with k - 1 degrees of freedom.

II

Application to testing hypotheses
18. Lemma 4. Let w = [W1,.* * , Wi] be a normally distributed vector such

that each E(Wx) = 0 and the dispersion matrix 4 is non-singular. Let C be any
real matrix of order h X 1, (h < 1), and rank h. Then the quadraticform

p C' w' 1 C,
(49) X=-C 0 0' C 0

w 0 0

has the x2 distribution with 1 - h degrees of freedom.
This lemma becomes familiar when h = 0, for then C does not appear and

X is the quadratic form w 4- w'.
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PROOF. By (49) we have

X [W o] [cI 01 ='1'lFtw1_ -Uc,(C4-)Ci)-,C(D W

Since 4 is positive definite, there is a real non-singular G such that Gt-'G' = I.
Hence

(50) X = yy' - yB'(BB')-1By',

where y = wG-' is again a normally distributed vector and where B = CCP-1T'
has the same order and rank as C.
The components of y are independent unit normal variates, because the dis-

persion matrix is E(y'y) = E(G'-1W'wG-1) = G`-MG-1 = I. The matrix of the
quadratic form (50), I -B'(BB')-1B = A say, has the property that A2 = A.
Hence the latent roots of A are either zero or unity. This shows that by an
orthogonal transformation X can be reduced to a sum of squares. Hence
the x2 distribution is established. Tle number of such squares is trA =
1 - trB'(BB')-1B = 1 -tr(BB')-1BB', which gives the degree of freedom,
q.e.d.

19. The case of one sample: the hypothesis H.-Let

[
.

U , Um]

be a random vector, possessing finite second moments and a non-singular dis-
persion matrix. Let

E(Uj) = gi, E(UiU1)- iL, =r7is.
Let

[U,, * Umr] , r = 1, N,

be a sample of size N, and Ui, Zi be respectively the sample means and the nor-
malized sample means.
We call the hypothesis H the following hypothesis,

h

(51) H: fxEi, * * *,ps) =Zcqxpq A= 1,. ..* I
q=1

which asserts that 1 given functions ofm populational constants are expressible
as linear combinations of h unspecified parameters p, with known coefficients
C.X The three integers m, 1, and h shall satisfy the relation

0.5 h < I _ m.

If h = 0, the right-hand side of (51) means zero.
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Concerning fx and cqx, we make the following assumptions:
(i) Each fx(xi, * .. , xm) is defined in the whole m-dimensional space and

possesses continuous third derivatives of every kind in the neighborhood of
(PiT, - * *, am.).

(ii) The matrix
fE l).f .. m)

F= ____-fr
A0) . .. fl(m)

where

fx(i) = MA, m.)
api

is of rank 1 for all ,ui, g, satisfying (51).
(iii) The matrix

-t ---CIl i .. CiC= ____-

is of rank h.
20. The unstudentized statistic D.-Writing

Yx = fX(C,,, * ** U) y =[Y., *** Y1],

m

(P, = S niifx(i'f c' = [I = ]F',
t= 1

we define the statistic D as

.CD C' y'
(52) D=- C 0 0' c|

y 0 0

We shall show that, when the hypothesis H is true, the limiting distribution
ofND is the x2 distribution with 1 - h degrees of freedom. For this purpose we
follow the procedure described at the end of section 6. Expanding

Yx = fx(jsi + N-'Z1,.* , im + N'Zm)

to two terms and using (51) we obtain

(53) E cxp, + N-'Rx,
q- 1

where

Rx = Efx(i)zi
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When (53) is substituted for Yx in (52), the terms Ox = 2QcQxpQ may be can-
celed, because [Or, * , Al] is a linear combination of the rows of C. Then we
get

(P1 C' r' (DC
(54) N C 0 0 | CNr 0 0

C

where
r = [R,, R,R1]

The expansion (54) represents the three-term expansion (25) of D. Hence the
limiting distribution ofND is the distribution of

C O 0' C 0

where w is a normally distributed vector having zero means and the same dis-
persion matrix as the system

m

This dispersion matrix is (A, which is non-singular under our assumptions. The
result now follows from lemma 4.

21. Studentization of D.-In order to construct a test function for the
hypothesis H, we still have to studentize D, that is, to replace the unknown
populational constants in ( by quantities computable from the sample. For
this purpose we may replace the set Fx, by any functions 'xV of sample means
(so that the procedure described at the end of section 6 may be applied),
provided that when each argument of Ox, is replaced by its expectation the
result is (P,. The studentized statistic

ND1=-N C 0 0|' C Ci
yO0 0

thus obtained has the same limiting distribution as ND when the hypothesis H
is true, for evidently the expansion (54) is not affected through the replace-
ment of x, by She In their generality the functions Ox, cannot be specified by
any fixed rule. In concrete cases, as manifested by the examples given below,
most natural functions playing the roles of the Ox, suggest themselves.
A practical difficulty in significance tests is that there are many conceivable

composite hypotheses for which one does not know how to construct a test
criterion even to satisfy the single requirement of exactness. The hypothesis H
has many special cases of this kind. When the sample is large, ND1 may be em-
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ployed as a test function as its distribution in the limit is known and is inde-
pendent of any nuisance parameters. The actual test consists in computing
ND1 and referring to the x2 distribution with 1 - h degrees of freedom, large
values of ND1 being significant. A further justification of the test is that its
power tends generally to unity as its limit, as will be shown in the next section.

22. Power of the test.-If the hypothesis H is false, then in the expansion of
D, the constant term is

a=- C
C a' 0C' > 0,

a 0 0

where

a = [al,,** all X ax =fx(pi, - * *X),X

and the term with N` is not in general essentially zero. Hence NI(D1- a)
tends to be normally distributed about zero with a dispersion c72 > 0. If the
test criterion based on D1 is to reject H when ND1 > c, then the power of the
test is asymptotically equal to

1 f - C dy,

which tends to one as N- co .
In the following six examples we consider a random vector

(55) [Xi, * * *, XA

as in section 12. The letters {i, ais, Xi, vi;, Ui, Ui have the same meaning as in
that section. Besides, we write

Ojjkl = E(UiUJUkUl), ViskZ =- E (Xir-X,) (Xr-XY,) (Xk7-Xk) (Xz,.-Xi).

The relations

(56) Oiikl = OfijOfkl + OfikaJl + iviljjkX mij k, 1 = 1, * * p,

which hold true if the distribution of (55) is normal, will be called the normal
moment relations. In the first two examples the conditions that the fourth
moments are finite and that the Xi do not satisfy any quadratic relation with
unit probability may be removed.

23. Example 1: To test the hypothesis H1.4

H,: 0=0, i=1,1 ,p.
4 The hypothesis ti = , (i = 1, . . ., p), may be reduced to this by using Xi - ti° in-

stead of Xi.
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We have

D= _ M |IMI,
whereM = [yis] and x = [Xi, Xp] . In order to studentize D it is natural to
employ v;; in the place of aris. Then

(57) ND1 = -N V | V|, V = [Vi;

The expression (57) is Hotelling's T2-statistic (see [3] and [6]) except for a
factor depending on N. Its limiting distribution when H1 is true is the x2 distri-
bution with p degrees of freedom, valid for arbitrary parent distribution.

24. Example 2: To test the hypothesis H2.

H2: {i= Z, i= 1, ,p.
Here

Mj' ~' m j'D=- j 0 0 j| i j=[ll--
0 0

V jit V j'
(58) ND1 =-N j 0 0 j 0

.f 0 0

The statistic (58) has been studied elsewhere (see [61). Its limiting distribu-
tion when H2 is true is the x2 distribution with p - 1 degrees of freedom, valid
for arbitrary parent distribution.

25. Example 3: To test the hypothesis H3.

H3: a11= ..* pp.

Here

711 **ip 1 Vll7111
'Yii 'YP 1

1 *1 0 0 Yp0'p
v11.. vpp 0 01 1 0

where
iN = aiiijj -aiiai.

If no further knowledge is assumed about the parent distribution, we may
use viii - viivi in place of yii for studentization. If the normal moment rela-
tions are assumed, then

.Yii = 2at::2
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We may studentizeD by using vii for oa,, (i P j), and v = 1 (v, + + v,,)
p

for each a;;. Then

2D2 2V122 ...2v1,,2 1 V,, 2D2 2V122 ...2V1~,2 1
(59) 2v212 2 *22v2.. .2V, 1 V22 2V212 2D2 2v2P2 1
ND1=-N-

2v,2 2vp. 22.v1 v. 2vp12 2vp22 212 1
1 1 . ~1 0 0 2 22

V11 V22... Vpp 0 0 1 11 0

The limiting distribution of (59) when Ha is true is the x2 distribution with
p - 1 degrees of freedom. If p = 2, (59) reduces to

N(v1 -V22)2
(v,, + v22)2 -4V122

which is the test function obtained by C. T. Hsu [5].
26. Example 4: To test the hypothesis, H4, that Xli , X, are independent

and homoscedastic.
As a consequence of H4 we have

(60) a;;= 1 ,=0,iO. j; i,j=1, **,p.

Then

711 O 1 v,, 0 1

(61) lyp lv,1
0,110,22 0 V12

D 0 via~~~~~~~~o1o
0

1.1*00.. .000
Vil ' ' Vpp V12 V13 . . .Vs1 0 0 0 0

because under the hypothesis H4 the dispersion matrix of the vector

[ Ull-eallofi Uppg-uapp, U12iU13i n* UP(61)

is the diagonal matrix figuring in (61).
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We may studentize D by using viii; and vii in place of oiiii and aj, assuming
nothing further about the parent distribution. If the normal moment relations
are assumed, then, taking into account (60), we have

afii = X, yii = 2X2l.

Hence

D 2p7D 2 (I ( Vi, p2 + E: Vii2

In order to studentizeD we may replace q by D. Then

(62) ND1 = N (1 E (V,, - p)2 + E Vj2) = ( -

When H, is true, the limiting distribution of (62) is the x2 distribution with
a (p + 2) (p - 1) degrees of freedom.

27. Example 5: Given that p = 4, to test the hypothesis that the three tetrad
differences are zero.

This is equivalent to

H6: al2a34 = 130f24 = a14a23 = 0.

We have

P11 (P12 (Pi3 1 Y1

'P21 'P= (P2 1 y2 'P21 'P12 'P13 1

(63) D=- P31 'P32 'P33 1 Y3 'P21 'P22 'P23 1

1 1 1 0 013 '12 03
Y1 Y2 Y3 0 0 0

where

Y1 = V12V34, Y2 = Vl3V24, Y3 = V4V23.

In the expansions of the Yi the coefficients ofN` are

a34Z32 + 012Z34, a24Z13 + a13Z24, a23Z14 + a14Z23,

where Zii is the normalized sample mean of Uj - ai. Hence ['pji] is the disper-
sion matrix of the three variables

o34U12 + a12U34 - 2oac34, a24U13 + a13U24 - 2a13a24,

a23U14 + a14U23- 2q14a23.
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'P1 = 0.342¢0.122 + al220.3344 + 2a02a341234 - 40.1220.342,
YP22 = 0.242a1133 + 0.132'02244 + 20.130240.1324 - 40.1320.242,
YP33 = 0.23201144 + a1420.2233 + 20.140.23a.423 - 40.1420.232,
(P12 = 0.120.1302344 + 012a24a1433 + 0.130340.1422 + 0.24a340.2311 - 4a12a0130240.34
'P13 = a120140.2433 + 0.120230.1344 + a23a34a2411 + 0.140.34a1322 - 4o 0.140.230.34
yP23 = .130.140.3422 + 0230.240.3411 + 0.130.23017244 + 0.140.24a1233 - 40.13fl4Or23o24

With no further knowledge on the parent distribution we can only studentize
D by means of the fourth moments. If the normal moment relations are as-
sumed, then

'P = a0110220.342 + 0.330.440122 +4 12aoi2o34
'P22 .a110a330242 + 220.44a132 + 2aac3u24,
'P33 = 0ll0440.232 + 0.220330.142 + 2aao40.33
'P12 = b + 4a101a13o240.34,
'P13 = b + 4a0120140.230.34,
'P23 = b + 4.130140.230.24 .

Where

a = 0.120.34+0.130.24+.140.23, b = 0.110.23a240.34+0.220173a014034+0.33a12a14a24+a44aL02.13023.

If H5 is true, then
'P1 = a11a22a342 + 033a440.122 + 602,
'P22 = 0.1110330.242 + 0220.440.132 + 602,
'P33 = 0.110.44a232 + 022033al42 + 602
'P12 = 'P13 = 'P23 = b + 402.

Substituting in (63) we get by an easy computation

D Cl(Y2 - y3)2 + C2(Y3 - y1)2 + c3(Yi - y2)2
C2C3 + C3C1 + C1C2

where
C1 = a0110220.342 + 0.330440.122- b + 202,
C2 = 0lla330.242 + 0.220.440.132- b + 202,
C3 = a0110440.232 + a022.33a142 - b + 202.

If now we replace aq by v% and 0 by (Y1 + Y2 + Y3) for studentization, we ob-
tain after an easy reduction

(64) ND1 = N d1(r13r24-r14r23)2 + d2(r14r23-r12r34)2 + d3(r12r34-r13r24)2
d2d3 + d3dl + dld2

where the rii are the correlation coefficients of the sample and

di = r122 + r342 + 9,
d2 = rl32 + r242 + g,
d3 = r142 + r232 + 9 -

g (r12r34+r13r24+r14r23)2 (r2r3r23+r12r14r24+r13r14r34+r23r24r34)
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When H6 is true, the limiting distribution of (64) is the x2 distribution with
two degrees of freedom.
The following example is taken from a paper by D. N. Lawley: a sample of

sizeN yields the correlational matrix

l4 1 7 *3
.4 .7 1 .3 .
L2 *3 *3 1_j

The expression (64) has the value 0.001085N. If the hypothesis H6 is true and
N is large, the probability that (64) may exceed this is approximately e(0i00"fN,
which will be significantly small only when N is several thousand. In his paper
Lawley proposed another test criterion whose limiting distribution under the
hypothesis H6 is also the x2 distribution with two degrees of freedom and whose
value for this example is 0.00113N. j

28. Example 6: To test the hypothesis, Hl6, that the firsts and the last t, (s+t= p),
of the variables Xi in (55) are independent.
Under this hypothesis we have

(65) aii=0, i= 1,* *,s; j= +1, ,5+t.

Let the dispersion matrices of [Xi, * * , X3] and [X+, **, X.+tI be respec-
tively M, and M2, and let the matrix V = [vi,] be partitioned:

V = 1[ Va12 XV2 Vi2]

where Vni has s rows and columns, V22 has t rows and columns.
On the basis of (65) we construct

4)11 '12- * P* l, V'1
'21 (P22 42. v'2 4i.1. J

.1 (P.2 ... A v l'I '..
V1 V2 ... V, 0

where

V= [vi,8+1, * Vi,#+tI , i = 1, , s,

and qis is the covariance matrix of the vectors [UUi ,8+ - i.+1, , U.;,+,-
C°i,,+t ] and [ Us,+i - ai..+1, . .,U.sUUj -,-+ ] . If H6 is true, then

'Dis = O,,jM2, i,j = 1, * * * s .
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Hence

11-. 4*1 -1 aA1M2-1 .*.al.M2-1

_ L a.1M2-1 * a..M271

where the a,, are the elements of Ml-'. Then

1 VU~i-lV'12 - X- 1 = -

D=[vi,. ~~ 11 * ** 1ii -I11

= D =1V 1 =trtMl-V12Af2-V'l1 ;

in other words, D is equal to the sum of the roots of the equation

In order to studentize D we have merely to substitute v,, for a,,. Then

Do= trVll-1Vu2Vg22V'l2,

or the sum of the roots of the equation

V-2V2271V12-xvl = 0.

Hence D1 is the sum of the canonical correlation coefficients of Hotelling [4].
The limiting distribution of ND1 when H6 is true is the x2 distribution with st
degrees of freedom.

Let us consider the particular case of two sets of events. Let E1, ** *,
and E,1, . .. , E',+, be two sets of events each forming a complete disjunction,
and let the letters pit, pi, p',, n;,, ni, n', represent the same quantities as in sec-
tion 9. If Xi, (i = 1 , s), is one or zero according as Ei happens or does not
happen, and if X8+i (j = 1, . .. , t), is one or zero according as E'i happens or
does not happen, then H6 becomes the following hypothesis:

pi= Ptptj, =1,***, + ;j=1,***Xt+1.
Set

d*. iN 1, * * + 1 , * * * t+ 1
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[d-F dltl ,
*
.J] A2= '

1 1~~n n

d.,.. N N
O n, O

_ notfj

a = [nl,- , n,], b = [n'l, -, n'e]

Then clearly

Vu=,A,-a'a, V22 =22-b'b, V2 = D.
N

Hence

V = A1 + N j.j., V22-1 = A2-1 + N iltit
n.+1 nt+i

where

Jq = [1,1, * 1], (qelements).

Hence

ND1 = NtrVi-1 V12V22~1V'r1 = N tr (A-' +N-j. D 2+ j D'
1/ ~~~~~N n+

=-N (tr/vr-1D/vlD' + -Nj.DA2-1D'j'. + N jD'A-1Dj't
N ns~~~~~~~~i~~n't+i

+ ,l [jaDj't 12)
n,+1n t+l

-
N (so > dtw2 +

L
t d2,,+13 1 dd2, + d29+l e+l

tfl J. nin'i no+, J- n j n'j=1 n; n,,+in't+i
8+1 t+l d,2

N , , n = mean square contingency.

29. Extension of example 6 to several sets ofvariables.-If the hypothesis is that

(Xi, * * * ' X8,), (J8,+l. * *' XJ1+J2) X . * * (81+ . . -+8j:1+1, * * * s X.g+ . . .+.K)

are mutually independent vectors, then our method of construction gives the
test function D, = ED,(ij), (i, j = 1, * * *, K; i < j), where D,(ij) is the D, in



394 BERKELEY SYMPOSIUM: HSU

example 6 for the ith and jth vectors. The details of the construction are
omitted. The limiting distribution of ND1 when the hypothesis is true is the x2
distribution with Isisi, (i, j = 1, * , cK; i < j), degrees of freedom.

30. The case of k samples, the hypothesis H', and the test function NA1.-In
this section we consider again the k random vectors (1); the notation used here
is the same as in section 1. Let fx(xl, * * *, x"), (X = 1, * . *, 1; 1 < m), be I
functions defined in the whole m-dimensional space and possessing continuous
third derivatives of every kind in each of the neighborhoods of the points
*Xm.), (a = 1, * , k). It is assumed that the matrices

fi.(l) ..

* * .i(m

F= f a 1,* ,k,
Ai (W . . . Ai.m

where
(i) = axy^ ,ga

dAia
are of rank 1. Let

Ox. = fMp/llx* ** XM 2 = 1 * 1; a *,k.

We call the hypothesis H' the following hypothesis:

H: OX1 =O2 = ** , X1,* *,l.

Let

YXa = fx(CU.a * * XUm) X y,, [ Fax**, Y1a] X

1~~~~~~~~~994?1 0 I y"l lb1

0~~ ~ ~~~

0
= -k I Y'0 0 1

I*10 0' gk

Y1 Yk 0 0

where the g. are defined in (9) and it, = F.[ liij]F'a. (b is the dispersion matrix
of [R,., * * *, R,.], where Rx. is the coefficient of N` in the expansion of Yx,
and is non-singular under our assumptions. If the hypothesis H' is true, the
limiting distribution of NA (as the sample sizes become infinite in the manner
specified in section 3) is the x2 distribution with l(k - 1) degrees of freedom.
This proposition is a consequence of theorem 2 and lemma 4. Its proof is
similar to that for the limiting distribution of ND as set forth in section 20,
and is omitted.
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Now, if we write

y= [y, * *,Yk,

-1(D 0 I
91

o 1
0 4Dk I

9k
I.*.*.* I 0

then

A = [y, O] 4-1 [y, O]-

g,-pi-'1 ° - 91(D1-1-

=gy . _ (9141-1+ + 9kgk )2-l) y[9'.l*,9kk Y -

°0 9k0k 1. g lkl1

Hence

(66) NA = ZNayjaD-lya- (NaYay-i) (ZN.aD) ( Na.%-lya).

If k = 2, we write
Y1+y2s, Y-y2= d,

so that
y, =(s +d), Y2= (s -d),

and substitute in (66). Direct computation shows that the result is independent
of s and is equal to

d {N14i-1 + N2452--(N1r1 - N2P2-1) (N1bl-1
+ N2'P2-1)- (NAlb1 -IN2121) }d'.

But

Nr1- + N2421 - (Nbl-1 - N22-1) (Nirl-' + N25D2-)-1 (Nlr' - N b -1)

= Nii-l+N2P2- -(Ni4r-1+N22-1- 2N242-) (N1C1-1+N242-1)-
(2Nr-1 - Nibl-1 + N25D2-1

= 4N1N2P2-1 (Nlbl-l + N22-)1)-1= 4 (N-i + N- 2).
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Hence (66) reduces to

(67) NA = (Y - Y2) + N-2-1 (Y'1 -Y2)

a result which is to be expected.
If Ma. = s for all a, then (66) and (67) reduce to

(68) NA = ENayA-ly'6 - y( .ty-) 1 EN y

(69) NT = ( + 1-) Y2A-l(Y1 -YW, if k=2.

When the unknown populational constants involved in the -a in (68) are
replaced by appropriate functions of sample means, we have a studentized
statistic whose limiting distribution is the same as that of NA when the
hypothesis H' is true. This statistic we shall call NA, and propose to use as a
test function for H' when the samples are large. The actual test consists in
computing NA1, referring to the x2 distribution with l(k - 1) degrees of free-
dom, and rejecting H' if NA1 is significantly large. The power of the test tends
in general to unity as its limit, a fact which may be deduced in the same manner
as done in section 22.

In the four examples which follow we consider k random vectors

(70) [Xi.' . . . X Xa] X a = 1, *. p k;

each having the properties of (30) described in section 12. In example 1' only
the finiteness of the second moments and the non-singularity of the dispersion
matrices need be assumed. The meanings of the symbols Si,a Cija ,¢7jblai Xia, Viia,
viiklz are self-evident.

31. Example 1': To test the hypothesis H1':

H'1: Oi1 = (i2 = = = = 1, * * p .

Here
=.dz 1a = [oja] i

Using (66) and (67) we have

NA = EN.xaM x,1xj~l-(N.^MJ1) (-NaM v)1 ( N.Mj1xj1),

where

and

NAv = (xl-Xc2) (-M1 + N-M,) (x' , if k = 2.
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If no further knowledge is assumed about the parent distributions, we may
studentize NA by employing Va = [via] for Ma. Then

N\= ZNaxaVa-lx-(ZNaxaVa1)(NaV -1) (ZNaVY-lta),
NA1(N=2 ):.V

YA,= (tl2)1 V + 2 V1 t'),ifk= 2.

The limiting distribution of (71) when H', is true is the x2 distribution with
p(k - 1) degrees of freedom.

If ao. = ai for all i, j, and a, we write M = [ail] and get

NA = E N.2taM-'a-NiM-1 X

where x = Na is the row vector whose components are the grand means

,X. Hence, writing [ ai,] = M-, we have

= ZaqYJ Na(Xia - Xi) (Xia-Xi)i,} a

In order to studentize (72) we use

1 k Na
V=- EE (Xiar- Xi) (Xjar-X)

in place of oil. Setting [aJ = [vi,]1- we have

(73) NA1 = aq; ZNa(Xa -X,) (Baj-X1).
IJ a

Consider now the particular case of k sets of events. Let

(74) Ela, E2a, * p Ena X a = 1, * * *, k,

be k sets of events, each forming a complete disjunction. Let P(Eia) = pia. If
Xi., (i = 1 * * Xm- 1; a = 1, * * *, k), is one or zero according as E" hap-
pens or does not happen, then H', becomes the hypothesis

(75) pi, = pi2= .. = Pi,% = Pi, i = 1, * *, m.
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Since
aiia = pia(l - pia), aiia = -piaPia, i jl

we have, when (75) is true,

iia = p1( - pi) aija = -pipj, i Fj.

Hence (73) can be used. Now if N. trials of experiment are made on the ath
set (74), if the number of happenings of Eia is ni, and if nj = E n, then

Na N

Vii =ni (1N) vii _nin22 i 0j; ix j= 1 ** m- 1.
N\N/ N2

Hence

a
NN N+ i

N ij
nj nm nm,

(76) NA1 N( niN).

The limiting distribution of (76) when (75) is true is the x2 distribution with
(m - 1) (k- 1) degrees of freedom.

32. Example 2': To test the hypothesis H'2:

H'2: 0i=i= 1,-i* j= p; a = l, *, k.

Here
Y.= [V1, V12a, V22., V23a, . . . , Vp-1,pa, VppaJ 1

and therefore 'i. is dispersion matrix of the system

Ulla - 011a, U12a - 0*1 *, Up.lpa -ap-1.pay Uppa - Oppa p

where

(77) Uij. = (Xa - &U) (Xja -

The elements of (P are

(78) E {(Ujia - o-iia) (Uki. -ola)} = OijkZa -,Oijaykla.
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If nothing is assumed about the parent distributions, we may employ ViikLcL for
studentization. If the normal moment relations (56) are assumed for each
vector (70), then (78) reduces to ofikaila + oiltajka, which under the hypothesis
H'2 is equal to Ofil + aiIOrlk. Hence 4a. = 4) and the formula (68) can be used.

Replacing each aii by vii = E Navija in 4) we get the studentized statistic

NA1 whose limiting distribution when H'2 is true is the x2 distribution with
A-p(p + 1) (k - 1) degrees of freedom.

33. Example 3': To test the hypothesis H'3:

H'3: Pija =Pii ij =1, * p: a = 1, ke

where Pija is the correlation coefficient of Xi, and Xi..
Here

ya = [rl2a, rl3a, , r23a, rp, ip.

where the rija are the sample correlation coefficients.
Now

Uija Uia Uja
ria =( Uja- Uj2)* (LUja -

where Uia = Xia-Via and Uija is defined in (77). Setting Uia = Na-'Zia, Uija=
Pija(aiiaojia)' + Na Zijja in rija and expanding in powers of Na7 we obtain the
following coefficients of N.-':

Zijai Zia ziaAXiia aPija +

which is the normalized sample mean of

Tiia = Uija _Paamv (Uiia + Uiia)
X/1Uiivajja aija Eajja

Hence 4 is the dispersion matrix of the system

Tuayf T13ay ** T23ap . . .*, Tpi paw

The elements of 4)a are

(79) E ( Tija Tkl6) = Tijkla- Puja ( Tiikla+ Tjikla)- Pkla ( Tkkija+ Tllija)
+1TPijaPkla (Tiikka.+ Tiilla+ Tjjkka+ Tjjkka)

where

Tiikia =
+/ Uiioaijja0Fka'Ylla
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With no further knowledge on the parent distributions we can only stu-
dentize by means of Viikla. If the normal moment relations (56) are assumed for
each vector (70), then

Tiikl = PijaPkla + PikaPila + PilaPika.

If the hypothesis H'3 is also taken into account, (79) becomes

PikPul + PilPjk - (PiiPikPil + PiiPjkPjl + PikPikPkl + PilPjlPkl)
+ a PifPkl(Pik2 + Pil2 + pi 2 + Pu2)

Hence in this case (a = (P and the formula (68) can be used. The studentiza-
tion consists in replacing Pij by one of the following functions:

E rii3 , 1 EI Njriia, ZNaviia/ENa(ViiaViia)'-k aN a a

Then we get a test function NA1 whose limiting distribution when H'3 is true is
the x2 distribution with ap(p - 1) (k - 1) degrees of freedom.

34. Example 4': Given that

(80) aii.a=ovi., = 1,* , p; a =, k,

to test the hypothesis H'4:

H'4: aiia= ii, ij;ij p;a 1, k.

Here

ya = [V12a, V13a, * V23a * p-,pa.

Hence (ta is the dispersion matrix of the system

U12a -a12a U13a - 13a * * , U23a -a23ay . . . X Up1,pa -a0p-1,pa-

4). is a certain arrangement of the elements

(81) Oiikla - Uijaakla.

Without any further knowledge about the parent distribution we have to
employ Vijkla for studentization. If the normal moment relations (56) are as-
sumed for each vector (70), then (81) becomes oikaaila + Oilaajka = °ikOjl+ailaik
under the assumption (80) and the hypothesis H'4. Hence formula (68) can be

used. Replacing each aii by vii = NE Naviea, we get a test function NA1
N a

whose limiting distribution when H'4 is true is the x2 distribution with
vp(p - 1)(k -1) degrees of freedom.
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A final remark
One of our assumptions on the statistic T in (7) is that the function f is de-

fined in the whole mk-dimensional space. But we give examples in which the
functions playing the role of f have less extensive domains of definition. This
difficulty may be overcome by observing that we can extend the definition of
the functions in question by assigning any constant value, for example zero,
as the value of the functions outside their natural domains of definition. The
same consideration applies to the functions in sections 19 and 20.
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