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Abstract. We give a systematic account of the various pictures ofKK-theory
for real C∗-algebras, proving natural isomorphisms between the groups that
arise from each picture. As part of this project, we develop the universal
properties of KK-theory, and we use CRT -structures to prove that a natural
transformation F (A) → G(A) between homotopy equivalent, stable, half-exact
functors defined on real C∗-algebras is an isomorphism, provided it is an iso-
morphism on the smaller class of C∗-algebras. Finally, we develop E-theory
for real C∗-algebras and use that to obtain new negative results regarding the
problem of approximating almost commuting real matrices by exactly com-
muting real matrices.

1. Introduction and preliminaries

A real C∗-algebra is a Banach ∗-algebra A over the real numbers such that
‖x∗x‖ = ‖x‖2 holds for all x and such that every element of the form 1 + x∗x is
invertible in the unitization of A (see [23]). In this paper, we will adopt the term
R∗-algebra instead. As is well known, every R∗-algebra is isometrically isomorphic
to a closed ∗-algebra of bounded operators on a Hilbert space over R. In addition,
every R∗-algebra is isomorphic to the ∗-algebra of fixed elements of a C∗-algebra
with a conjugate linear involution.
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In his seminal paper [17] introducing KK-theory, Kasparov simultaneously
considered both R∗-algebras and C∗-algebras. Since then, many alternate, but
equivalent or closely related, pictures of KK-theory have been introduced and
developed by various authors (see, e.g., [8], [9], [14], [15], [22], [25]). The ability
to move among the various pictures has contributed immensely to the utility
of KK-theory as a tool for solving problems. However, these authors have not
consistently followed Kasparov’s lead in considering the real case along with the
complex.

In recent years, substantial progress has been made in developing the tools
to study R∗-algebras, including the development of united K-theory and the
universal coefficient theorem in [3] and [4]. This has led to a classification of
purely infinite simple R∗-algebras (in [5]) and the classification of real forms of
UHF-algebras that are stable over the CAR-algebra (in [24]).

Given the centrality of KK-theory for these projects, there has been a need to
develop a systematic account of the various pictures ofKK-theory forR∗-algebras.
In this paper, we will develop several of the alternate pictures of KK-theory in
the context of R∗-algebras and prove the appropriate equivalence theorem. In
particular, in this paper we will consider the following pictures of KK-theory
and prove appropriate equivalence theorems for each: the standard Kasparov bi-
module picture of KK-theory, the Fredholm picture (both in Section 2), the
universal property picture (Section 3), and suspended E-theory using asymptotic
morphisms (Section 4). Since this aspect of the theory goes through in the real
case very much like the complex case, we present these results in a survey-like
overview.

As part of this, we prove a more general theorem which reduces the work
required to replicate many of these equivalent theorems and promises to ease
the way for similar projects in the future. Suppose that µ : F → G is a natural
transformation between homotopy invariant, stable, half-exact functors. We prove
that if µ is an isomorphism for all C∗-algebras, then it is an isomorphism for
R∗-algebras. This is accomplished in Section 3, where we develop the universal
properties of KK-theory and K-theory for R∗-algebras.

In the last two sections, we will apply these ideas, using KK-theory to prove
the existence of certain asymptotic morphisms, which, in turn, is used to obtain
new results for the problem of approximating a set of almost commuting matri-
ces over the field of real numbers. In particular, let the Halmos number be the
largest integer d such that whenever d real self-adjoint matrices almost commute
(pairwise) they can be approximated by d pairwise commuting matrices. More
precisely, for all ε > 0, there should be a δ > 0 such that if {Hi}di=1 is a collection
of d self-adjoint matrices such that

‖Hr‖ ≤ 1 and
∥∥[Hr, Hs]

∥∥ ≤ δ,

for all r, s, then there exists a collection {Ki}di=1 of self-adjoint matrices such that

‖Kr‖ ≤ 1 and
∥∥[Kr, Ks]

∥∥ = 0 and ‖Hr −Kr‖ ≤ ε.

Furthermore, the dependence of δ on ε must be uniform, independent of the
dimension of the matrices Hr. It is shown in [20] that, in the context of real



PICTURES OF KK-THEORY FOR REAL C∗-ALGEBRAS 29

matrices, the statement is true for d = 2. We will show in Section 7 that the
statement is false for d = 5. Therefore, the Halmos number for real matrices is
between 2 and 4, inclusive.

2. The standard and Fredholm pictures of KK-theory

We start with the following definition of KK-theory. It is essentially the same
as that in [17], where it was simultaneously developed for both R∗-algebras and
C∗-algebras. It also appears in Section 2.3 of [23] for R∗-algebras, Section 2.1 of
[16], and the Appendix of [14].

Definition 2.1. Let A and B be graded separable R∗-algebras with B assumed to
be σ-unital.

(i) A Kasparov (A-B)-bimodule is a triple (E, φ, T ), where E is a countably
generated graded real Hilbert B-module, φ : A → LR(E) is a graded
∗-homomorphism, and T is an element of LR(E) of degree 1 such that

(T − T ∗)φ(a), (T 2 − 1)φ(a) and
[
T, φ(a)

]
lie in KR(E) for all a ∈ A.

(ii) Two triples (Ei, φi, Ti) are unitarily equivalent if there is unitary U in
LR(E0, E1), of degree zero, intertwining both φi and Ti in the appropriate
way.

(iii) Let (E, φ, T ) be a Kasparov (A-B)-bimodule, and let β : B → B′ be
a ∗-homomorphism of R∗-algebras. Then the pushed-forward Kasparov
(A-B′)-bimodule is defined by

β∗(E, φ, T ) = (E⊗̂βB
′, φ⊗̂1, T ⊗̂1).

(iv) Two Kasparov (A-B)-bimodules (Ei, φi, Ti) for i = 0, 1 are homotopic if
there is a Kasparov bimodule (A-IB), say (E, φ, T ), such that (εi)∗(E, φ,
T ) and (Ei, φi, Ti) are unitarily equivalent for i = 0, 1, where IB =
C([0, 1], B) and εi denotes the evaluation map.

(v) A triple (E, φ, T ) is degenerate if the elements

(T − T ∗)φ(a), (T 2 − 1)φ(a) and
[
T, φ(a)

]
are zero for all a ∈ A. By Proposition 2.3.3 of [23], degenerate bimodules
are homotopic to trivial bimodules.

(vi) KK(A,B) is defined to be the set of homotopy equivalence classes of
Kasparov (A-B)-bimodules.

The following theorem summarizes the principal properties of KK-theory for
R∗-algebras from Chapter 2 of [23].

Proposition 2.2. KK(A,B) is an abelian group for separable A and σ-unital B.
As a functor on separable R∗-algebras (contravariant in the first argument and
covariant in the second argument), it is homotopy invariant, stable, and has split
exact sequences in both arguments. Furthermore, there is a natural associate pair-
ing (the intersection product)

KK(A,C ⊗B)⊗KK(C ⊗ A′, B′) → KK(A⊗ A′, B ⊗B′).
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We now turn to the Fredholm picture of KK-theory, which was developed
in [14] in the context of C∗-algebras. A simplified picture along these lines also
appears in Chapter 4 of [16]. As we show, the approach goes through the same
for R∗-algebras, as follows.

Definition 2.3. Let A and B be separable R∗-algebras.

(i) A triple (φ+, φ−, U), where φ± : A→ M(KR ⊗B) are ∗-homomorphisms,
and U is an element of M(KR ⊗B) such that

Uφ+(a)− φ−(a)U, φ+(a)(U
∗U − 1), and φ−(a)(UU

∗ − 1)

lie in KR ⊗B for all a ∈ A is called a KK(A,B)-cycle.
(ii) TwoKK(A,B)-cycles (φ1

+, φ
1
−, U

1) and (φ2
+, φ

2
−, U

2) are homotopic if there
is a KK(A, IB)-cycle (φ+, φ−, U) such that(

εiφ+, εiφ−, εi(U)
)
= (φi+, φ

i
−, U

i),

where εi : M(KR ⊗ IB) → M(KR ⊗B) is induced by evaluation at i.
(iii) A KK(A,B)-cycle (ψ+, ψ−, V ) is degenerate if the elements

V ψ+(a)− ψ−(a)V, ψ+(a)(V
∗V − 1), and ψ−(a)(V V

∗ − 1)

are zero for all a ∈ A.
(iv) The sum (φ+, φ−, U) ⊕ (ψ+, ψ−, V ) of two KK(A,B)-cycles is the

KK(A,B)-cycle((
φ+ 0
0 ψ+

)
,

(
φ− 0
0 ψ−

)
,

(
U 0
0 V

))
,

where the algebraM2(M(KR⊗B)) is identified withM(KR⊗B) by means
of some ∗-isomorphism M2(KR) ∼= KR, which is unique up to homotopy
by [17, Section 1.17 ].

(v) Two cycles (φ0
+, φ

0
−, U

0) and (φ1
+, φ

1
−, U

1) are said to be equivalent if there
exist degenerate cycles (ψ0

+, ψ
0
−, V

0) and (ψ1
+, ψ

1
−, V

1) such that

(φ0
+, φ

0
−, U

0)⊕ (ψ0
+, ψ

0
−, V

0) and (φ1
+, φ

1
−, U

1)⊕ (ψ1
+, ψ

1
−, V

1)

are homotopic.
(vi) KK(A,B) is defined to be the set of equivalence classes ofKK(A,B)-cycles.

The following lemma is the real version of Lemma 2.3 of [14], with the same
proof.

Proposition 2.4. KK(A,B) is an abelian group, for separable R∗-algebras A
and B. As a functor it is contravariant in the first argument and covariant in the
second argument.

Theorem 2.5. Let A and B be separable R∗-algebras (with the trivial grading).
Then KK(A,B) is isomorphic to KK(A,B).

Sketch of proof. Let HB be the Hilbert B-module consisting of all sequences
{bn}∞n=1 in B such that

∑∞
n=1 b

∗
nbn converges. Let ĤB = HB ⊕HB be the graded

Hilbert B-module with Ĥ(0)
B = HB⊕0 and Ĥ(1)

B = 0⊕HB. This induces a grading

on LR(ĤB) ∼= M(KR ⊗B).
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Given a KK(A,B)-cycle x = (φ+, φ−, U), we define

α(x) =

(
ĤB,

(
φ+ 0
0 φ−

)
,

(
0 U∗

U 0

))
.

It is verified that
(

0 U∗
U 0

)
has degree 1 and that α(x) is indeed a Kasparov (A-B)

bimodule. That α induces a well-defined isomorphism

α : KK(A,B) → KK(A,B)

can be shown by adapting the methods of [14, Appendix] or [16, Chapter 4]. �

3. The universal property of KK-theory

Let F be a functor from the category C*R-Alg of separable R∗-algebras to
the cateogry Ab of abelian groups. We say that F is

(i) homotopy invariant if (α1)∗ = (α2)∗ whenever α1 and α2 are homotopic
∗-homomorphisms on the level of R∗-algebras;

(ii) stable if (eA)∗ : F (A) → F (KR ⊗ A) is an isomorphism for the inclusion
eA : A ↪→ KR ⊗ A defined via any rank 1 projection;

(iii) split exact if any split exact sequence of separable R∗-algebras

0 → A→ B → C → 0

induces a split exact sequence

0 → F (A) → F (B) → F (C) → 0;

(iv) half-exact if any short exact sequence of separable R∗-algebras

0 → A→ B → C → 0

induces an exact sequence

F (A) → F (B) → F (C).

In what follows we will see that if F is homotopy invariant and half-exact, then
it is split exact.

Proposition 3.1. If F is a functor from C*R-Alg to Ab that is homotopy in-
variant, then the functor Fs defined by Fs(A) = F (KR⊗A) is homotopy invariant
and stable.

Proof. Just as in the complex case (see [16, Theorem 4.1.13]), the map eKR : KR →
KR ⊗KR is homotopic to an isomorphism. �

The following theorem is the version for R∗-algebras of Theorem 3.7 of [14] and
Theorem 22.3.1 of [2].

Theorem 3.2. Let F be a functor from C*R-Alg to Ab that is homotopy in-
variant, stable, and split exact. Then there is a unique natural pairing α : F (A)⊗
KK(A,B) → F (B) such that α(x ⊗ 1A) = x for all x ∈ F (A) and where
1A ∈ KK(A,A) is the class represented by the identity ∗-homomorphism.

Furthermore, the pairing respects the intersection product on KK-theory in the
sense that

α
(
α(x⊗ y)⊗ z

)
= α

(
x⊗ (y ⊗B z)

)
: F (A)⊗KK(A,B)⊗KK(B,C) → F (C).
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Proof. Let Φ ∈ KK(A,B). Using Theorem 2.5 we represent Φ with a KK(A,B)
cycle and, as in Lemma 3.6 of [14], we may assume that this cycle has the form
(φ+, φ−, 1). We use the same construction as in Definitions 3.3 and 3.4 of [14]. In
that setting, F is assumed to be a functor from separable C∗-algebras, but the
same construction applies for a functor from separable R∗-algebras to any abelian
category. This construction produces a homomorphism Φ∗ : F (A) → F (B) and
we then define α(x ⊗ Φ) = Φ∗(x). The proofs of Theorems 3.7 and 3.5 of [14]
carry over in the real case to show that α is natural, is well defined, satisfies
α(x⊗ 1A) = x, and is unique.

That α respects the Kasparov product follows from the uniqueness statement.
�

We also note the contravariant version of the result above. If F is a contravri-
ant functor, otherwise satisfying the above hypotheses, then there is a pairing
α : KK(A,B)⊗ F (B) → F (A) such that α(1A ⊗ x) = x for all x ∈ F (A).

For any R∗-algebra A, we define SA = {f ∈ C([0, 1], A) | f(0) = f(1) = 0}, or,
equivalently up to ∗-isomorphism, SA = C0(R, A). We similarly define S−1A =

{f ∈ C0(R, AC) | f(−x) = f(x)}. By iteration, SnA is defined for all n ∈ Z.
Since SS−1R is KK-equivalent to R, the formula SnSmA ≡ Sn+mA holds up to
KK-equivalence for all n,m ∈ Z. Then, for any functor F on C*R-Alg and any
integer n, we define Fn(A) = F (Sn(A)).

Corollary 3.3. Let F be a functor from C*R-Alg to Ab that is homotopy
invariant, stable, and split exact. Then F∗(A) has the structure of a graded module
over the ring K∗(R). In particular, Fn(A) ∼= Fn+8(A) for all n ∈ Z.

Proof. For all separable A and σ-unital B, the pairing of Proposition 2.2 gives
KK∗(A,B) the structure of a module over KK∗(R,R). Taking A = B, we define
a graded ring homomorphism β from K∗(R) ∼= KK∗(R,R) to KK∗(A,A) by
multiplication by 1A ∈ KK(A,A). Then, for any x ∈ Fm(A) and y ∈ Kn(R), we
define x · y = α(x⊗ β(y)) ∈ Fn+m(A). �

Similarly, the pairing Theorem 3.2 extends to a well-defined graded pairing

α : F∗(A)⊗KK∗(A,B) → F∗(B).

Let KK be the category whose objects are separable R∗-algebras, and the set
of morphisms from A to B is KK(A,B). There is a canonical functor KK from
C*R-Alg to KK that takes an object A to itself and which takes a ∗-homomor-
phism f : A→ B to the corresponding element [f ] ∈ KK(A,B).

Corollary 3.4. Let F be a functor from C*R-Alg to Ab that is homotopy
invariant, stable, and split exact. Then there exists a unique functor F̂ : KK → A
such that F̂ ◦KK = F .

Proof. This statement is proved as in Section 2.8 of [14]. �

Proposition 3.5. Let F be a functor from C*R-Alg to Ab that is homotopy
invariant and half-exact. Then, for any short exact sequence

0 → A
f−→ B

g−→ C → 0,
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there is a natural boundary map ∂ : F (SC) → F (A) that fits into a (half-infinite)
long exact sequence

· · · → F (SB)
g∗−→ F (SC)

∂−→ F (A)
f∗−→ F (B)

g∗−→ F (C).

Proof. Use the mapping cone construction as in Section 21.4 of [2]. �

Corollary 3.6. A functor F from C*R-Alg to Ab that is homotopy invariant
and half-exact is also split exact.

Proof. The splitting implies that g∗ is surjective. Thus, in the sequence of Propo-
sition 3.5, ∂ = 0 and f∗ is injective. �

Proposition 3.7. Let F be a functor from C*R-Alg to Ab that is homotopy
invariant, stable, and half-exact. Then, for any short exact sequence

0 → A
f−→ B

g−→ C → 0,

there is a natural long exact sequence (with 24 distinct terms)

· · · → Fn+1(C)
∂−→ Fn(A)

f∗−→ Fn(B)
g∗−→ Fn(C)

∂−→ Fn−1(A) → · · · .

Proof. From Corollary 3.6 and Corollary 3.3, F is periodic; so Proposition 3.5
gives the long exact sequence. �

We say that a homotopy invariant, stable, half-exact functor F from C*R-Alg
to the category Ab of abelian groups:

(v) satisfies the dimension axiom if there is an isomorphism F∗(R) ∼= K∗(R)
as graded modules over K∗(R);

(vi) is continuous if, for any direct sequence of R∗-algebras (An, φn), the nat-
ural homomorphism

lim
n→∞

F∗(An) → F∗
(
lim
n→∞

(An)
)

is an isomorphism.

Theorem 3.8. Let F be a functor from C*R-Alg to Ab that is homotopy in-
variant, stable, half-exact, and satisfies the dimension axiom. Then there is a
natural transformation β : Kn(A) → Fn(A). If F is also continuous, then β is
an isomorphism for all R∗-algebras in the smallest class of separable R∗-algebras
which contains R and is closed under KK-equivalence, countable inductive limits,
and the two-out-of-three rule for exact sequences.

Proof. Let z be a generator of F (R) ∼= Z, and for x ∈ Kn(A) ∼= KK(R, SnA)
define a K∗(R)-module homomorphism β : K∗(A) → F∗(A) by β(x) = α(z ⊗ x).
Taking A = R, Theorem 3.2 yields that β(10) = z where 10 is the unit of the
ring K∗(R) = KK∗(R,R). Therefore, β is an isomorphism for A = R. Then
bootstrapping arguments show that β is an isomorphism for all R∗-algebras in
the class described. �

For any homotopy invariant, stable, split exact functor F on C*R-Alg, define
the united F -theory of an R∗-algebra A to be

FCRT (A) =
{
F∗(A), F∗(C⊗ A), F∗(T ⊗ A)

}
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with the module-structure given by multiplication by elements of KK∗(X,Y )
with X,Y ∈ {R,C, T} via the pairing of Theorem 3.2.

Proposition 3.9. Let F be a homotopy invariant, stable, split exact functor
from C*R-Alg to Ab, and let A be a separable R∗-algebra. Then FCRT (A) is a
CRT-module. Moreover, if in addition F is half-exact, then FCRT (A) is acyclic.

Proof. The first statement follows immediately, and the second statement follows
from the exact sequences

· · · → Fn(A)
ηO−−→ Fn+1(A)

c−→ Fn+1(C⊗ A)
rβ−1

U−−−→ Fn−1(A) → · · ·

· · · → Fn(A)
η2O−−→ Fn+2(A)

ε−→ Fn+2(T ⊗ A)
τβ−1

T−−−→ Fn−1(A) → · · ·

· · · → Fn+1(C⊗ A)
γ−→ Fn(T ⊗ A)

ζ−→ Fn(C⊗ A)
1−ψU−−−→ Fn(C⊗ A) → · · ·

which arise from the short exact sequences

0 → S−1R⊗ A→ R⊗ A→ C⊗ A→ 0

0 → S−2R⊗ A→ R⊗ A→ T ⊗ A→ 0

0 → SC⊗ A→ T ⊗ A→ C⊗ A→ 0

as in Sections 1.2 and 1.4 of [3]. �

Finally, we obtain the following reduction theorem, which is a formalization
of a common argument used to reduce results from the complex case to the real
case, such as those found in [1], [3], and [4].

Theorem 3.10. Let F and G be homotopy invariant, stable, half-exact functors
from C*R-Alg to Ab with a natural transformation µA : F (A) → G(A). If µA is
an isomorphism for all C∗-algebras A in C*R-Alg, then µA is an isomorphism
for all R∗-algebras in C*R-Alg.

Proof. Let A be a separable R∗-algebra. The natural transformation µA induces
a homomorphism µA

CRT : FCRT (A) → GCRT (A) of acyclic CRT -modules which
is, by hypothesis, an isomorphism on the complex part. Then the results in [6,
Section 2.3] imply that µA

CRT is an isomorphism. �

Corollary 3.11. Any homotopy invariant, stable, half-exact functor from C*R-
Alg to Ab that vanishes on all C∗-algebras vanishes on all R∗-algebras.

4. Asymptotic morphisms and E-theory

Since much of the theory of asymptotic morphisms andE-theory carries through
in the real case exactly as in the complex case, we highlight the main definitions
and results without proof. The goal of this section is to show that KK(A,B) is
naturally isomorphic to E(A,B) for separable R∗-algebras A and B, when A is
nuclear. At the end, we take advantage of Theorem 3.10 to obtain this theorem,
saving us the need to check that all of the details in the complex case carry
through to the real case. We note that asymptotic morphisms for R∗-algebras are
also discussed in [5, Section 8].
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Definition 4.1. Let A and B be R∗-algebras. An asymptotic morphism from A
to B is a family 〈φt〉 (for t ∈ [1,∞)) of maps from A to B with the following
properties:

(1) for all a ∈ A, t 7→ φt(a) is bounded and continuous; and
(2) the set 〈φt〉 is asymptotically ∗-linear and multiplicative; that is,

(a) limt→∞ ‖φt(λa+ b)− (λφt(a) + φt(b))‖ = 0,
(b) limt→∞ ‖φt(a∗)− φt(a)

∗‖ = 0, and
(c) limt→∞ ‖φt(ab)− φt(a)φt(b)‖ = 0,
for all a, b ∈ A and λ ∈ R.

Two asymptotic morphisms 〈φt〉, 〈ψt〉 : A→ B are said to be equivalent if

lim
t→∞

(
φt(a)− ψt(a)

)
= 0

for all a ∈ A; and they are said to be homotopic if there exists an asymptotic
morphism 〈Φt〉 : A→ IB such that, for each t ∈ [1,∞) and a ∈ A,

ev0
(
Φt(a)

)
= φt(a) and ev1

(
Φt(a)

)
= ψt(a),

where evi : IB → B are the evaluation maps for i = 0, 1.

As in the complex case, equivalent asymptotic morphisms are always homo-
topic (see [2, Section 25.1.2(g)]). If φ is a ∗-homomorphism from A to B, then
〈φ〉 denotes the corresponding constant asymptotic morphism. Also, as in Re-
mark 25.1.4(a) of [2], there is a one-to-one correspondence between equivalence
classes of asymptotic morphisms from A to B, and ∗-homomorphisms from A to
B∞ = Cb([1,∞), B)/C0([1,∞), B).

Definition 4.2. For R∗-algebras A and B, let [[A,B]] denote the set of homotopy
classes of asymptotic morphisms from A to B. For an asymptotic morphism 〈φt〉,
we will use [〈φt〉] to denote the class in [[A,B]] represented by 〈φt〉. We define
E(A,B) = [[SA,KR ⊗ SB]].

There is a natural isomorphism between [[A,KR ⊗B]] and [[KR ⊗A,KR ⊗B]]
(see [2, Section 25.4.1]). Also as in the complex case, the set [[A,KR ⊗ SB]]
has the structure of an abelian group, defined using a chosen ∗-isomorphism
M2(KR) ∼= KR.

Let e : 0 → B
ι→ E

π→ A → 0 be an exact sequence of R∗-algebras. Suppose
that B has a continuous approximate identity {ut}t∈[1,∞) which is quasicentral in
E. Let σ be a bounded continuous cross section of π (the existence of which is
given by the (real) Bartle–Graves selection theorem). Then the formula

φe
t(f ⊗ a) = f(ut)σ(a), a ∈ A, f ∈ SR,

defines an asymptotic morphism 〈φe
t〉 : SA → B and corresponding element

[〈φe
t〉] = εe in [[SA,B]].

Proposition 4.3 ([2, Proposition 25.5.1]). Let e : 0 → B
ι→ E

π→ A → 0
be an exact sequence of R∗-algebras, where B is separable. Then the class εe is
independent of the choices of continuous approximate identity {ut}t∈[1,∞) and the
cross section σ.
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In the real case, we also have the tensor product construction for asymptot-
ic morphisms described in Lemma II.B.β.5 of [7]. Given two asymptotic mor-
phisms 〈φt〉 : A → C and 〈ψt〉 : B → D, there is an asymptotic morphism
〈(φ⊗ ψ)t〉 : A⊗max B → C ⊗max D which satisfies

lim
t→∞

(
(φ⊗ ψ)t(a⊗ b)− φt(a)⊗ ψt(b)

)
= 0,

for all a ∈ A and b ∈ B.
As a special case, any asymptotic morphism 〈φt〉 : A → B yields a suspension

asymptotic morphism from SA to SB, producing a natural element of E(A,B).
Similarly, the suspension construction produces a well-defined map Σ: E(A,B) →
E(SA, SB), which can easily be shown to be a group homomorphism. Later in
this section we show that Σ is an isomorphism.

The associative product structure on E-theory described in Proposition II.B.β.4
of [7] also carries over to the case of R∗-algebras. Given two asymptotic morphisms
〈φt〉 : A → B and 〈ψt〉 : B → C, there is a composition asymptotic morphism
〈ψ ◦ φ〉t : A → C, defined uniquely up to homotopy. In the special case that ψ
or φ is an actual ∗-homomorphism, this product is a literal composition. In the
general case, a reparameterization is necessary to construct an asymptotic mor-
phism from the composition (see [2, Section 25.3]). The resulting product induces
a natural homomorphism E(A,B)⊗ E(B,C) → E(A,C).

Theorem 4.4. E(A,B) is a bivariant functor from separable R∗-algebras to
abelian groups. In both arguments, it is homotopy invariant, stable, half-exact,
and has a degree 8 periodicity isomorphism.

Proof. The homotopy invariance is immediate, and the stability follows from
Proposition 3.1. By Proposition 4.3, any extension

e : 0 → J → A
q−→ B → 0

gives rise to a well-defined asymptotic morphism 〈φe
t〉 from SB to J . Then the

proofs leading up to, and including, Corollary 25.5.7 of [2] carry over to the real
case to show that the functor E(A, ·) is a split exact functor for fixed separa-
ble A. Then by Theorem 3.2 (of the present paper) there is a bilinear pairing
E(A,B) ⊗ KK(B,C) → E(A,C). Since this map is associative, multiplication
by the Bott element in KK(R, S8R) induces a periodicity isomorphism in the sec-
ond argument of E(·, ·). Similarly, E(·, B) is also split exact, and so by the com-
ments following Theorem 3.2 there is a natural pairing, KK(A,B)⊗E(B,C) →
E(A,C), proving periodicity in the first argument.

We postpone the proof of half-exactness until after the following lemma. �

For any elements x ∈ E(A,B) and z ∈ KK(B,C), the pairing described in
the proof above gives an element in E(A,C) which we will denote by x ⊗α z.
Taking 1A ∈ E(A,A) we obtain a homomorphism ε : KK(A,B) → E(A,B). For
x ∈ E(A,B) and y ∈ E(B,C), we let x ⊗E y denote the product in E(A,C).
Similarly for z ∈ KK(A,B) and w ∈ KK(B,C), we let z ⊗KK w denote the
product in KK(A,C). For x ∈ KK(A,B) and y ∈ KK(B,C) it can easily be
shown that ε(x⊗KK y) = ε(x)⊗E ε(y).
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Lemma 4.5. For any R∗-algebras, Σ: E(A,B) → E(SA, SB) is an isomor-
phism.

Proof. Let α ∈ E(R, S8R) and β ∈ E(S8R,R) be Bott elements arising from
the corresponding Bott elements in KK-theory via ε. Since ε is multiplicative, it
follows that these elements satisfy α⊗E β = 1R and β⊗α = 1S8R. It follows that
the map z 7→ (α ⊗ 1A)⊗E z ⊗ (β ⊗ 1B) is an isomorphism Θ from E(S8A, S8B)
to E(A,B).

It can easily be shown that Θ ◦ Σ8 = idE(A,B) and that Σ8 ◦ Θ = idE(S8A,S8B).
Hence Σ: E(SnA, SnB) → E(Sn+1A, Sn+1B) is an isomorphism if n ≥ 7. Finally,
Σ: E(A,B) → E(SA, SB) can be shown to be an isomorphism using the diagram

E(A,B)
Σ // E(SA, SB)

E(S8A, S8B)
Σ //

Θ

OO

E(S9A, S9B)

Θ

OO

The vertical maps and the lower map are all known to be isomorphisms. This
diagram commutes modulo a homomorphism induced by the rearrangement of
the order of the suspension factors of S9A and S9B. Since the rearrangement of
the factors corresponds to an even permutation, it is homotopic to the identity and
induces an identity homomorphism on E-theory. It follows that the Σ: E(A,B) →
E(SA, SB) is an isomorphism. �

Completion of the proof of Theorem 4.4. Finally, to prove half-exactness, let 0 →
J

ι→ A
q→ B → 0 be an extension of separable R∗-algebras, and let D be an

R∗-algebra. Suppose that h is an asymptotic morphism from SD⊗KR to SA⊗KR
such that [q ◦ h] = [0]. Lemma 25.5.12 of [2] and its proof carry over to the real
case, so there exists an asymptotic morphism k from S2D⊗KR to S2J⊗KR such
that [Sι ◦ k] = [Sh]. In the commutative diagram

E(D, J)
ι∗ //

Σ
��

E(D,A)
q∗ //

Σ
��

E(D,B)

Σ
��

E(SD, SJ)
ι∗ // E(SD, SA)

q∗ // E(SD, SB)

the vertical maps are isomorphisms, so there exists an asymptotic morphism g
from SD ⊗KR to SJ ⊗KR such that [ι ◦ g] = [h] in E(D,A).

Half-exactness in the first argument is proved in a similar way. �

Theorem 4.6. Let A be a separable, nuclear R∗-algebra, and let B be a separable
R∗-algebra. Then the homomorphism ε : KK(A,B) → E(A,B) is an isomor-
phism.



38 J. L. BOERSEMA, T. A. LORING, and E. RUIZ

Proof. By Theorem 3.10, it suffices to show that KK(A,B) → E(A,B) is an
isomorphism when B is a C∗-algebra. In the diagram

KKC(AC, B) //

��

EC(AC, B)

��
KK(A,B) // E(A,B)

we use KKC(−,−) and EC(−,−) to denote the versions of these functors on
C∗-algebras (e.g., EC(−,−) consists of homotopy classes of asymptotic morphisms
that are asymptotically linear over C). Since AC is nuclear, the top horizontal
homomorphism is an isomorphism by Theorem 25.6.3 of [2]. The left vertical
homomorphism is an isomorphism by Lemma 4.3 of [4]. The right vertical ho-
momorphism is defined by restriction—a complex asymptotic morphism defined
on SAC ⊗ K restricts to a real asymptotic morphism defined on SA ⊗ KR—and
it is an isomorphism, since every real asymptotic morphism on SA⊗ KR can be
extended uniquely to a complex asymptotic morphism on SAC ⊗ K. The square
commutes by Theorem 3.7 of [14], since the two directions around the square
give natural transformations KKC(AC,−) → E(A,−) of functors defined on sep-
arable C∗-algebras, each of which sends 1A ∈ KKC(AC, AC) to the asymptotic
morphism represented by the inclusion of A into AC. Therefore, the bottom row
is an isomorphism, as desired. �

Finally, we mention that, with a similar application of Theorem 3.10, we can
easily obtain the following real analogue of Theorem 5.8 of [22], showing that
E-theory is a special case of KK-theory. Since M(B ⊗ KR) is KK-trivial, it
follows that E(A,M(B⊗KR)) = 0. Then we use the long exact sequence arising
from

0 → B ⊗KR → M(B ⊗KR) → Q(B ⊗KR) → 0

to get an isomorphism E0(A,Q(B ⊗ KR)) ∼= E−1(A,B ⊗ KR). Combining this
with stability and with Lemma 4.5, there is an isomorphism

γ : E
(
S−1A,Q(B ⊗KR)

)
→ E(A,B)

for R∗-algebras A and B.

Theorem 4.7. Let A and B be separable R∗-algebras. Then there is an isomor-
phism

ε′ : KK
(
S−1A,Q(B ⊗KR)

)
→ E(A,B).

Proof. Let ε′ = γ ◦ ε, where ε is the isomorphism of Theorem 4.6. We know that
ε′ is an isomorphism in the complex case by Theorem 5.8 of [22]. So it suffices by
Theorem 3.10 to show that ε′ fits in a commutative square in the same way that
ε does in the proof of Theorem 4.6. The square in question can be factored into
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two squares as follows:

KKC
(
S−1AC,Q(B ⊗KR)

)
//

��

EC
(
S−1AC,Q(B ⊗KR)

)
//

��

EC(AC, B)

��
KK

(
S−1A,Q(B ⊗KR)

)
// E

(
S−1A,Q(B ⊗KR)

)
// E(A,B)

The first square is just a specialization of the square in Theorem 4.6. The sec-
ond square commutes, since the horizontal maps are homomorphisms that arise
from stabilization, from long exact sequences, and from suspensions, all of which
commute with the vertical restriction map. �

5. Application: Asymptotic morphisms on spheres

The goal of this section is to determine when there exist asymptotic morphisms
from suspensions of R to KR and to KR⊗H that are detected byK-theory. For this
we will use the results of the previous sections, the universal coefficient theorem
for real C∗-algebras, and a united K-theory analysis. The main theorem of this
section is the following.

Theorem 5.1. Let d ∈ N. There exists an asymptotic morphism 〈φt〉 that induces
a nontrivial homomorphism on K-theory of the form

(1) SdR → KR if and only if d ≡ 0, 4, 6, 7 (mod 8),
(2) SdR → KR ⊗H if and only if d ≡ 0, 2, 3, 4 (mod 8).

The correspondence 〈φt〉 7→ 〈φt〉∗ gives a map[
[A,B]

]
→ Hom CRT

(
KCRT (A), KCRT (B)

)
that respects compositions the expected way and, when B is stable, is a homo-
morphism of semigroups. Therefore, there is a group homomorphism γ′ defined
on E(A,B) that can be shown, using Theorem 3.2, to commute in the following
diagram:

KK(A,B)

ε
&&

γ // Hom CRT

(
KCRT (A), KCRT (B)

)
E(A,B)

γ′

44

Now, in the case that the first argument is a suspension algebra SA, we can
further factor ε as in the following diagram:

KK(SA,B)

ε

**

ε′

vv[
[SA,KR ⊗B]

] Σ // E(SA,B) =
[
[S2A,KR ⊗ SB]

]
where the map ε′ is described as follows. An element of KK(SA,B) is asso-

ciated with an extension e : 0 → B
ι→ E

π→ A → 0 using the isomorphism
KK(SA,B) ∼= Ext(A,B)−1 of Kasparov (see [17, Theorem 7.1]). Then the con-
struction of Theorem 4.3 produces an asymptotic morphism εe from SA to B,
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giving an element of [[SA,KR ⊗ B]]. Again with a little work, Theorem 3.2 can
be used to show that the diagram commutes (see also the comment following
Corollary 25.5.8 in [2]).

We are not claiming to have shown that ε′ is an isomorphism, although that
is the case in the complex setting (see [11, Corollary 5.3]). We hope to address
unsuspended E-theory for R∗-algebras more thoroughly in future work. For our
current purposes, it is enough to know that γ factors through ε′.

Theorem 5.2. Let d ∈ N. There exists a nontrivial CRT-homomorphism of
degree 0 of the form

(1) KCRT (SdR) → KCRT (R) if and only if d ≡ 0, 4, 6, 7 (mod 8);
(2) KCRT (SdR) → KCRT (H) if and only if d ≡ 0, 2, 3, 4 (mod 8).

Proof. The CRT-module KCRT (SdR) is a free CRT -module with a single gener-
ator in the real part in degree −d. Hence there exists a nontrivial CRT -module
homomorphism KCRT (SdR) →M if and only if M−d

O 6= 0. Now K∗(R) is nonzero
in and only in degrees 0, 1, 2, and 4 (mod 8); and K∗(H) is nonzero in and only
in degrees 0, 4, 5, and 6 (mod 8). Thus parts (1) and (2) follow, as well as the
converse statements. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. For d ≥ 1, where d is not in one of the required congruence
classes, Theorem 5.2 implies that no asymptotic morphism can exist that induces
a nontrivial homomorphism on K-theory.

Now suppose that d ≥ 1, and suppose that A = SdR and B = R or B = H are
algebras such that the form A → B matches the conditions of the statement of
Theorem 5.1. By Theorem 5.2, there is a nonzero homomorphism KCRT (A) →
KCRT (B), and, by the universal coefficient theorem for real C∗-algebras (see [4,
Theorem 1.1]), this CRT -module homomorphism is induced by a nonzero element
ξ ∈ KK(A,B). Then ε′(ξ) is a class in [[A,KR ⊗ B]], and when we choose a
representative we obtain an asymptotic morphism that induces a nontrivial map
on united K-theory. �

6. Almost commuting matrices

We now use this machinery to find novel examples of almost commuting real
symmetric matrices. Our approach is to use commutative R∗-algebras and create
asymptotic morphisms out of these. On the one hand, these carry K-theory data
that can distinguish them from actual ∗-homomorphisms. On the other hand, in
the image, the relations that make the R∗-algebra commutative get turned into
the property of being almost commuting.

Let F denote either R or C or H, and let d ∈ N. We generalize a question of
Halmos [12, Section 4] to ask about d almost commuting self-adjoint matrices
over F.

Problem 6.1. For all ε > 0, does there exist δ > 0 so that, for all n, given d
self-adjoint contractions Hr in Mn(F) such that∥∥[Hr, Hs]

∥∥ ≤ δ,
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there exist d self-adjoint contractions Kr with ‖Kr −Hr‖ ≤ ε and

[Kr, Ks] = 0?

In the complex case, Lin [18] showed that in the anwer is “yes” for d = 2, while
it was known much earlier (see [26]) that the answer is “no” for d = 3. For the
quaternionic case, the result is the same: “yes” for d = 2 (see [20]) and “no” for
d = 3 (see [13]).

These leave the real case, which is arguably the most important case. We know
the answer is “yes” for d = 2 (see [20]). We will show that the answer is “no” for
d = 5, leaving open the cases d = 3, 4. The proof techniques used for a negative
result for d = 3 in the complex and quaternionic cases rely on the fact that
K−2(H) 6= 0 and K−2(C) 6= 0 and so will not work for F = R since K−2(R) = 0.
However, since K−4(R) is nontrivial, we will see that these methods apply for
d = 5.

We start by connecting this problem to a problem couched in the theory of
R∗-algebras. For any sequence Bn of R∗-algebras, let π be the quotient map from
the product

∏∞
n=1Bn to its quotient by the sum

∏∞
n=1Bn/

⊕∞
n=1Bn.

Problem 6.2. Does every ∗-homomorphism of the form

ψ : Sd−1R →
∞∏
n=1

Mm(n)(F)
/ ∞⊕

n=1

Mm(n)(F),

where {m(n)}∞n=1 is a sequence of integers, lift to a ∗-homomorphism

ψ̃ : Sd−1R →
∞∏
n=1

Mm(n)(F)

such that ψ = π ◦ ψ̃?
Theorem 6.3. For a fixed positive integer d and division algebra F, if the answer
to Problem 6.1 is “yes,” then the answer to Problem 6.2 is also “yes.”

We prove Theorem 6.3 below, following this basic lemma stating the univer-
sal properties of C(Sd−1,R). This lemma can be proved using the techniques of
Chapter 3 of [19].

Lemma 6.4. If h1, . . . , hd are commuting self-adjoint contractions in an R∗-
algebra A that satisfy

∑d
j=1 h

2
j = 1, then there is a unique ∗-homomorphism

ψ : C(Sd−1,R) → A sending the jth coordinate function fj to hj.

Proof of Theorem 6.3. Suppose that the answer to Problem 6.1 is “yes” for some
d and F, and let

ψ : C(Sd−1,F) →
∞∏
n=1

Mm(n)(F)
/ ∞⊕

n=1

Mm(n)(F)

be a ∗-homomorphism. Then taking the images of the coordinate functions in
C(Sd−1,R) and lifting them to representatives in

∏∞
n=1Mm(n)(F), we find that

there exist sequences of matrices Hin ∈ Mm(n)(R) (i ∈ {1, . . . , d}, n ∈ N) that are
asymptotically (as n → ∞) self-adjoint contractions, that satisfy

∑d
i=1H

2
in = 1
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asymptotically, and such that Hin and Hjn asymptotically commute for each
i, j ∈ {1, . . . , d}. We may assume that each Hin is exactly self-adjoint by replacing
Hin by 1

2
(Hin +H∗

in).
By our hypothesis, there exist sequences of self-conjugate contractions Kin ∈

Mm(n)(F) that exactly commute and satisfy limn→∞(Hin −Kin) = 0 for each i.

Furthermore, by normalizing, we may assume that
∑d

i=1K
2
in = 1 holds for each n.

Then, by Lemma 6.4, there exist ∗-homomorphisms ψ′
n : C(S

d−1,F) →
Mm(n)(F) that map the d coordinate functions to Kin, which together form the
desired lift of ψ. �

The rest of the section is devoted to showing that the answer to Problem 6.2
is “no” when d = 5, using a K-theoretic obstruction.

Lemma 6.5. Given an asymptotic homomorphism 〈φ〉 from A to KF such that
〈φ〉∗ is nonzero, there exists a homomorphism ψ : A →

∏∞
n=1KF/

⊕∞
n=1 KF such

that ψ∗ is nonzero.

Proof. Given an asymptotic homomorphism 〈φ〉 from A to B = KF, there is a
corresponding homomorphism from A to B∞ = Cb([1,∞))/C0([1,∞)), as dis-
cussed in Section 4. By evaluating at the positive integers, we also obtain a
discrete version, that is, a map ψ from A to Bd

∞ =
∏∞

n=1B/
⊕∞

n=1B. Note

that, as in the complex case (see [10, Section 3.2]), we have KCRT (Bd
∞) ∼=∏∞

n=1K
CRT (B)/

⊕∞
n=1K

CRT (B). But, as each evaluation map is homotopic to
each other evaluation map, the map

ψ∗ : K
CRT (A) →

∞∏
n=1

KCRT (B)
/ ∞⊕

n=1

KCRT (B)

is given by

x 7→ π ◦∆ ◦ 〈φ〉∗(x),
where ∆ is the diagonal map and π is the quotient map. In particular, if 〈φ〉∗ is
nonzero, then so is ψ∗. �

Lemma 6.6. Suppose that B is a separable R∗-algebra, and suppose that A is a
finitely generated R∗-subalgebra of

A ⊆
∞∏
n=1

(B ⊗KR)
/ ∞⊕

n=1

(B ⊗KR).

Then there is a sequence m(1) < m(2) < · · · on natural numbers so that

A ⊆
∞∏
n=1

Mm(n)(B)
/ ∞⊕

n=1

Mm(n)(B).

Proof. Given a single element a ∈ A, write a = [(a1, a2, . . .)], where ai ∈ B ⊗KR.
We can choose an increasing sequence p1, p2, . . . of standard projections in 1⊗KR
(with 1 in B̃ if needed) so that

‖pnanpn − an‖ ≤ 1

n
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and so [(a1, a2, . . . )] = [(p1a1p1, p2a2p2, . . . )]. More generally, for a finite set of
elements in A, we can use a single sequence of projections as above to show that

A ⊆
∞∏
n=1

pn(B ⊗KR)pn

/ ∞⊕
n=1

pn(B ⊗KR)pn.
�

We are ready to prove our main theorem.

Theorem 6.7. Suppose that d ∈ N and F ∈ {R,C,H} satisfy the hypotheses of
Theorem 5.1. Then there is a sequence of integers m(1),m(2), . . . and a unital
∗-homomorphism

φ : C(Sd,R) →
∞∏
n=1

Mm(n)(F)
/ ∞⊕

n=1

Mm(n)(F)

that cannot be lifted to a unital ∗-homomorphism to
∏∞

n=1Mm(n)(F).

Proof. Let d be as above. By Theorem 5.1, there exists an asymptotic morphism

〈φt〉 : SdR → KF

that induces a nonzero map on K-theory. Then, by Lemma 6.5, we obtain a
∗-homomorphism of the form

φ′ : SdR →
∞∏
n=1

KF

/ ∞⊕
n=1

KF

that is nonzero onK-theory. By Lemma 6.6, this ∗-homomorphism factors through
a ∗-homomorphism of the form

φ : SdR →
∞∏
n=1

Mm(n)(F)
/ ∞⊕

n=1

Mm(n)(F)

that must also be nonzero on united K-theory.
Now, if φ could be lifted to a ∗-homomorphism with values in

∏∞
n=1 Mm(n)(F),

then such a lift would have to be nonzero on K-theory. However, as any homo-
morphism from Sd to KF vanishes on K-theory, no such lift of φ exists.

Finally, extend unitally to form a ∗-homomorphism

φ : C(Sd,R) →
∞∏
n=1

Mm(n)(F)
/ ∞⊕

n=1

Mm(n)(F)

that similarly cannot be lifted. �

Corollary 6.8. For d = 5, F = R, and for d = 3, F = H, the answer to
Problem 6.2, and hence also to Problem 6.1, is “no.”

Compare the result above for d = 3, F = H to Theorem 1.3 of [20], which
states that the answer is “yes” when the appropriate obstruction vanishes in
KO−2(H) ∼= Z2.
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7. Pictures of K-theory

It is standard practice to represent K0 classes by projections and K1 classes by
unitaries. Beginning with the publication of [13], a picture has been developing
in which all ten of the real and complex K-theory groups of an R∗-algebra can
be represented concretely in terms of homotopy classes of unitary elements with
certain symmetries. We finish this paper showing how our methods partially ex-
tend this picture to K−1(A) and K3(A), allowing us to represent any such element
with a specific class of unitaries. We expect that a complete study of unsuspended
E-theory in the case of R∗-algebras can be used to complete this picture, includ-
ing a concrete description of all of the interrelating natural transformations and
the boundary maps.

The table below summarizes this picture and extends Tables 7 and 8 of [13],
showing the symmetries that are used to represent each K-group. Here A is an
R∗-algebra and τ is the associated anti-automorphism of the complexification AC.
Thus, the first line indicates that KU0(A) is isomorphic to the group of homotopy
classes of self-adjoint unitaries in M∞(AC), while KO0(A) is isomorphic to the
group of homotopy classes of self-adjoint unitaries satisfying τ(u) = u∗ (a priori,
u is in AC, but the second condition restricts it to A).

K-group Unitary classes

KU0(A) u = u∗

KU1(A) –

KO−1(A) uτ = u
KO0(A) u = u∗, uτ = u∗

KO1(A) uτ = u∗

KO2(A) u = u∗, uτ = −u
KO3(A) uτ⊗] = u
KO4(A) u = u∗, uτ⊗] = u∗

KO5(A) uτ⊗] = u∗

KO6(A) u = u∗, uτ⊗] = −u

In this table, the line with KO−1(A) comes from Theorem 7.2 below. The line
for KO3(A) then arises via the isomorphism KOn+4(A) ∼= KOn(H ⊗R A). Then
the anti-automorphism of AC ⊗C M2(C) associated to H⊗R A is ]⊗ τ⊗, where

] :

(
a b
c d

)
→

(
d −b
−c a

)
.

All the other lines of the table are discussed in [13].
Let A be an R∗-algebra, and let AC be the complexification with anti-

automorphism τ . Let G(A) be the group of homotopy classes of unitaries u ∈
M∞(ÃC) that satisfy uτ = u. The associated anti-automorphism on Mn(AC) ∼=
Mn(C)⊗AC is tr⊗ τ , and we have Mn(Ã) mapping into Mn+1(Ã) by u 7→

(
u 0
0 1

)
.

Lemma 7.1. For an R∗-algebra A, G(A) is an abelian group.
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Proof. Let R(t) =
( cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

)
be the rotation matrix for t ∈ [0, 1]. Since

Rtr = R∗, for any unitaries u1, u2 ∈ A satisfying uτi = ui, we have that U(t) =
R(t)

(
u1 0
0 u2

)
R(t)∗ is a path of unitaries satisfying U(t)τ = U(t) from

(
u1 0
0 u2

)
to(

u2 0
0 u1

)
showing that G(A) is a commutative semigroup.

To show that there are inverses in G(A), it suffices to show that
(
z 0
0 z

)
is homo-

topic to 12 in C(M2(S
1)), through homotopies satisfying uτ = u, taking the trivial

involution on C(S1,C). Indeed, z ∈ C(S1,C) is the universal unitary satisfying
uτ = u. It is easy to see that

(
z 0
0 z

)
is homotopic to{(

z2 0
0 1

)
Im z ≥ 0,(

1 0
0 z2

)
Im z < 0.

Using a variation of the rotation argument of the first paragraph, this is homotopic
to {(

z2 0
0 1

)
Im z ≥ 0,(

z2 0
0 1

)
Im z < 0,

which is clearly homotopic to
(
1 0
0 1

)
. �

Theorem 7.2. There is a natural group homomorphism φA : K−1(A) → G(A)
with a left inverse.

This theorem will be proved easily from the machinery already established in
this paper. It follows that any unitary u satisfying uτ = u determines a class in
K−1(A), that any class in K−1(A) arises from such a unitary in this way, and that
two distinct K−1 classes must arise from distinct homotopy classes of unitaries.
That φA is an isomorphism will be left to further work.

Proof of Theorem 7.2. We use the homomorphism

KK(SR, A) ε′−→
[
[SR,KR ⊗R A]

]
discussed in Section 5, which was shown there to have a left inverse. As there is
a natural isomorphism K−1(A) ∼= KK(SR, A), it only remains to establish an
isomorphism between [[SR, KR ⊗R A]] and G(A).

From Section 3 of [21] we know that SR is semiprojective, which gives us the
first isomorphisms in the following chain:[

[SR, KR ⊗R A]
] ∼= [SR,KR ⊗R A]

∼= [S̃R, ˜KR ⊗R A]
+

∼=
[
(S̃C, id), (K̃ ⊗ AC, id⊗ τ)

]+
∼= G(A).

The third isomorphism comes from the categorical equivalence between (unital)
R∗-algebras and (unital) C∗-algebras with anti-automorphism. The fourth iso-

morphism arises from the fact that S̃C = C(S1,C) is the universal C∗-algebra
generated by a unitary u satisfying uτ = u, as in the proof of Lemma 7.1. �
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