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Abstract. Matrix splitting and its convergence theorems are useful tools for
finding solution of linear system of equations, iteratively. In this article, we
introduce a few matrix splittings arising from index-proper splittings. Then
their convergence results and their applications to multisplitting theory are
studied.

1. Introduction and preliminaries

We use the symbol R for the set of real numbers. The set of all m×n matrices
over R is denoted by Rm×n. As usual, let R(A) be the range space and N(A)
the null space of A ∈ Rm×n. If L, M are subspaces of Rn, the projection onto
L along M is denoted by PL,M . So, PL,MB = B if and only if R(B) ⊆ L, and
BPL,M = B if and only if N(B) ⊆ M . The symbol ⊕ is used for the direct sum
of vector spaces. We denote the transpose of a matrix A by AT and rank of a
matrix A by r(A). Then, a matrix A is said to be non-negative (i.e., A ≥ 0) if all
the entries of A are non-negative, and B ≥ C for matrices B and C, if B−C ≥ 0.
We also use these notation and nomenclature for vectors. The spectral radius of a
square matrix A is denoted by ρ(A), and is equal to the maximum of the moduli
of the eigenvalues of A.
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The Moore-Penrose inverse of a matrix A ∈ Rm×n, denoted by A† is the unique
solution X of the equations

AXA = A, XAX = X, (AX)T = AX, and (XA)T = XA.

The index ofA ∈ Rn×n is the least non-negative integer k such thatR(Ak+1)=R(Ak),
and we denote it by ind(A). Then ind(A) = k if and only if R(Ak)⊕N(Ak) = Rn.
Also, for l ≥ k, R(Al) = R(Ak) and N(Al) = N(Ak). Of course, k = ind(A)
is the dimension of the largest Jordan block with eigenvalue zero. In particular,
ind(A) = 0 if A is a nonsingular matrix. The Drazin inverse of a matrix A ∈ Rn×n
is the unique solution X ∈ Rn×n satisfying the equations:

XAX = X, AX = XA, and Ak+1X = Ak, where k = ind(A).

It is denoted by AD. In general, the Drazin inverse can be expressed explicitly in
terms of the Jordan canonical form of A:

A = S

[
J O
O N

]
S−1; AD = S

[
J−1 O
O O

]
S−1,

where J contains the Jordan blocks corresponding to nonzero eigenvalues, and N
is nilpotent with Nk = 0 and Nk−1 6= 0. With this representation of AD, we can
have R(Ak) = R(AD); N(Ak) = N(AD) and hence AAD = PR(Ak),N(Ak) = ADA.

In particular, if x ∈ R(Ak) then x = ADAx. When k = 1, then Drazin inverse is
said to be group inverse and is denoted by A#. While Drazin inverse exists for all
matrices, the group inverse does not. A# exists if and only if R(A)∩N(A) = {0}.
If A is nonsingular, then of course, we have A−1 = AD = A# = A†. A is said
to be semi-monotone and Drazin monotone if A† ≥ 0 and AD ≥ 0, respectively.
Similarly, A is group monotone if A# exists and A# ≥ 0.

A real square matrix A is called monotone if Ax ≥ 0⇒ x ≥ 0. Collatz [8] has
shown that a matrix is monotone if and only if it is nonsingular and the inverse
is non-negative. The notion of monotonicity has been generalized along several
directions. An extension of the notion of monotonicity for characterizing non-
negativity of left inverses seems to have been first accomplished by Mangasarian
[13]. Berman and Plemmons (Theorem 1, [3] and Theorem 2, [4]) proved the
following characterizations for semi-monotone and group monotone matrices. A
is semi-monotone if and only if Ax ∈ Rn+ + N(AT ) and x ∈ R(AT ) imply x ≥ 0.
A is group monotone if and only if Ax ∈ Rn+ + N(A) and x ∈ R(A) imply
x ≥ 0. Thereafter, Pye (Theorem 3, [15]) established that A is Drazin monotone
if and only if Ax ∈ Rn+ + N(Ak) and x ∈ R(Ak) imply x ≥ 0. (See the book
[1] for more details and the references cited therein for examples of applications
of non-negative generalized inverses that include Numerical Analysis and linear
economic models.) In this article, we are going to present characterizations of
Drazin monotone matrices using matrix splitting theory.

The theory of matrix splittings is decisive for finding solutions of linear sys-
tems, and is also used for showing non-negativity of different generalized inverses.
Recently, Jena and Mishra, [9] obtained many results for non-negativity of the
Drazin inverse using several new matrix splittings. Applications of the Drazin
inverse lie in many areas such as singular differential and difference equations,
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Markov chain, cryptography, iterative methods, multi-body dynamics and op-
timal control. Therefore, computation of the Drazin inverse and study of its
properties have been an area of active research. Here only a few articles on the
Drazin inverse are mentioned, but there is a vast amount of literature on it. (See
the references [9, 11, 17] and the references cited therein.)

In this paper, we plan to extend theory of regular and weak regular split-
tings(see Section 3 for these definitions) for singular square matrices using the
Drazin inverse. We next aim to study convergence of such splittings and to apply
to the theory of multisplittings.

The paper is organized as follows. In Section 2, we give a short repetition
of well-known facts about index-proper splitting and some results related to the
notion of non-negative matrices. The main results will be developed in Section 3
followed by a section called conclusions.

2. Index-proper splitting

A splitting1 A = U − V is called an index-proper splitting ([9]) of A ∈ Rn×n
if R(Ak) = R(Uk) and N(Ak) = N(Uk), where k = ind(A). It reduces to index
splitting ([17]) if ind(U)=1. When k = 1, then an index-proper splitting becomes
a proper splitting ([2]). Index-proper splittings lead to the iteration schemes:

xi+1 = UDV xi + UDb, i = 0, 1, 2, · · ·

and

Y j+1 = UDV Y j + UD, j = 0, 1, 2, · · · .
For an index-proper splitting, the spectral radius of UDV is strictly less than 1
if and only if the above schemes converge to ADb and AD, respectively to the
system Ax = b (see [9]). More on index-proper splittings can be found in the
recent articles [9, 11] and a simple method for constructing proper splittings can
be found in [5]. Let us revisit some earlier results on index-proper splittings.

Theorem 2.1. (Theorem 3.2, [9]) Let A = U − V be an index-proper splitting.
Then
(a) AAD = UUD = ADA;
(b) I − UDV is invertible;
(c) AD = (I − UDV )−1UD.

Lemma 2.2. (Lemma 1.8, [11]) A = U − V be an index-proper splitting of real
n × n matrix A. Let µi, 1 ≤ i ≤ s and λj, 1 ≤ j ≤ s be the eigenvalues of UDV
and ADV , respectively. Then for every j, we have 1 + λj 6= 0. Also, for every

i, there exists j such that µi =
λj

1+λj
and for every j, there exists i such that

λj = µi
1−µi .

The following results will be used to prove the main results, and the first one
is a part of a well-known theorem called Perron-Frobenius theorem.

1A splitting of a real square matrix A is an expression of the form A = U − V , where U and
V are matrices of the same order as of A
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Theorem 2.3. (Theorem 2.20, [14]) Let A be a real square non-negative matrix.
Then A has a non-negative real eigenvalue equal to its spectral radius.

Theorem 2.4. (Theorem 2.21, [14]) If A ≥ B ≥ 0, then ρ(A) ≥ ρ(B).

Lemma 2.5. (Corollary 3.2, [6]) Let B be a real square matrix. Let B ≥ 0 and
x ≥ 0 be such that Bx− αx ≥ 0. Then α ≤ ρ(B).

Theorem 2.6. (Theorem 3.16, [14]) Let X be a real square matrix such that X ≥

0. Then ρ(X) < 1 if and only if (I −X)−1 exists and (I −X)−1 =
∞∑
k=0

Xk ≥ 0.

We conclude this section with the following lemma. (For more details, refer
the article [2].)

Lemma 2.7. (Lemma 1, [2]) Let K be a full cone in Rn and let {si}∞i=0 be a K
monotone non-decreasing sequence. Let t ∈ Rn be such that t− si ∈ K for every
positive integer i. Then the sequence {si}∞i=0 converges.

3. Main results

The theory of splittings for square nonsingular matrices and its relationship
with the solution of linear system equation is quite well-known. Standard iterative
methods like the Jacobi, Gauss-Seidel and successive over-relaxation methods
for solving a square nonsingular system of linear equations Ax = b, arise from
different choices of real square matrices U and V , where A = U − V and b is a
real n-vector. The book by Varga [14] contains several splittings such as regular
and weak regular splittings. A splitting A = U − V of a real square nonsingular
matrix A is
(i) regular splitting if U−1 exists, U−1 ≥ 0 and V ≥ 0 ([14]),
(ii) weak regular splitting if U−1 exists, U−1 ≥ 0 and U−1V ≥ 0 ([1, 14]),
The above authors also have shown that the regular and weak regular splitting of
a monotone matrix is a convergent splitting (means that the spectral radius of the
iteration matrix is less than 1). Jena et. al, [10] then extended these splittings
to rectangular matrices and call it as proper regular splitting (see Definition
1.1, [10]). Then they have presented some convergence and comparison results
for this splitting. Before these extensions, Jena and Mishra, [9] also proposed
another extension of regular splitting which is presented next.

Definition 3.1. (Definition 4.13, [9]) A splitting A = U − V of A ∈ Rn×n is
called D-regular splitting if it is an index-proper splitting satisfying the conditions
UD ≥ 0 and V ≥ 0.

In case of nonsingular matrices, the above definition coincides with the defini-
tion of a regular splitting and the results obtained below merge with the same
results. We call D-regular splitting as index-proper regular splitting being moti-
vated by the name of proper regular splitting. Hereon-words, all our matrices are
real square matrices of order n. We now present a convergence theorem for the
above splitting.
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Theorem 3.2. Let A = U − V be an index-proper regular splitting of A. If
AD ≥ 0, then
(a) AD ≥ UD;
(b) ρ(ADV ) ≥ ρ(UDV );

(c) ρ(UDV ) = ρ(ADV )
1+ρ(ADV )

< 1.

Proof. Given that A = U − V is an index-proper regular splitting and AD ≥ 0.
So we have A = U − V be an index-proper splitting with UD ≥ 0 and V ≥ 0.

(a) The fact A = U−V is an index-proper splitting yields AD = (I−UDV )−1UD

so that UD = (I − UDV )AD. Therefore AD − UD = UDV AD, i.e., AD ≥ UD.
(b) Post-multiplying V toAD ≥ UD, and then by Theorem 2.4, we get ρ(ADV ) ≥

ρ(UDV ).
(c) We have ADV ≥ 0. Let λ be any eigenvalue of ADV. Let f(λ) = λ

1+λ
, λ ≥ 0.

Then f is a strictly increasing function. Let µ be any eigenvalue of UDV. Then
by Lemma 2.2 µ = λ

1+λ
. So, µ attains its maximum when λ is maximum. But λ

is maximum when λ = ρ(ADV ). As a result, the maximum value of µ is ρ(UDV ).

Hence ρ(UDV ) = ρ(ADV )
1+ρ(ADV )

< 1. �

The example given below demonstrates the above result.

Example 3.3. Let A =


0 0 1 1
0 5 0 0
0 0 5 0
0 0 0 0

 and U =


0 0 2 2
0 10 0 0
0 0 10 0
0 0 0 0

. The

index of A and U are 2. Also R(A2) = R(U2) and N(A2) = N(U2). Hence
A = U − V is an index-proper splitting, where V = U − A ≥ 0. Now UD =

0 0 1/50 0
0 1/10 0 0
0 0 1/10 0
0 0 0 0

 and UD ≥ 0. So A = U − V is an index-proper regular

splitting. Also AD =


0 0 1/25 0
0 1/5 0 0
0 0 1/5 0
0 0 0 0

 ≥ 0 and ρ(UDV ) = 1/2 < 1

The next result shows the non-negativity of Drazin inverse under a sufficient
condition.

Theorem 3.4. Let A = U − V be an index-proper regular splitting of A. If
ρ(UDV ) < 1, then AD ≥ 0.

Proof. Suppose that ρ(UDV ) < 1. By Theorem 2.6, I −UDV is nonsingular and
(I − UDV )−1 ≥ 0. Then the expression AD = (I − UDV )−1UD implies AD ≥ 0
as UD ≥ 0.

�

Similarly, we propose another extension of weak regular splitting called index-
proper weak regular splitting.
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Definition 3.5. A splitting A = U − V is called index-proper weak regular
splitting if it is an index-proper splitting satisfying the conditions UD ≥ 0 and
UDV ≥ 0.

The example given below is an index-proper weak regular splitting but not an
index-proper regular splitting.

Example 3.6. LetA =

 4 −2 0
−6 5 0
0 0 0

 =

 4 −3 0
−6 8 0
0 0 0

−
 0 −1 0

0 3 0
0 0 0

 =

U−V. Then R(A) = R(U) and N(A) = N(U). Also, U# exists (as r(U) = r(U2))

and U# =

 8/14 3/14 0
6/14 4/14 0

0 0 0

, and U#V =

 0 1/14 0
0 6/14 0
0 0 0

. So, A = U −V is

an index-proper weak regular splitting but not an index-proper regular splitting
since V � 0. (Note that in this case index of both A and U are 1.)

For an index-proper weak regular splitting of a Drazin monotone matrix, we
have the following convergence theorem. The proof follows similar steps as in the
proof of Theorem 3, [2].

Theorem 3.7. Let A = U − V be an index-proper weak regular splitting with
N(Ak) ⊆ N(V ). If A is Drazin monotone, then ρ(UDV ) < 1.

Proof. Let Sp =
∑p

j=0(U
DV )j for each positive integer p. Then SpU

DA =

Sp[U
D(U−V )] = Sp(U

DU−UDV ) = UDU−(UDV )p+1 using the fact V UDU = V
which again follows from the condition N(Ak) ⊆ N(V ). Now multiplying by
AD, we have SpU

DAAD = SpU
DUUD = SpU

D = UDUAD − (UDV )pAD =
AD − (UDV )pAD = [I − (UDV )p]AD since AAD = UUD. Then AD − SpUD =
(UDV )pAD ≥ 0 as AD ≥ 0 and UDV ≥ 0 (follows from the definition of index-
proper weak regular splitting). Let l ∈ Rn+. Then ADl − SpU

Dl ∈ Rn+. Let
t = ADl and sp = Sp+1U

Dl. So t and si, i = 0, 1, 2, · · · satisfy Lemma 2.7, and
we then have lim

i→∞
(si − si−1) = lim

i→∞
(UDV )iUDl = 0. Since UDV ≥ 0 so there

exist y ∈ Rn+ such that UDV y = ρ(UDV )y. So y ∈ R(UD) and then y = UDx
for some x ∈ Rn. Again, the fact Rn = Rn+ + (−Rn+), implies x = l1 − l2 for
some l1, l2 ∈ Rn+. Then for each positive integer i, [ρ(UDV )]iy = (UDV )iy =
(UDV )iUDx = (UDV )iUDl1 − (UDV )iUDl2 so that the sequence [ρ(UDV )]i con-
verges to 0. Thus ρ(UDV ) < 1. �

The Example 3.6 illustrates the above theorem. One can see that N(A) ⊆
N(V ) and ρ(U#V ) = 6/14 < 1 in the same example. Again, the condition
ρ(UDV ) < 1 yields AD ≥ 0 proceeding as in proof of Theorem 3.4, and the result
is stated as follows.

Theorem 3.8. Let A = U − V be an index-proper weak regular splitting of A. If
ρ(UDV ) < 1, then AD ≥ 0.

Climent and Perea, [7] first established the theory of multisplitting and its
convergence results for rectangular matrices using the Moore-Penrose inverse.
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Motivated by their work, we now introduce similar theory for singular square
matrices using the Drazin inverse. Let A = U − V be an index-proper splitting
of A ∈ Rn×n and let U = R−S be an index-proper splitting of U . If we consider
q inner iterations with the index-proper splitting U = R− S, then the two-stage
iterative method is

xi+1 = (RDS)qxi +

q−1∑
j=0

(RDS)jRD(V xi + b) (3.1)

So xi+1 = (RDS)qxi +
∑q−1

j=0(R
DS)jRDV xi +

∑q−1
j=0(R

DS)jRDb

=
(

(RDS)q +
∑q−1

j=0(R
DS)jRDV

)
xi +

∑q−1
j=0(R

DS)jRDb

= Gxi + c,

where G = (RDS)q +
∑q−1

j=0(R
DS)jRDV and c =

∑q−1
j=0(R

DS)jRDb. Now, using
the above two-stage iterative method, we have the following theorem.

Theorem 3.9. Let A = U − V be an index-proper regular splitting of a Drazin
monotone matrix A with R(V ) ⊆ R(Ak) and U = R−S be an index-proper weak
regular splitting with N(Uk) ⊆ N(S). Then, the stationary two-phase iterative
method (3.1) converges to the solution ADb of the system Ax = b for any initial
vector x(0).

Proof. Since A = U −V is an index-proper regular splitting with R(V ) ⊆ R(Ak),
so UUDV = V , RDU = RDR−RDS and RDR = UDU . From equation (3.1), we
now have

G = (RDS)p +

p−1∑
j=0

(RDS)jRDV

= (RDS)p +

p−1∑
j=0

(RDS)jRDUUDV

= (RDS)p +

p−1∑
j=0

(RDS)j(RDR−RDS)UDV

= (RDS)p + (RDR− (RDS)p)UDV

= (RDS)p +RDRUDV − (RDS)pUDV

= (RDS)p + UDUUDV − (RDS)pUDV

= (RDS)p + UDV − (RDS)pUDV

= (RDS)p + (I − (RDS)p)UDV

= I − I + (RDS)p + (I − (RDS)p)UDV

= I − (I − (RDS)p)(I − UDV )

= I −
p−1∑
j=0

(RDS)j(I −RDS)(I − UDV )
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Since the splitting A = U − V is index-proper regular, so UD ≥ 0. Again,
U = R − S is index-proper weak regular. Also, AD ≥ 0. So, by Theorems
3.2 and 3.7, we have ρ(UDV ) < 1 and ρ(RDS) < 1. Using Theorem 2.6, we
then get (I − UDV )−1 ≥ 0 and (I − RDS)−1 ≥ 0. Now, for any y ≥ 0, x =
(I − UDV )−1(I −RDS)−1y ≥ 0. Hence,

0 6 Gx = x−
p−1∑
j=0

(RDS)jy < x.

Then, by Lemma 2.5, ρ(G) < 1. �

Let us now introduce the definition of an index-proper multi splitting.

Definition 3.10. The triplet (Ul, Vl,Wl)
p
l=1 is called an index-proper multisplit-

ting of A if A = Ul−Vl, for l = 1, 2, 3, · · · p, is an index-proper splitting and each
Wl, is a non-negative and diagonal matrix such that

∑p
l=1Wl = I, where I is the

identity matrix of order n.

A multisplitting is an index-proper regular or an index-proper weak regular
splitting, if each one of the splitting is an index-proper regular or an index-
proper weak regular splitting, respectively. If (Ul, Vl,Wl)

p
l=1 is an index-proper

multisplitting of A, then we consider the iterative scheme

xi+1 = Hxi + d, i = 0, 1, 2, · · · , (3.2)

where H =
∑p

l=1WlU
D
l Vl and d =

∑p
l=1WlU

D
l b. The following result is helpful

before proving the convergence criteria of the above proposed splitting.

Lemma 3.11. Let (Ul, Vl,Wl)
p
l=1 be an index-proper weak regular multisplitting

of A with R(Vl) ⊆ R(Ak). Then
(a) H ≥ 0 and Hj ≥ 0, for j = 0, 1, · · · ,
(b)

∑p
l=1WlU

D
l A = (I −H)ADA,

(c) (I +H +H2 + · · ·+Hn)(I −H) = I −Hn+1.

Proof. (a): Since the matrix H =
∑p

l=1WlU
D
l Vl and given multisplitting is an

index-proper weak regular of A, then for each l = 1, 2, · · · p, UD
l ≥ 0, UD

l Vl ≥ 0
and Wl is non-negative diagonal matrix. So H ≥ 0. Hence Hj ≥ 0, for j =
0, 1, · · · .
(b): The condition R(Vl) ⊆ R(Ak) implies UlU

D
l Vl = Vl = UD

l UlVl and the index-
proper splitting of A gives UD

l Ul = ADA for l = 1, 2, · · · , p. Since A can be
written as

A = Ul − Vl = Ul(I − UD
l Vl), l = 1, 2, · · · , p,



392 A. KUMAR BALIARSINGH, L. JENA

then
p∑
l=1

WlU
D
l A =

p∑
l=1

WlU
D
l Ul(I − UD

l Vl)

=

p∑
l=1

Wl(U
D
l Ul − UD

l UlU
D
l Vl)

=

p∑
l=1

Wl(U
D
l Ul − UD

l VlU
D
l Ul)

=

p∑
l=1

Wl(I − UD
l Vl)U

D
l Ul

= (I −
p∑
l=1

WlU
D
l Vl)A

DA

= (I −H)ADA.

(c): Since Hj ≥ 0 for each j, then the sum (I + H + H2 + · · · + Hn)(I −H) =
I −Hn+1. �

Theorem 3.12. Let (Ul, Vl,Wl)
p
l=1 be an index-proper weak regular multisplitting

of A. Then, the iterative method (3.2) converges to the solution ADb of system
Ax = b for any initial vector x(0).

Proof. Using Lemma 3.11, and the properties UD
l UlU

D
l = UD

l and UlU
D
l = AAD

for l = 1, 2, · · · , p, and ADAAD = AD, we get

0 ≤ (I +H +H2 + · · ·+Hn)

p∑
l=1

WlU
D
l

= (I +H +H2 + · · ·+Hn)

p∑
l=1

WlU
D
l UlU

D
l

= (I +H +H2 + · · ·+Hn)

p∑
l=1

WlU
D
l AA

D

= (I +H +H2 + · · ·+Hn)(I −H)ADAAD

= (I +H +H2 + · · ·+Hn)(I −H)AD

= (I −Hn+1)AD ≤ AD

So, the elements of Hn are bounded. Hence, H is convergent, i.e., iterative
method (3.2) converges to the solution of system Ax = b for initial vector x(0). �

4. Conclusions

We also note that a few results (Theorem 3.4 and 3.8) of this paper can be
applied to find whether a square singular matrix has a non-negative Drazin in-
verse or not. In fact, for a square singular system of linear equations Ax = b,
where x, b ∈ Rn and A ∈ Rn×n, the solution ADb lies in the Krylov subspace
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of (A, b), i.e., Ks(A, b) = span{b, Ab,A2b, ..., As−1b}. The connection between
Drazin inverse and Krylov subspace is now recalled. ADb is a solution of Ax = b,
b ∈ R(Ak) if and only if Ax = b has a solution in Kn(A, b), where n is the order of
the matrix A. Finally, we close the last section with a result that has a possible
application to numerical analysis for faster computation of solution ADb.

Besides these, we would now like to recall some works in connection with the
present work. Cui et al., [16] and Lin et al., [12] studied properties of convergence
and quotient convergence of iterative methods for solving consistent singular lin-
ear systems with index one. Cui et al., [16] also applied the same theory to
multisplittings. Note that both their works deal with matrices of index one while
we do not have any restriction on index. However, Wei and Wu, [18] presented
another extension of proper splittings called a (T, S)-splitting which is also more
general than index-proper splittings. We now reproduce the same splitting. Let
A be a real rectangular m × n matrix with rank r. Let T be a subspace of Rn
of dimension s ≤ r, and S be a subspace of Rm of dimension m− s. A splitting
A = U −V is called a (T, S) splitting ([18]) if R(A) = AT and N(A) = (A∗S⊥)⊥.
When T = R(A∗) and S = N(A∗), this reduces to a proper splitting of A. (We
used B∗ to denote transpose of B for notational simplicity.) If A is square, and
T = R(Ak) and S = N(Ak) where k is the index of A, then a (T, S) splitting
of A reduces to an index splitting of A. Wei and Wu, [18] then considered the
iterative scheme

yi+1 = U
(1,2)
T,S V yi + U

(1,2)
T,S b, i = 0, 1, 2, · · · (4.1)

and

Y i+1 = U
(1,2)
T,S V Y i + U

(1,2)
T,S , i = 0, 1, 2, · · · (4.2)

to compute a solution A
(2)
T,Sb of the system Ax = b where A ∈ Rm×n and b ∈ Rm,

and the generalized inverse A
(2)
T,S, where G

(1,2)
T,S denotes a {1, 2}-inverse of G whose

range is T and null space is S. They studied the convergence theory for the above
schemes. Different subclasses of the above splittings, namely, (T, S)-regular and
(T, S)-weak regular can be proposed, and then the convergence theory can also
be studied.

Acknowledgement. The authors would like to thank the reviewers for their
helpful suggestions.
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