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Abstract. We present a sufficient condition for a Banach space to have
the approximate hyperplane series property (AHSP) which actually covers all
known examples. We use this property to get a stability result to vector-valued
spaces of integrable functions. On the other hand, the study of a possible
Bishop–Phelps–Bollobás version of a classical result of V. Zizler leads to a
new characterization of the AHSP for dual spaces in terms of w∗-continuous
operators and other related results.

1. Introduction

Given two (real or complex) Banach spaces X and Y , we write L(X, Y ) for the
Banach space of all bounded linear operators from X into Y , endowed with the
operator norm. We use the symbol BX and SX to denote, respectively, the closed
unit ball and the unit sphere of X. The topological dual of X is denoted by X∗.
An operator T ∈ L(X, Y ) is said to be norm-attaining if there is x ∈ SX such
that ‖Tx‖ = ‖T‖. We write NA(X, Y ) for the subset of L(X, Y ) consisting of
all norm-attaining operators. After the celebrated Bishop-Phelps theorem, which
says that the set of all norm-attaining linear functionals is dense in X∗, it was a
natural question to study whether the set of norm-attaining linear operators is
dense in L(X, Y ) for all Banach spaces X and Y . In 1963, Lindenstrauss [9] gave
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a negative answer to this question and showed, among many other things, that
NA(`1, Y ) is dense in L(`1, Y ) for all Banach spaces Y .

Bollobás sharpened the Bishop-Phelps theorem to what is now called the
Bishop–Phelps–Bollobás theorem: given a Banach space X, if x∗ ∈ SX∗ and
x ∈ SX satisfy |x∗(x)− 1| 6 ε2/2 for some 0 < ε < 1/2, then there exist y ∈ SX
and y∗ ∈ SX∗ such that y∗(y) = 1, ‖y − x‖ < ε+ ε2 and ‖y∗ − x∗‖ 6 ε. In 2008,
Acosta, Aron, Garćıa and Maestre [1] introduced the notion of Bishop–Phelps–
Bollobás theorem for operators. Precisely, a pair (X, Y ) of Banach spaces is said
to have the Bishop–Phelps–Bollobás property (BPBp in short) if given ε > 0,
there is η(ε) > 0 such that whenever T ∈ L(X, Y ) with ‖T‖ = 1 and x ∈ SX
satisfy ‖Tx‖ > 1− η(ε), there exist S ∈ L(X, Y ) and y ∈ SX such that

‖S − T‖ < ε, ‖x− y‖ < ε, and ‖S‖ = ‖Sy‖ = 1.

In the same paper [1], the authors characterize Banach spaces Y for which the
pair (`1, Y ) has the BPBp in terms of convex series and use the result to show
that there is a reflexive Banach space Y such that (`1, Y ) does not have the
BPBp (while, as commented above, NA(`1, Y ) is dense in L(`1, Y ) for every Y ).
Specifically, (`1, Y ) has the BPBp if and only if Y has the approximate hyperplane
series property (AHSP): for every ε > 0 there exists 0 < η(ε) < ε such that for
every sequence (yk) ⊂ SY and for every convex series

∑∞
k=1 αk with∥∥∥∥∥

∞∑
k=1

αkyk

∥∥∥∥∥ > 1− η(ε),

there exist A ⊂ N, y∗ ∈ SY ∗ and {zk : k ∈ A} ⊂ SY satisfying

(1)
∑
k∈A

αk > 1− ε,

(2) ‖zk − yk‖ < ε and y∗(zk) = 1 for all k ∈ A.

Let us remark that the definition of the AHSP does not change if we replace
infinite sequences by finite (but of arbitrary length) sequences.

The following spaces are known to have the AHSP [1, 6]: finite dimensional
spaces, uniformly convex spaces, spaces with property β (see definition in section
2), and the so-called lush spaces (see definition in section 2). In particular, C0(L)
spaces, L1(µ) spaces, the disc algebra A(D) and H∞(D), all have the AHSP.

In section 2 of the present paper, we introduce a sufficient condition for the
AHSP, called the AHP (see Definition 2.1), which actually subsumes all previously
known examples. We use the AHP to present new examples of spaces with the
AHSP, namely, the spaces L1(µ,X) when µ is an arbitrary measure and X is
finite-dimensional, uniformly convex, lush or has property β.

Finally, we start section 3 by showing that there is no BPB version of the
theorem of Zizler [13] which states that the set of operators between two Banach
spaces whose adjoints attain their norm is dense in the space of all operators.
Then, we exploit this idea getting several results: a new characterization of the
AHSP for dual spaces in terms of w∗-continuous operators, a characterization
of pairs (X,X∗) having the AHSP (a concept recently introduced in [2], see its
definition in section 3), and a proof that (C0(K,Y ), C0(K,Y )∗) has the AHSP
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for every locally compact Hausdorff space K and every uniformly smooth space
Y , thereby extending a result in [2] to the vector-valued case.

2. A sufficient condition for the AHSP

We devote this section to study a sufficient condition for the AHSP, which
actually covers all known examples, and which will be useful to provide new
examples of the form L1(µ,X). We need some notation. Let X be a Banach
space. A face of BX is a non-empty subset of the form

F (x∗) :=
{
x ∈ SX : Rex∗(x) = 1

}
for a suitable x∗ ∈ SX∗ attaining its norm. A subset C ⊆ SX∗ is said to be
norming if

‖x‖ = sup{|x∗(x)| : x∗ ∈ C} (x ∈ X)

and it is said to be rounded if θC = C for every θ ∈ K with |θ| = 1, where K is
the real field R or the complex field C.

Definition 2.1. A Banach space X is said to have the approximate hyperplane
property (AHP in short) if there exist a function δ : (0, 1) −→ (0, 1) and a norming
subset C of SX∗ for X satisfying the following:
Given ε > 0, there is a function ΥX,ε : C −→ SX∗ such that if x∗ ∈ C and x ∈ SX
satisfy Rex∗(x) > 1− δ(ε), then dist

(
x, F (ΥX,ε(x

∗))
)
< ε.

Observe that by a routine argument, we may suppose the set C to be rounded.
It is also straightforward to prove that it is enough to check the property just for
a dense subset of SX .

As announced in the introduction, we show that the AHP implies the AHSP.
Actually, more can be said.

Proposition 2.2. Let X be a Banach space. Suppose that there is a function
δ : (0, 1) −→ (0, 1) such that for every finite-dimensional subspace Y of X, there
exists a subspace Z of X containing Y and having the AHP with the function δ.
Then, X has the AHSP. In particular, the AHP implies the AHSP.

Proof. Let 0 < ε < 1 and write δ1(ε) = min{δ(ε), ε}. Consider a finite convex
combination

∑n
j=1 αjxj of elements of SX satisfying ‖

∑n
j=1 αjxj‖ > 1 − δ2

1. By
hypothesis, there is a subspace Z of X with the AHP containing the subspace
spanned by {xj : j = 1, . . . , n}; we denote by C the norming subset of SZ∗ given
by the AHP of Z, which we may and do suppose that it is rounded. Then, there
exists x∗ ∈ C such that

Rex∗
( n∑
j=1

αjxj

)
= Re

n∑
j=1

αjx
∗(xj) > 1− δ1(ε)2.

Setting

A =
{
j : 1 6 j 6 n, Rex∗(xj) > 1− δ1(ε)

}
,
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we can get easily that ∑
j∈A

αj > 1− δ1(ε) > 1− ε

(see the proof of [8, Proposition 2.1]). By the AHP of Z, dist
(
xj, F (ΥZ,ε(x

∗))
)
< ε

for all j ∈ A. Letting y∗ be a Hahn-Banach extension of ΥZ,ε(x
∗) to the whole of

X, then we get dist
(
xj, F (y∗)

)
< ε for j = 1, . . . , n, as desired. �

Examples of spaces with AHP appeared already (without this name) in the
literature. Actually, the usual way to provide examples of Banach spaces with
the AHSP has been to prove that they have the AHP. Let us discuss the main
examples. We start with the easiest case: uniformly convex spaces.

Proposition 2.3. Every uniformly convex Banach space has the AHP. Besides,
here C is the whole dual unit sphere and Υ is the identity.

This result appeared in [6, Lemma 13] (without this notation) and also follows
easily from [2, Lemma 2.1]. Next, it is shown in [1, Lemma 3.4] that every finite
dimensional Banach space has the AHP.

Proposition 2.4. Every finite-dimensional Banach space has the AHP. Besides,
here C is the whole dual unit sphere but Υ is not, in general, equal to the identity.

It follows from the result above, Proposition 2.2 and the results in [4, §4], that
property AHP is not stable by infinite c0-, `1- or `∞-sums.

Example 2.5. AHP is not stable by infinite c0-, `1- or `∞-sums. Indeed, a se-
quence {Yk}k∈N of finite-dimensional spaces is presented in [4, §4] such that its c0-,
`1- and `∞-sums fail the AHSP. Now, all the Yk’s have the AHP (Proposition 2.4)
and the sums fail it by Proposition 2.2.

The next family of examples we present here is the one of lush spaces. A
Banach space X is said to be lush if for every x0, y0 ∈ SX and every ε > 0, there
is a slice S := {x ∈ BX : Rex∗(x) > 1 − ε} with x∗ ∈ SX∗ such that x0 ∈ S
and the distance from y0 to the absolutely convex hull of S is smaller than ε. We
refer to [5, 7, 8] for information about lush spaces. Among lush spaces we may
find C(K) spaces, L1(µ) spaces and their isometric preduals, the disk algebra,
H∞(D), and finite codimensional subspaces of C[0, 1].

Proposition 2.6. Every separable lush space has the AHP. Besides, the function
δ does not depend on the particular lush space.

A proof of this result is contained in the proof of [8, Proposition 2.1.c]. We are
going to comment this proof here for the sake of completeness and also in order
to extend the result to some non-separable spaces. Indeed, let X be a separable
lush space. By [7, Theorem 4.3] and [3, Corollary 3.5], there exists a rounded
subset C of SX∗ norming for X such that

BX = aconv
(
F (x∗)

)
(2.1)
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for every x∗ ∈ C, where aconv(·) denotes the absolutely closed convex hull. With
this in mind, one may follows the proof of [8, Proposition 2.1.c] to get Proposi-
tion 2.6 with a function δ (which is independent of X), the norming set C and Υ
equal to the identity.

Therefore, the key ingredient of the proof is to get the existence of a norming
set C such that (2.1) holds for every element of C. Another family of spaces
for which this happens is the one of almost-CL-spaces. A Banach space X is
said to be an almost-CL-space if BX is the closed absolutely convex hull of every
maximal convex subset of SX . We refer the reader to [10] and references therein
for more information and background. The main examples of almost-CL-spaces
are C(K)-spaces and L1(µ)-spaces. It is easy to show (see [10, §2]) that if X
is an almost-CL-space, then there is a rounded subset C of SX∗ norming for X
such that (2.1) holds for every element of C. By the comments above, almost-
CL-spaces have the AHP.

Proposition 2.7. Every almost-CL-space has the AHP. Besides, the function δ
does not depend on the particular almost-CL-space.

We may particularize this result to the main examples of almost-CL-spaces.

Corollary 2.8. All C(K)-spaces and all L1(µ)-spaces have the AHP. Besides,
the function δ does not depend on the particular space.

We do not know if this result extends to general non-separable lush spaces, but
a reduction to the separable case of lushness property allows to get this weaker
version.

Proposition 2.9. There exists a function δ̃ : (0, 1) −→ (0, 1) such that for every
lush space X and every separable subspace Y of X, there is a (separable) subspace

Z of X containing Y and having the AHP with the function δ̃.

Proof. Let δ̃ the universal function provided in Proposition 2.6. Let X be a
lush space and Y a separable subspace of X. We use [5, Theorem 4.2] to get
a separable subspace Z of X containing Y which is lush. Now, Proposition 2.6

gives that Z has the AHP with the function δ̃, as required. �

The last family of examples of spaces with the AHSP is given by property
β. A Banach space X has property β if there are two sets {xi : i ∈ I} ⊂ SX ,
{x∗i : i ∈ I} ⊂ SX∗ and a constant 0 6 ρ < 1 such that the following conditions
hold:

(i) x∗i (xi) = 1, ∀i ∈ I.
(ii) |x∗i (xj)| 6 ρ < 1 if i, j ∈ I, i 6= j.

(iii) ‖x‖ = sup
i∈I

∣∣x∗i (x)
∣∣ for every x ∈ X.

This property was introduced by J. Lindenstrauss [9] in his study of norm-
attaining operators. We refer to [11] and references therein for more information
and background. It is known that if X has property β, then (Z,X) has the BPBp
for every Banach space Z [1, Theorem 2.2]. In particular, (`1, X) has the BPBp
and so X has the AHSP. Actually, property β implies AHP.
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Proposition 2.10. Property β implies property AHP. Besides, the function δ
only depends on the constant ρ ∈ [0, 1) of the definition of property β.

Proof. Suppose X has property β with constant ρ ∈ [0, 1) and consider the sets
{xi : i ∈ I} ⊂ SX , {x∗i : i ∈ I} ⊂ SX∗ given in the definition of the property.
We write C = {x∗i : i ∈ I}, which is a norming set for X, and for ε ∈ (0, 1), we
consider δ ∈ (0, 1) such that

δ(1 + ρ) + 2ρ
√

2δ

1− (1− δ)ρ+ ρ
√

2δ
< ε.

Now, we fix i ∈ I and consider any x0 ∈ SX such that Re x∗i (x0) > 1 − δ. We
write

a =
1− ρ

1− (1− δ)ρ+ ρ
√

2δ
∈ (0, 1] and b = x∗i (x0).

Then Re b > 1− δ and so |Im b| <
√

2δ. Consider the vector

x = a x0 +
(
1− ab

)
xi ∈ X.

Observe that, clearly, x∗i (x) = 1 and that

‖x0 − x‖ 6 (1− a) ‖x0‖+ |1− ab| ‖xi‖

= (1− a) + (1− aRe b) + a|Im b| < 1− a+
(
1− a(1− δ)

)
+ a
√

2δ

=
δ(1 + ρ) + 2ρ

√
2δ

1− (1− δ)ρ+ ρ
√

2δ
< ε.

It remains to show that ‖x‖ = 1 for which it suffices to check that |x∗j(x)| 6 1 for
every j 6= i. Indeed, fix j ∈ I, j 6= i and observe that

|x∗j(x)| 6 a|x∗j(x0)|+ (1− ab)|x∗j(xi)| 6 a+ |1− ab|ρ
< a+

(
1− aRe b

)
ρ+ a|Im b|ρ

6 a+ (1− a(1− δ))ρ+ a
√

2δρ = 1. �

It is now time to present the main result of the section, namely the lifting
property of the AHP from X to L1(µ,X), which we will use to get a lifting
property of the AHSP. Recall that L1(µ,X) is the space of all strongly measurable
functions f with

‖f‖1 =

∫
Ω

‖f(ω)‖ dµ <∞.

That is, L1(Ω, X) is the completion of the space of all simple functions with
support of finite measure.

Theorem 2.11. Let (Ω,Σ, µ) be a measure space and let X be a Banach space.
Suppose that there exists a function δ such that for every separable subspace Y of
X, there exists a subspace Z of X containing Y and having AHP with function
δ. Then, there exists a function δ1 such that every separable subspace of L1(µ,X)
is contained in a subspace of L1(µ,X) which has the AHP with the function δ1.
Moreover, if X has the AHP, then L1(µ,X) has the AHP.
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Proof. Let Ỹ be a separable subspace of L1(µ,X). Then it is contained in
L1(µ, Z), where Z is a separable subspace of X. So we are done if we as-
sume that the whole space X has the AHP and prove that L1(µ,X) does. Let
C be the subset of SX∗ norming for X and δ and ΥX,ε the functions, given

by the definition of the AHP. First, observe that the set C̃ of those elements
in L∞(µ,X∗) ⊂ L1(µ,X)∗ of the form

∑N
i=1 x

∗
iχAi

where {Ai}Ni=1 is a disjoint
family of measurable subsets with 0 < µ(Ai) < ∞ and x∗i ∈ C for all i, is

norming for L1(µ,X). Now, fix ε ∈ (0, 1). For φ =
∑N

i=1 x
∗
iχAi

∈ C̃, define

ΥL1(µ,X),ε(φ) =
∑N

i=1 ΥX,ε/2(x∗i )χAi
and observe that this definition does not

depend on the particular decomposition of φ. Write δ1(ε) = 1
4
εδ(ε/2). Con-

sider φ ∈ C̃ and a simple function g ∈ L1(µ,X) with ‖g‖ = 1 such that
Reφ(g) > 1 − δ1(ε) (as simple functions are dense in L1(µ,X), it is enough

tho check the property for them). Then g has the form g =
∑N

i=1 xiχAi
where

{Ai}Ni=1 is a disjoint family of measurable subsets with 0 < µ(Ai) < ∞ and
xi ∈ X \ {0} for every i. Besides, considering a finer partition if needed, we may

and do suppose that φ =
∑N

i=1 x
∗
iχAi

.
Next, let E = {i : 1 6 i 6 N, Rex∗i (xi) > (1 − δ(ε/2))‖xi‖}. Then, by the

AHP of X, for each i ∈ E, there is zi ∈ F (ΥX,ε/2(x∗i )) such that
∥∥∥zi − xi

‖xi‖

∥∥∥ < ε/2.

Hence, by setting yi = ‖xi‖zi, we have

ΥX,ε/2(x∗i )(yi) = ‖xi‖ = ‖yi‖ and ‖yi − xi‖ < ε/2‖xi‖ (i ∈ E).

By the assumption, we have

1− δ1(ε) < Reφ(g) =
∑
i∈E

Rex∗i (xi)µ(Ai) +
∑
i∈Ec

Rex∗i (xi)µ(Ai)

6
∑
i∈E

Rex∗i (xi)µ(Ai) +
∑
i∈Ec

(1− δ(ε/2))‖xi‖µ(Ai)

6
∑
i∈E

Rex∗i (xi)µ(Ai) + (1− δ(ε/2))

(
1−

∑
i∈E

‖xi‖µ(Ai)

)
6 δ(ε/2)

∑
i∈E

Rex∗i (xi)µ(Ai) + 1− δ(ε/2),

where Ec = {1, . . . , N} \ E. Hence∑
i∈E

Rex∗i (xi)µ(Ai) > 1− δ1(ε)

δ(ε/2)
= 1− ε

4
.

In particular, β =
∑

i∈E ‖xi‖µ(Ai) > 1− ε
4
> 0 and E is not empty. Finally, let

f = 1
β

∑
i∈E yiχAi

in L1(µ,X). Then

ΥL1(µ,X),ε(φ)(f) =
1

β

∑
i∈E

ΥX,ε/2(x∗i )(yi)µ(Ai) =
1

β

∑
i∈E

‖xi‖µ(Ai) = 1 = ‖f‖
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and

‖g − f‖ 6
∑
i∈E

∥∥∥∥yiβ − xi
∥∥∥∥µ(Ai) +

∑
i∈Ec

‖xi‖µ(Ai)

6
∑
i∈E

∥∥∥∥yiβ − yi
∥∥∥∥µ(Ai) +

∑
i∈E

‖xi − yi‖µ(Ai) +
∑
i∈Ec

‖xi‖µ(Ai)

6
∑
i∈E

ε

2
‖xi‖µ(Ai) + 2(1− β) < ε. �

We particularize the above result to the known examples of spaces with the
AHP. This generalizes [6, Theorem 14], where the result was only given for uni-
formly convex X’s.

Corollary 2.12. Let (Ω,Σ, µ) be a measure space and let X be a Banach space.
Then L1(µ,X) has the AHP (and so the AHSP), provided either of the following
holds:

(1) X is finite dimensional.
(2) X is uniformly convex.
(3) X is lush and separable.
(4) X is an almost-CL-space.
(5) X has property β.

For non-separable lush spaces we have the following result.

Corollary 2.13. Let (Ω,Σ, µ) be a measure space and let X be a (non-separable)
lush space. Then every separable subspace of L1(µ,X) is contained in a separable
subspace of L1(µ,X) with the AHP and the function δ in the definition of the
AHP does not depend on subspaces. In particular, L1(µ,X) has the AHSP.

Let us observe that finite dimensionality, uniform convexity and property β
do not pass from X to L1(µ,X) if L1(µ) is non-trivial. On the other hand, it
is worthwhile to notice that it follows from the results of [5] that L1(µ,X) is
lush when X is lush. Indeed, the `1-sum of a family of lush spaces is also lush
by [5, Proposition 5.3]. Since for every partition Ω =

⋃n
k=1 An, the subspace of

L1(µ,X) formed by functions of the form
∑n

k=1 xkχAk
is isometric to the `1-sum

of n copies of X, we have that for every elements x, y ∈ SL1(µ,X) and every ε > 0
there is a lush subspace E ⊂ L1(µ,X) such that dist(x,E) < ε and dist(y, E) < ε.
The result now follows from the definition of lushness. We thank the anonymous
referee for pointing out this fact.

3. On a possible extension of a theorem by Zizler

It is proved in [1, Example 6.3] that the classical Lindenstrauss theorem, prov-
ing the density of the set of those operators acting between two arbitrary Banach
spaces whose second adjoint attains the norm, has no Bishop–Phelps–Bollobás
counterpart. We may wonder if the result by Zizler providing the density of
the set of operators whose first adjoint attains the norm has a Bishop–Phelps–
Bollobás counterpart. More concretely, we may ask about the validity of the
following Bishop–Phelps–Bollobás version of Zizler’s result:
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Given a pair (X, Y ) of Banach spaces, is there a function γ :
(0, 1) −→ R+ such that for every ε ∈ (0, 1), whenever T0 ∈ L(X, Y )
with ‖T0‖ = 1 and y∗0 ∈ SY ∗ satisfy ‖T ∗0 (y∗0)‖ > 1 − γ(ε), then
there exist T ∈ L(X, Y ) with ‖T‖ = 1 and y∗ ∈ SY ∗ such that
‖T ∗(y∗)‖ = 1, ‖y∗0 − y∗‖ < ε and ‖T0 − T‖ < ε?

The following easy example shows that this is not always possible.

Example 3.1. LetX be a smooth reflexive space whose dual is not super-reflexive
and let Y = `2

∞. Then the question above has a negative answer for (X, Y ).
Indeed, since X and Y are reflexive, the above question is equivalent to whether
(Y ∗, X∗) = (`2

1, X
∗) has the BPBp. Since X∗ is strictly convex, this would imply

X∗ to be uniformly convex by [4, Corollary 3.3]. This is impossible since X∗ is
not super-reflexive.

We observe that it is immediate that if Y is a reflexive space, then for every
Banach space X the question of whether a pair (X, Y ) satisfies the BPB version
of Zizler result is equivalent to the question of whether (Y ∗, X∗) has the BPBp.
(This follows because every operator from Y ∗ to X∗ is automatically w∗-w∗-
continuous.) Next, we investigate the Bishop–Phelps–Bollobás version of Zizler
result when the range space is c0. We have the following result, whose proof is
based on [1, Theorem 4.1].

Proposition 3.2. Given a Banach space X, X∗ has the AHSP if and only if
there is a function γ : (0, 1) −→ (0, 1) such that for every ε ∈ (0, 1), whenever
T0 ∈ L(X, c0) with ‖T0‖ = 1 and y∗0 ∈ Sc∗0 satisfy ‖T ∗0 (y∗0)‖ > 1 − γ(ε), then
there exist T ∈ L(X, c0) with ‖T‖ = 1 and y∗ ∈ Sc∗0 such that ‖T ∗(y∗)‖ = 1,
‖y∗0 − y∗‖ < ε and ‖T0 − T‖ < ε.

We restate this result as the following corollary.

Corollary 3.3. Let Y be a dual space, and consider `1 as the dual of c0. Then the
pair (`1, Y ) has the BPBp if and only if there is a function γ : (0, 1) −→ (0, 1) such
that for every ε ∈ (0, 1), whenever a w∗-w∗-continuous T0 ∈ SL(`1,Y ) and y0 ∈ S`1
satisfy ‖T0(y0)‖ > 1− γ(ε), then there exist a w∗-w∗-continuous T ∈ SL(`1,Y ) and
y ∈ S`1 such that ‖T (y)‖ = 1, ‖y0 − y‖ < ε and ‖T0 − T‖ < ε (that is, in the
definition of BPBp we may restrict ourselves to w∗-w∗-continuous operators.)

Proof of Proposition 3.2. This proof is based on the one of [1, Theorem 4.1]. But
for the sake of completeness we give details. For convenience, let (ei) be the basis
of c0 and (e∗i ) be the basis of `1.

Suppose that X∗ has the AHSP with a function η(ε) > 0. We fix T0 ∈ L(X, c0)
with ‖T0‖ = 1 and y∗0 ∈ Sc∗0 satisfying ‖T ∗0 (y∗0)‖ > 1 − η(ε). Since the set of
finite convex sums of (e∗i ) is dense in `1, we may assume that y∗0 =

∑n
i=1 αie

∗
i .

Moreover, by composing with an appropriate w∗-w∗-continuous isometry, we may
assume that αi > 0 for all i. Since

1− η(ε) < ‖T ∗0 (y∗0)‖ =

∥∥∥∥∥
n∑
i=1

αiT
∗
0 (e∗i )

∥∥∥∥∥ ,
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we apply the definition of AHSP to find A ⊂ {1, . . . , n}, x∗∗ ∈ SX∗∗ , and (x∗i )i∈A ⊂
SX∗ such that∑

i∈A

αi > 1− ε, ‖T ∗0 (e∗i )− x∗i ‖ < ε and x∗∗(x∗i ) = 1
(
i ∈ A

)
.

Define T ∈ SL(X,c0) and y∗ ∈ S`1 by

T (x) =
∑
i∈A

x∗i (x)ei +
∑
i∈N\A

T ∗0 (e∗i )(x)ei (x ∈ X), and y∗ =

∑
i∈A αie

∗
i∑

i∈A αi
.

We can see that T ∗(e∗i ) = x∗i for every i ∈ A and T ∗(e∗i ) = T ∗0 (e∗i ) for every
i ∈ N\A. Therefore, we get that ‖T ∗(y∗)‖ = 1 and ‖T0 − T‖ < ε. Moreover,
‖y∗ − y∗0‖ < 2ε, and so γ(ε) = η(ε/2) completes our proof.

For the converse, given 1 > ε > 0, choose ρ, ε′ ∈ (0, 1) such that

0 <
√

2(1− ρ) < ε/2, 0 < ε′ < ε/2 and
ε′

1− ρ
< ε/2.

Consider a finite convex series
∑n

i=1 αi and a sequence (x∗i )
n
i=1 ⊂ SX∗ satisfying

‖
∑n

i=1 αix
∗
i ‖ > 1 − γ(ε′). Write z∗0 =

∑n
i=1 αi e

∗
i ∈ S`1 and define the operator

S0 ∈ L(X, c0) by

S0(x) =
n∑
i=1

x∗i (x)ei (x ∈ X)

which clearly satisfies ‖S0‖ = 1. Since ‖S∗0(z∗0)‖ = ‖
∑n

i=1 αix
∗
i ‖ > 1 − γ(ε′), by

hypothesis there exist S ∈ L(X, c0) with ‖S‖ = 1 and z∗ =
∑∞

i=1 bie
∗
i ∈ S`1 such

that

‖S∗(z∗)‖ = 1, ‖S − S0‖ < ε′, and ‖z∗0 − z∗‖ < ε′.

It then follows that
n∑
i=1

(αi − Re bi) < ‖z∗0 − z∗‖ < ε′,

and so
∑n

i=1 Re bi > 1− ε′. Set A = {n ∈ {1, . . . , n} : Re bi > ρ|bi|}. Since

1− ε′ <
n∑
i=1

Re bi =
∑
i∈A

Re bi +
∑

i∈{1,...,n}\A

Re bi

6
∑
i∈A

Re bi + ρ
∑

i∈{1,...,n}\A

|bi|

6
∑
i∈A

Re bi + ρ

(
1−

∑
i∈A

|bi|

)

6
∑
i∈A

Re bi + ρ

(
1−

∑
i∈A

Re bi

)
,
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we get
∑

i∈A Re bi > 1− ε′

1−ρ . Hence,∑
i∈A

αi >
∑
i∈A

Re bi − ‖z∗0 − z∗‖

> 1− ε′

1− ρ
− ε′ > 1− ε.

On the other hand, choose x∗∗ ∈ SX∗∗ so that

1 = x∗∗S∗(z∗) =
∞∑
i=1

x∗∗(biS
∗(e∗i )).

Set y∗i = bi
|bi| S

∗(e∗i ) ∈ SX∗ for every i ∈ A and observe that x∗∗(y∗i ) = 1 for each

i ∈ A. Since ∣∣∣∣1− bi
|bi|

∣∣∣∣ <√2(1− ρ) < ε/2

for every i ∈ A, we get

‖x∗i − y∗i ‖ =

∥∥∥∥ bi|bi|S∗(e∗i )− S∗0(e∗i )

∥∥∥∥
6

∥∥∥∥ bi|bi|S∗(e∗i )− S∗(e∗i )
∥∥∥∥+ ‖S∗(e∗i )− S∗0(e∗i )‖

< ε/2 + ε/2 = ε.

Finally, η(ε) = γ(ε′), the set A, the sequence (y∗i )i∈A ⊂ SX∗ and the functional
x∗∗ ∈ SX∗∗ complete our proof. �

Very recently, another “flavor” of the approximate hyperplane series property
has been studied, namely the AHSP for a pair (X,X∗). This property was
introduced in [2] to characterize those Banach spaces X such that (`1, X) has the
BPBp for bilinear forms.

Definition 3.4 ([2]). Let X be a Banach space. We say that the pair (X,X∗)
has the approximate hyperplane series property for dual pairs (AHSP) if for every
ε ∈ (0, 1) there exists 0 < η(ε) < ε such that for every convex series

∑∞
n=1 αk and

for every sequence (x∗k) ⊂ SX∗ and x0 ∈ SX with

Re
∞∑
n=1

αkx
∗
k(x0) > 1− η(ε)

there exist a subset A ⊂ N, a subset {z∗k : k ∈ A} ⊂ SX∗ and z0 ∈ SX satisfying

(1)
∑

k∈A αk > 1− ε,
(2) ‖z0 − x0‖ < ε, ‖z∗k − x∗k‖ < ε for all k ∈ A, and z∗k(z0) = 1 for all k ∈ A.

It is clear that by assuming the condition above just for finite sequences (xk)
and (x∗k), an equivalent property is obtained. As we already remarked, it is shown
in [2] that (`1, X) has the BPBp for bilinear forms if and only if (X,X∗) has the
AHSP. It follows directly from the definition that if a pair (X,X∗) has the AHSP,
then X∗ has the AHSP. However the converse is not true, since `∞ = `∗1 has the
AHSP but the pair (`1, `∞) does not have the AHSP since no pair of the form
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(L1(µ), L1(µ)∗) has the AHSP in the infinite dimensional case [2]. On the other
hand, the pair (X,X∗) has the AHSP for the following spaces: finite dimensional
X, uniformly smooth X, X = C(K), X = c0, and X = K(H) (the space of
compact operators on a Hilbert space H) [2].

The following result characterizes the AHSP for a pair (X,X∗) in terms of the
validity of a version of Zizler’s result. Like Proposition 3.2, its proof follows the
lines of the argument in [1, Theorem 4.1].

Proposition 3.5. Given a Banach space X, the pair (X,X∗) has the AHSP if
and only if there is a function γ : (0, 1) −→ (0, 1) such that for every ε ∈ (0, 1),
whenever T0 ∈ SL(X,c0), y

∗
0 ∈ Sc∗0 , and x0 ∈ SX satisfy Re y∗0T0(x0) > 1−γ(ε), then

there exist T ∈ SL(X,c0), y
∗ ∈ Sc∗0 and x ∈ SX such that y∗T (x) = 1, ‖y∗0−y∗‖ < ε

‖x0 − x‖ < ε and ‖T0 − T‖ < ε.

It is not difficult to adapt the proof of Proposition 3.2 to this case, so we omit
it. Our last result in this section shows that the pair (C0(K,Y ), C0(K,Y )∗) has
the AHSP when Y is a uniformly smooth space. This generalizes [2, Corollary 4.5]
where the result was proved for Y = K.

Theorem 3.6. Let K be a locally compact Hausdorff space and Y be a uniformly
smooth space. Then the pair (C0(K,Y ), C0(K,Y )∗) has the AHSP.

Proof. We show that for every ε > 0, there is η > 0 such that for every f0 ∈
SC0(K,Y ) there is f1 ∈ SC0(K,Y ) satisfying

(1) ‖f0 − f1‖ < ε.
(2) If φ ∈ SC0(K,Y )∗ satisfies Reφ(f0) > 1−η, then dist(φ,D(f1)) < 5ε, where

D(f1) = {ψ ∈ SC0(K,Y )∗ : ψ(f1) = 1}.
Then the result follows from Corollary 3.4 of [2]. Since Y is uniformly smooth,
Y ∗ has the Radon-Nikodým property, and since C0(K)∗ has the Approximation
property, we have

C0(K,Y )∗ = (C0(K)⊗̂εY )∗ = C0(K)∗⊗̂πY ∗

[12, Theorem 5. 33] (where ⊗̂π and ⊗̂ε denote the projective and injective tensor
product, respectively). Let r(ε) = min{ε/2, 2δY ∗(ε), 1/4} and η(ε) = εr(ε)2 for
all ε ∈ (0, 1), where δY ∗(ε) is the modulus of uniform convexity of Y ∗. Fix
ε ∈ (0, 1) and set η = η(ε) and r = r(ε). Suppose that Reφ(f0) > 1− η for some
φ ∈ SC0(K,Y )∗ and for some f0 ∈ BC0(K,Y ). Then by the definition of the projective
tensor product, there exists φ1 =

∑n
j=1 αjµj ⊗ y∗j such that Reφ1(f0) > 1 − η,

‖φ1 − φ‖ < ε,
∑n

j=1 αj = 1, αj > 0, ‖y∗j‖ = ‖µj‖ = 1 for all j = 1, . . . , n.

Let L = {t ∈ K : ‖f0(t)‖ > 1 − r} and U = {t ∈ K : ‖f0(t)‖ > 1 − 2r}.
By the Urysohn lemma, there exists a continuous function m : K −→ [0, 1] such
that m(t) = 1 for all t ∈ L and m(t) = 0 for all t ∈ K \ U . Define a function
f1 ∈ C0(K,Y ) by

f1(t) =
f0(t)

‖f0(t)‖
m(t) + (1−m(t))f0(t) if t ∈ U ,

f1(t) = f0(t) if t /∈ U .
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Then ‖f1(t)‖ 6 1 for all t ∈ K and ‖f1(t)‖ = 1 for all t ∈ L. Also,

‖f0(t)− f1(t)‖ 6 2r 6 ε for all t ∈ K.

Indeed, if t ∈ U , then

‖f0(t)− f1(t)‖ =

∥∥∥∥ f0(t)

‖f0(t)‖
m(t)− f0(t)m(t)

∥∥∥∥ =
∣∣‖f0(t)‖ − 1

∣∣m(t) 6 2r 6 ε

and if t ∈ K \ U , then f0(t) = f1(t).
We assume that dµj = hjd|µj| for some Borel measurable function hj with

|hj| = 1 for all j = 1, . . . , n. Then

Reφ1(f0) = Re
n∑
j=1

αj

∫
K

y∗j (f0(t))hj(t) d|µj|(t) > 1− η.

Write

A =

{
1 6 j 6 n : Re

∫
K

y∗j (f0(t))hj(t) d|µj|(t) > 1− r2

}
.

We have
∑

j∈A αj > 1− η/r2 = 1− ε. Now, for each j ∈ A, write

Bj =
{
t ∈ K : Re [y∗j (f0(t))hj(t)] > 1− r

}
.

Then, for each j ∈ A, we have

1− r2 < Re

∫
K

y∗j (f0(t))hj(t) d|µj|(t)

= Re

∫
Bj

y∗j (f0(t))hj(t) d|µj|(t) + Re

∫
K\Bj

y∗j (f0(t))hj(t) d|µj|(t)

6 Re

∫
Bj

y∗j (f0(t))hj(t) d|µj|(t) +

∫
K\Bj

(1− r) d|µj|(t)

6 |µj|(Bj) + (1− r)|µj|(K \Bj) = 1− r
(
1− |µj|(Bj)

)
and so, |µj|(Bj) > 1 − r. By the regularity of the measures, there exists a

compact set Kj ⊂ Bj such that |µj|(Kj) > 1− r. Set K̃ =
⋃
j∈AKj and observe

that K̃ ⊂ L.
For each t ∈ U , there exists a unique f ∗0 (t) ∈ SY ∗ such that 〈f ∗0 (t), f0(t)〉 =

‖f0(t)‖. If j ∈ A and t ∈ Bj, we have

Rehj(t)y
∗
j (f0(t)) > 1− r > (1− r)‖f0(t)‖

and

Re 〈f ∗0 (t), f0(t)〉 = ‖f0(t)‖.
Hence

Re
hj(t)y

∗
j + f ∗0 (t)

2

(
f0(t)

‖f0(t)‖

)
> 1− r

2
> 1− δY ∗(ε).

Then ‖hj(t)y∗j − f ∗0 (t)‖Y ∗ 6 ε for all t ∈ Bj by uniform convexity of Y ∗.
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On the other hand, and again since Y is uniformly smooth, we have for each
t ∈ U and for each f ∈ C0(K,Y ), that

〈f ∗0 (t), f(t)〉 = lim
λ→0

∥∥∥λf(t) + f0(t)
‖f0(t)‖

∥∥∥− 1

λ
.

Hence the function t 7−→ 〈f0(t)∗, f(t)〉 is Borel measurable on U for each f ∈
C0(K,Y ). For each j ∈ A, define

z∗j (f) =
1

|µj|(Kj)

∫
Kj

〈f ∗0 (t), f(t)〉d|µj|(t).

Then z∗j ∈ BC0(K,Y )∗ for every j ∈ A. Notice that, for each j ∈ A and t ∈ Kj,

one has t ∈ L and m(t) = 1. So f1(t) = f0(t)
‖f0(t)‖ and 〈f ∗0 (t), f1(t)〉 = 1. Therefore,

z∗j (f1) = 1 = ‖z∗j ‖ for all j ∈ A.
We claim that ‖z∗j − µj ⊗ y∗j‖ 6 3ε for every j ∈ A. Indeed, for f ∈ C0(K,Y )

with ‖f‖ 6 1, we have

|z∗j (f)− µj ⊗ y∗j (f)| =

∣∣∣∣∣
∫
Kj

〈f ∗0 (t), f(t)〉 d|µj|(t)
|µj|(Kj)

−
∫
K

y∗j (f(t))hj(t) d|µj|(t)

∣∣∣∣∣
6

∣∣∣∣∣
∫
K\Kj

y∗j (f(t))hj(t) d|µj|(t)

∣∣∣∣∣
+

∫
Kj

|〈f ∗0 (t), f(t)〉 − y∗j (f(t))hj(t)| d|µj|(t)

+

(
1

|µj|(Kj)
− 1

)∫
Kj

|〈f ∗0 (t), f(t)〉| d|µj|(t)

6 |µj|(K \Kj) +

∫
Kj

‖f ∗0 (t)− hj(t)y∗j‖Y ∗ d|µj|(t)

+ (1− |µj|(Kj))

6 r + ε+ r 6 3ε.

Consider ψ = 1∑
j∈A αj

∑
j∈A αjz

∗
j and observe that ψ ∈ SC0(K,Y )∗ and ψ(f1) = 1.

Finally, we get ‖ψ − φ‖ 6 6ε because

‖ψ − φ1‖ 6

∥∥∥∥∥ 1∑
j∈A αj

∑
j∈A

αjz
∗
j −

∑
j∈A

αz∗j

∥∥∥∥∥+

∥∥∥∥∥∑
j∈A

αjz
∗
j −

∑
j∈A

αjµj ⊗ y∗j

∥∥∥∥∥
+

∥∥∥∥∥∑
j∈Ac

αjµj ⊗ y∗j

∥∥∥∥∥
6
∑
j∈Ac

αj + 3ε+
∑
j∈Ac

αj 6 3ε+ 2r 6 5ε. �
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