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ABSTRACT. In this article, the authors first introduce the Triebel-Lizorkin-
type space F;(()) ’i_) (R™) with variable exponents, and establish its p-transform
characterization in the sense of Frazier and Jawerth, which further implies that

this new scale of function spaces is well defined. The smooth molecular and the

smooth atomic characterizations of F;(()) ’ﬁ_)(R”) are also obtained, which are

used to prove a trace theorem of F;(()) ’(i_)(R"). The authors also characterize

the space F;(()) ’i_) (R™) via Peetre maximal functions.

1. INTRODUCTION

Between 1960’s and 1970’s, the Besov space B, (R") and the Triebel-Lizorkin
space F;q(R") were introduced and investigated accompanying with the devel-
opment of the theory of function spaces (see, for example, [66]). These spaces
form a very general unifying scale of many well-known classical concrete function
spaces such as Lebesgue spaces, Holder-Zygmund spaces, Sobolev spaces, Bessel-
potential spaces, Hardy spaces and BMO, which have their own history. A com-
prehensive treatment of these function spaces and their history can be founded
in Triebel’s monographes [66, 67, 68, 69]. Recently, to clarify the relations among
Besov spaces, Triebel-Lizorkin spaces and @) spaces (see [16, 241]), Besov-type
spaces By 7(R") and Triebel-Lizorkin-type spaces F,;7(R™) and their homoge-
neous counterparts for all admissible parameters were introduced and studied in
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[76, 77, 80]. Moreover, the Besov-type and the Triebel-Lizorkin-type spaces, in-
cluding some of their special cases related to () spaces, have been used to study
the existence and the regularity of solutions of some partial differential equations
such as (fractional) Navier-Stokes equations; see, for example, [13, 44, 45, 70, 81].
For more properties of these spaces, we refer the reader to [63, 64, 78, 79].

On the other hand, in recent years, there has been a growing interesting in
generalizing classical spaces such as Lebesgue and Sobolev spaces to cases with
either variable integrability or variable smoothness (see [13, 19]), which are ob-
viously not covered by any function space with invariable exponents. Spaces
of variable integrability can be traced back to Birnbaum-Orlicz [10], Orlicz [58]
and Nakano [54, 55]. In particular, the definition of so-called Musielak-Orlicz
spaces was clearly written by Nakano in [54, Section 89], while it seems that
Orlicz was mainly interested in the completeness of function spaces. But the
modern development was started with the article [37] of Kovacik and Rékosnik
in 1991 and widely used in the study of harmonic analysis as well as partial
differential equations; see, for example, [6, 12, 13, 14, 17, 18, 19, 21, 32, 48].
The motivation to study such function spaces also comes from applications to
fluid dynamic, image processing and the calculus of variation; see, for example,
[1, 2, 3, 11, 21, 25, 59, 60].

To complete the theory of the variable exponent Lebesgue and Sobolev spaces,
Almeida and Samko [5] and Gurka et al. [30] introduced and investigated variable
exponent Bessel potential spaces £P() with variable integrability index p(-).
Later, Xu [73, 74, 75] studied Besov spaces B;(‘),q (R™) and Triebel-Lizorkin spaces

F3 4(R™) with the variable exponent p(-) but invariable exponents g and s. Along

a different line of study, when Leopold [38, 39, 40, 41] and Leopold and Schrohe
[42] studied pseudo-differential operators with symbols of the type

(1+ [¢?)s=72,

they defined and investigated related Besov spaces with variable smoothness,
B;f,')) (R™). Function spaces of variable smoothness including Besov space B;,((;) (R™)
and Triebel-Lizorkin space Fli(q')(R") have been studied by Besov [7, 8, 9], which
was a generalization of Leopold’s work. Another interesting research direction of
function spaces with variable integrability is the theory of Hardy spaces H?)(R™)
with variable exponents as well as local Hardy spaces h?)(R™), which was intro-
duced and investigated by Nakai and Sawano [53] and they proved that

WPO(R™) = F . o(R™).

Independently, Cruz-Uribe and Wang in [15] also investigated the variable expo-
nent Hardy space with some weaker conditions than those used in [53].

As we can see from the trace and the embedding theorems of the classical
function spaces, the smoothness and the integrability often interact each other;
see, for example, [80, Theorem 6.8 and Corollary 2.2]. As was pointed out in [4,
p- 1629] and [20, p. 1733], the unifications of the trace and the Sobolev embedding
do not occur on function spaces with only one index variable. For example, the
trace space of the variable exponent Sobolev space W*P() is no longer a space
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of the same type (see [19]), since they involve an interaction between integrabil-
ity and smoothness. As one of motivations, to tackle this problem, Alexandre
and Hasto [20] introduced and investigated Triebel-Lizorkin spaces with variable

smoothness and integrability F;((f))q(.)(R") with s(-) > 0, and showed that these
spaces behaved nicely with respect to the trace operator. Subsequently, Vybiral

[72] established Sobolev and Jawerth embeddings of these spaces and, moreover,
Kempka [34] characterized F;((f)) q(.)(R”) by local means, and Kempka and Vybiral
[36] obtained the equivalent characterization via ball means of differences. The

main difficulty of studying F;((f))’q(,)(R”) is the absence of the vector-valued in-

equality for the boundedness on LP()(¢20)(R™)) of the Hardy-Littlewood maximal
function, which, in the classical case with p, ¢,s being constant exponents, is
a very important tool in studying the space F; (R"). The vector-valued con-
volution inequality developed in [20, Theorem 3.2] (see also Lemma 2.9 below)
supplies a well remedy for this absence.

Vybiral [72] and Kempka [34] also studied the Besov space B;E:g’q (R™) with the
only index ¢ being a constant, which is a quite natural case, since the norm in the
Besov space is usually defined via the iterated space ¢7(LP(R™)). Furthermore,
Almeida and Hésto [1] introduced and investigated the Besov space B;E_g’q(_)(]R”)
with all three variable exponents, which makes a further step in completing the
unification process of function spaces with variable smoothness and integrabil-
ity. The atomic characterization of B;E:g}q(.)(R”) was established by Drihem [22]
and some equivalent characterizations via local means and ball means of differ-
ences were also obtained by Kempka and Vybftal [36]. Moreover, Noi and Sawano
[57] investigated the complex interpolation of Besov spaces and Triebel-Lizorkin
spaces with variable exponents (see also [79] for the complex interpolation of
Besov-type spaces and Triebel-Lizorkin-type spaces but with invariable expo-
nents) and, in [56], Noi studied the trace and the extension operators for Beosv
spaces and Triebel-Lizorkin spaces with variable exponents. Very recently, Izuki
et al. [33] gave out an elementary introduction to function spaces with variable
exponents and a survey of related function spaces.

More generally, Kempka [35] introduced and studied 2-microlocal Besov and
Triebel-Lizorkin spaces with variable integrability and gave out characterizations
by decompositions in atoms, molecules and wavelets, which cover the usual Besov
and Triebel-Lizorkin spaces as well as spaces of variable smoothness and integra-
bility and also include the space F;((:)),q(d (R™) without the restriction s(-) > 0. The
trace of 2-microlocal Besov and Triebel-Lizorkin spaces with variable exponents
was studied by Moura et al. [19], as well as Gongalves et al. [29]. Moreover, Ho
[31] investigated the variable Triebel-Lizorkin-Morrey space, which is an exten-
sion of Triebel-Lizorkin-Morrey spaces in [61, 62] and also generalizes the function

space F;((.'))q(.)(R") in [20].
Here, we should point out that, different from the classical case with exponents

being constants, the definition of B;é’; q(,)(R”) is more complicated than that of
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F;((.’))q(.)(]R”). The main reason is that the mixed Lebesgue-sequence space

(1O (LPO(R™))

(see [4, Definition 3.1]) involved in the definition of B;E:;’q(.)(]R”), as was pointed
out by Almeida and Héstd in [4, Remark 4.2], does not enjoy one key feature
of iterated function spaces, namely, inheritance of properties from constituent
spaces. To limit the length of this article, we leave the study of Besov-type
spaces with all variable exponents in a furthercoming article.

The purpose of this article is to introduce and study a more generalized scale of
function spaces, based on the Triebel-Lizorkin-type space F;7 (R™), with variable

exponent of smoothness, s(-), variable exponents of integrability, p(-) and q(-),
)7¢>

and a set function ¢, denoted by F;((.m(.)(R"). These spaces generalize classical
Triebel-Lizorkin-type spaces and Triebel-Lizorkin spaces with variable smooth-
ness and integrability. Molecular and atomic characterizations, Peetre maximal
function characterizations of these spaces are also established in this article. As
applications, we show a trace theorem of Triebel-Lizorkin-type spaces with vari-
able exponents and give out some equivalent quasi-norms under some restrictions
of the set function ¢.

We begin with some basic notation. In what follows, for a measurable function
p(-) : R* — (0,00) and a measurable set £ of R, let

p_(F) :=essinfp(x) and p,(F):= esssupp(z).
reE zeE

For notational simplicity, we let p_ := p_(R") and p, := p,(R"). Denote by
P(R™) the collection of all measurable functions p(-) : R™ — (0,00) satisfying
0<p_ <ps <oo.

For p(-) € P(R") and a measurable set £ C R”, the space LPV)(E) is defined
to be the set of all measurable functions f such that

p(z)
1l ooy == inf{A € (0,00) : /E {@} dr < 1} < 0.

For r € (0,00), denote by L, .(R™) the set of all r-locally integrable functions on

loc

R™. Denote by L*(R") the set of all measurable functions f such that
| fl| Lo (rmy := esssup | f(y)| < oo.
yeR?
Remark 1.1. Let p(-) € P(R").

(i) It was presented in [53, p.3671] (see also [13, Theorem 2.17]) that, for all
A e C,

||)‘f||LP(')(]R") = |>\|||f||Lp(->(Rn)
and, if € (0, min{p_, 1}], then, for all f, g € LPO)(R"),

1 +9H2p<-)(Rn) < Hf”z;o(')(R") + HQHZW(Rn)-

(ii) If
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for some § € (0,00) and some positive constant C independent of 4, then it is
easy to see that || f|| o) gn) < C0, where C'is a positive constant independent of
J, but depending on p_ (or p;) and C.

(iii) Let p(-) € P(R™) satisfy 1 < p_ < p; < co. Define the conjugate exponent

p(+) of p(-) by setting, for all z € R™, p(x) := p(pgzl. It was proved, in [13,

Theorem 2.6], that, if f € LPO)(R") and g € LPO)(R"), then fg € L'(R") and

[f(@)g(x)[ dz < Ol fll oo @ny |91l o0 ey
R”

where C' is a positive constant depending on p_ or p., but independent of f and
g.

(iv) Obviously, the space LP()(R™) has the lattice property, namely, if | f| < |g|,
then

Hf”LP(‘)(R") < Hg”LP(‘)(R")’
Recall that a measurable function g € P(R") is said to satisfy the locally log-

Hoélder continuous condition, denoted by g € C’llgf(]R"), if there exists a positive
constant Cloe(g) such that, for all z, y € R,

Clog(g) 7 (11)
(e+1/]z —yl)
and ¢ is said to satisfy the globally log-Holder continuous condition, denoted by
g € C8(R™), if g € CI%(R™) and there exist positive constants Cs, and gs such
that, for all x € R",

l9(z) — g(y)| < oz

Coo
log(e + |z[)°
Remark 1.2. (i) Let g € C'8(R™). Then go, = limj;|00 p().
(ii) Let g € P(R™). Then g € C'8(R") if and only if 1/g € C'°8(R").
For all x € R™ and r € (0,00), denote by Q(x,r) the cube centered at x with
side-length r, whose sides parallel axes of coordinates. Let ¢ : R"™ x [0,00) —

(0, 00) be a measurable function. In this article, we always suppose that ¢ satisfies
the following two conditions:

19(2) = goo| <

(S1) there exist positive constants ¢; and ¢; such that, for all z € R™ and
r € (0,00),

(51)—1 S ¢(.’L‘,T‘) S
o(x,2r)
(S2) there exists a positive constant ¢y such that, for all z, y € R" and r €
(0,00) with |z —y| < r,

C1;

()" <

In what follows, for all cubes @ := Q(x,r) with x € R" and r € (0, 00), let
P(Q) = d(Qx, 7)) := ¢(x, 7).



TRIEBEL-LIZORKIN TYPE SPACES 151

Remark 1.3. (i) We point out that the conditions (S1) and (S2) of ¢ are, re-
spectively, called the doubling condition and the compatibility condition, which
have been used by Nakai [50, 51] and Nakai and Sawano [53] when they studied
generalized Campanato spaces.

(i) Let ¢(Q) = |Q|” with 7 € [0,00) for all cubes Q. Then, obviously, ¢
satisfies the conditions (S1) and (S2).

(iii) Let p(-) € C'°8(R™). The set function ¢, defined by setting, for all cubes

Y

L ||XQ||LP(')(R”)

which is just [53, Example 6.4], satisfies the conditions (S1) and (S2).

(iv) Let ¢ be a nondecreasing set function, namely, there exists a positive
constant C' such that, for all cubes Q1 C Q2, ¢(Q1) < CP(Q2). If ¢ satisfies the
condition (S1), then ¢ also satisfies the condition (S2). Indeed, for all z, y € R"
and r € (0,00) with |z —y| < r, it is easy to see that Q(x,r) C Q(y,2r) and
Q(y,r) C Q(x,2r) and, by the condition (S1), we see that

o) _ olar) _ oly2r)

~o@,2r) <oy, ) T ooly,r)
with the implicit positive constants independent of x, y and r. Thus, ¢ satisfies
the condition (S2).

(v) Let ¢(Q) := fQ w(z) dz for all cubes @), where w is a classical Muckenhoupt
A, (R™)-weight with p € [1, 00]. It is well known that each Muckenhoupt A,(R")-
weight is doubling, thus, by (iv), we conclude that ¢ satisfies the conditions (S1)
and (S2). For the definition and properties of Muckenhoupt A,(R")-weights, we
refer the reader to [65].

Let S(R™) be the space of all Schwartz functions on R™ and S'(R") its topologi-
cal dual space. We say a pair (¢, ®) of functions to be admissible if ¢, & € S(R™)
satisfy

~ 1 ~ 3 5
supp@C{ﬁGR”: §§|§|§2} and \¢(§)|Zc>0wheng§|§|§§ (1.2)

and

~ ~ 5
supp® C {{ € R": [¢] <2} and |P(€)| > ¢ > 0 when [{] < 3 (1.3)

where f({) = [on f(x)e ™ dz for all € € R” and f € L'(R"), and c is a positive
constant independent of £ € R™. Throughout the article, for all ¢ € S(R"),
JeN:={1,2,...} and z € R", we put p;(z) := 2"p(2/z) and ¢(z) := p(—x).

For j € Z and k € Z", denote by Q. the dyadic cube 277([0,1)" + k), xq,, =

277k its lower left corner and £(Q;x) its side length. Let
Qi ={Qj: JEZ keZ'}, Q" ={QeQ: Q) <1}
and jo := —log, ¢(Q) for all Q € Q.

Now we introduce Triebel-Lizorkin-type spaces with variable exponents.
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Definition 1.4. Let (¢, ®) be a pair of admissible functions on R™. Let p, ¢ €
P(R™) satisty

0<p_-<pyr<o0, 0<qg-<qgy <0
and ]l), % € CP8(R"), s € C22(R™) N L=(R™) and ¢ be a set function satisfying
the conditions (Sl) and (S2). Then the Triebel-Lizorkin-type space with variable

exponents, F ( (R”) is defined to be the set of all f € S’'(R") such that

1
- o)
1 is(- q(-)
1l pare (gny 2= U Yo 2V fO] < o0,
Pe0 OB) || jmeior

p() (P)

where, when j = 0, ¢y is replaced by ®, and the supremum is taken over all
dyadic cubes P in R".

Remark 1.5. Let p(+), ¢(-), s(-) be as in Definition 1.4.
(i) When ¢(Q) := 1 for all cubes @, then

<), .
e p(1a) (R,

where F;((:))’q(.)(R”) denotes the Triebel-Lizorkin space with variable smoothness
and integrability which is introduced and investigated in [20]. We point out that
Diening et al. [20] studied the space F;((.'){q(.)(R”) under an additional assumption
that s is nonnegative, which is generalized to the case that s : R"” — R and
s € C'% (R™) N L®(R") by Kempka in [35].

(ii) When p, ¢, s are constant exponents and ¢(Q) := |Q|” with 7 € [0, 00) for
all cubes @, then

s(),9 ny\ __ S,T n
Fp(),q()(R ) - Fp,q (R )7

where FJ-7 (R™) denotes the Triebel-Lizorkin-type space which was introduced and
studied in [80].

(iii) When ¢, s are constant exponents and ¢(Q) := |Q|” with 7 € [0, 00) for
all cubes @), then

Frray B = E30 (R,

p(-), QN

which was investigated in [47].

(iv) The condition, 0 < p_ < p, < 00, is quite natural, since there also
exists the restriction p < oo in the case of constant exponents. The assumption,
0 < g < qy < o0, is different from the case of constant exponents where
g = oo is included. This restriction comes from the application of the convolution

inequality in [20, Theorem 3.2] (see also Lemma 2.9 below), when proving that
the space F (( )) 0 (]R”) is independent of the choice of admissible function pairs

(p,®). Observe that, even when ¢(Q) = 1 for all cubes @, this restriction is
necessary; see [30, p. 857].

This article is organized as follows.
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Section 2 is devoted to showing that the space F;((_'))’j(_)(R”) is independent of

the choice of admissible function pairs (¢, ®), which is a consequence of the -

transform characterization of F;((f))’;}.)(R”) in the sense of Frazier and Jawerth

(see Corollary 2.4 below). Different from the method used in the case of con-
stant exponents, in the proof of the boundedness of the ¢-transform S, from
F;((.'))”q(.)(R”) to f;((f)),’j(.)(R") (the sequence space corresponding to the function

space F;((f)):(i_)(R")), we make full use of the so-called r-trick lemma (namely, [20,

Lemma A.6]) and the vector-valued convolution inequality (namely, [20, Theorem
3.2]; see also Lemma 2.9 below). We point out that the vector-valued convolution
inequality also plays an essential role throughout the remainder of this article.

In Section 3, we establish equivalent characterizations of F;((.'))’q(.) (R™) in term of

molecules, atoms (see Theorem 3.8 below) or Peetre maximal functions (see The-
orem 3.11 below). To prove Theorem 3.8, we borrow some ideas from the proof of
[23, Theorem 3.12] which gives the atomic characterization of the Besov-type and
the Triebel-Lizorkin-type spaces, and the proof of [35, Theorem 3.13] which gives
the molecular characterization of 2-microlocal Besov and Triebel-Lizorkin spaces
with variable integrability. The Sobolev embedding (see Proposition 3.1 below)
plays a key role in the proof of Theorem 3.8, which may be of independent inter-
est. The proof of Theorem 3.11 is similar to that of [46, Theorem 3.2] (see also [71,
Theorem 2.6]) and strongly depends on the vector-valued convolution inequality
on LPO)(¢90)(R™)); see Lemma 2.9 below. As applications of Theorem 3.11, some
equivalent norms of F;((.'));qd’(.)(R") are obtained (see Theorem 3.12 below), which

are further used to show that the spaces F;((,'))’j(,)(R”) include the Morrey space

with variable exponents MZ(')(R") as a special case; see Proposition 3.18 below.

At the end of Section 3, via some examples, we show that, in general, the scales
of Triebel-Lizorkin-type spaces with variable exponents and variable Triebel—-
Lizorkin-Morrey spaces (see [31]) do not cover each other (see Remark 3.15 below).
Here we point out that Triebel-Lizorkin-type spaces with variable exponents in
this article cover the Triebel-Lizorkin-type spaces F57 (R") for all 7 € [0, 00), but
the variable Triebel-Lizorkin-Morrey space in [31] does only cover the Triebel—
Lizorkin-type space [;:7(R") for 7 € [0,1/p).

In Section 4, as an application of the atomic characterization of F;((f))”;%,)(R”),
we mainly establish a trace theorem of Triebel-Lizorkin-type spaces with variable
exponents (see Theorem 4.1 below). In the case that ¢ is as in Remark 1.5(i),
the corresponding result of Theorem 4.1 was obtained in [20, Theorem 3.13] with
a certain weaker condition (see Remark 4.2(ii) below), however, the convergence

of the trace of f € F:((_')),q(_)(R”) was not given out exactly in [20, p.1760]. In
Section 4, we first show that the trace operator is well defined on the space
F;((.‘))ﬁ.)(R”) (see Lemma 4.3 below), with a certain restriction on p and s, by an
argument similar to that used in the proof of Theorem 3.8(i). Indeed, in Lemma
4.3 below, we prove that the trace of f € F;((,'))v’i,)(R") converges in §'(R"1).
Then, similar to the proof of [20, Theorem 3.13], we show that the trace space of
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F S(() 2()(R") is independent of the n-th coordinate of variable exponents p(-) and

s(+), and complete the proof by an argument similar to that used in the proof of
[80, Theorem 6.8].

Finally, we make some conventions on notation. Throughout this article, we
denote by C' a positive constant which is independent of the main parameters,
but may vary from line to line. The symbols A < B means A < CB. If A < B
and B < A, then we write A ~ B. For all a, b € R, let

a Vb := max{a, b}.

If F is a subset of R™, we denote by xg its characteristic function. For all cubes
@, we use cg to denote its the center. For all k := (ky,...,k,) € Z", let

(KL= TRl - A Rl
Let N:={1,2,...} and Z; := {0} UN.

2. THE @-TRANSFORM CHARACTERIZATION

In this section, we first introduce the sequence space f )(]R”) corresponding

to the space F (( )) ()(]R”) and then establish their - transform characterization in

the sense of Frazier and Jawerth [27]. As a consequence of the ¢-transform
characterization, we conclude that the space F (( )) o )(R”) is independent of the
choice of admissible function pairs (¢, ).

Definition 2.1. Let p(:), s(-) and ¢ be as in Deﬁnition 1 4 and ¢(-) as either in
Definition 1.4 or ¢(-) = oo. Then the sequence space f (R”) is defined to be
the set of all sequences t := {tg}geco- C C such that

1
1 s() 1 q() q(-)
t s(), ny -— Su |: *[TJrg]t ] < 00
187260 e eb & (P) { >, |l ltolxq

with the usual modification made when ¢(-) = oo, where the supremum is taken
over all dyadic cubes P in R".

Remark 2.2. ( ) It is easy to see that fs( ) ¢ ,(R") is a quasi-Banach lattice, namely,

for all ¢ := {tQ }oco- C C and t?) = {tQ toeor C C, if \tQ | < \t8)| for all
Qe 9, then

+(1) 0, < [|+®@ 0, )

| Ty ™) = | Ty (R™)

(ii) Let Do(R") := {@Q C R": @ is a cube and £(Q) = 277 for some j, € Z}.
Then it is easy to prove that the supremum in Definitions 1.4 and 2.1 can be
equivalently taken over all cubes in Dy(R™), the details being omitted.

Let (p,®) be a pair of admissible functions. Then (Z, ®) is also a pair of ad-
missible functions. Thus, by [27, pp. 130-131] or [28, Lemma (6.9)], we know that
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there exist Schwartz functions ¢ and W satisfying (1.2) and (1.3), respectively,
such that, for all £ € R™,

+Zs0 277¢) = 1. (2.1)

Recall that the ¢-transform S, is defined to be the mapping taking each f €
S'(R") to the sequence S, (f) := {(S,f)o}oca+, where (S, f)q := |Q|Y2®* f(xq)
if £(Q) =1 and (S, f)q = |Q|"?¢;, * f(zq) if £(Q) < 1; the inverse p-transform
Ty is defined to be the mapping taking a sequence ¢ := {tg}geo- C C to

Tyt:= Y. to¥o+ Y toves
QeO*, 4(Q)=1 QReQ*, L(Q)<1
see, for example, [30, p.31].
Now we state the following ¢-transform characterization for F (( )) 3 )(]R") which
is the main result of this section. For the corresponding result of Triebel-Lizorkin-

type spaces, see [80, Theorem 2.1].

Theorem 2.3. Let p, q, s and ¢ be as in Definition 1./ and p, ¥, ® and

U be as m (2.1). Then the operators S, : FS(('))’QS()(]R”) — fs()¢)(R”) and

fp( (R") = Fe o) R") are bounded. Furthermore, T;,0S,, is the identity

)¢ P
) ).

onF 00)

s(-
p(:

We remark that T, is well defined for all ¢ € f ().l )(]R”) see Lemma 2.5 below.
The proof of Theorem 2.3 is given later. From Theorem 2.3 and an argument

similar to that used in the proof of [27, Remark 2.6], we immediately deduce the
following conclusion, the details being omitted.

Corollary 2.4. With all the notation as in Definition 1./, the space F ((
is independent of the choice of the admissible function pairs (¢, ®).

16 om
) R

Now we start to show Theorem 2.3. First, we need the following property.

Lemma 2.5. Let p, q, s and ¢ be as in Definition 1.4. Then, for all t €

Sty (B,

th = Z tQ\I’Q + Z thQ
QEQ* U(Q)=1 QEQ* Q)1
converges in S'(R™); moreover, T : f;(()) ((R™) = S'(R") is continuous.
To prove Lemma 2.5, we need the following technical lemmas.

Lemma 2.6. Let ¢ be a set function satisfying the conditions (S1) and (S2).
Then

() there exists a positive constant C such that, for any j € Z, and k € 7",
BQ) < CF 5 (k| 4 1)),
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(i) there exists a positive constant C' such that, for all Q € Q and l € 7,

(Q +10(Q))
?(Q)

where ¢y and ¢, are as in the condition (S1).

< C(1 4 [1])es=l),

Proof. We first prove (i). For any j € Z, and k € Z", let §; € Z, be such
that 2% < n(|k| + 1) < 2%%! and cg,, the center of the cube Qj. Then, by the
conditions (S1) and (S2) of ¢ and the fact that |cg, | < n27/(|k[ 4+ 1), we see
that

S(Qr) = 3(Qcqin, 277)) < 1o (Q(cq,,, 2770H1))
< a0, 279 £ ) *0(Q(0, 1)
5 2j10g2 01(“{:‘ + 1)log2(¢:181)7

which completes the proof of (i).
Next we show (ii). If || < 1, namely, £(Q)]l] < ¢(Q), then, by the condition

(S2) of ¢, we find that
-1 < ¢(Q+l€(Q)) < Cs. (22)

() R
If |I] > 1, namely, £(Q)|l] > ¢(Q), then there exists a 7, € N such that 2" < |I| <
20t Thus, £(Q)27 ! > ¢(Q)|!]. From the condition (S1) of ¢, we deduce that

$(Q +1(Q)) = d(Qlcg + 14(Q), (Q)))
<M H(Q(eq + U(Q), £(Q)27H))

and

1 i+l
Q) = 0Qlea Q) = () 0(Qeq. 1Q2)
which, combined with the condition (S2) of ¢, implies that

o(Q + Q) _ "o(Qleq + UU(Q), ((@Q)2))
o(Q) T (a)7e(Qeg, ((Q)21))

< epcf (@)~ iflessed)

This, together with (2.2), then finishes the proof of (ii) and hence Lemma 2.6.

Lemma 2.7. Let p(-) € C'8(R™). Then there exists a positive constant C' such
that, for all dyadic cubes Qji, with j € Zy and k € Z",

1 -n; o5
a2 AR < ol o @)

<2 (1 4 k)", (2.3)
Proof. Let Qo be the dyadic cube @), with j =0 and k& = (0,...,0) € Z™. For

any j € Z; and k € Z", it is easy to see that Qi C 2(1 + |k[)Qoo. Then, from
[82, Lemma 2.6], we deduce that

1
Q] =
||XQ;1¢ ||LP(')(R”) 5 |:’2(1 + ‘Jk‘)QOO‘ ||X2(1+|k|)Q00 ||LP(')(R71)
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Qul 17 [1201+ K)Quo
< {’2(1 + \Jk\)QOOJ { Qoo ] X Qoo Il Lre) (mm)
o)

_n; n(-L—
~ 2P (L [R])"TR

and, similarly,
> —j n(i_i)
IxQell o ey 22 7= 7 (L4 [K[) e 7=,
which completes the proof of (2.3) and hence Lemma 2.7. O]
In what follows, for h € S(R™) and M € Z., let

17| sps ey == |S|up Suﬂ%) |07h(z)|(1 + ‘x|>"+M+’Y.
M xeR™

Proof of Lemma 2.5. To prove this lemma, it suffices to show that there exists
an M € N such that, for all ¢ € f() ()(]R”) and h € S(R"),

[(Tpt,h)| < it

123 Ml
Indeed, by Remark 1.1(iv), we see that, for any Q) € QF,
ltol = lltoxell o IXall Lo o)
7o)
~ s 1 a() _ o1
<[ 3 @ Heging ek Q17
oce
Qeo Q)
S ||t||f:(())::’()(Rn)HXQH;I}()(Q ( )|Q|7+7
which implies that

(Tut, )< Y Tl k)l + ) Itall(wo, )

{(Q)=1 2Q)<1

< ||t

i | 2 el @H@I(ve

+ > IQ|“2|I><QIILP<) P(Q)[(Yg, h)| p =11 + Lo
L(Q)<1

Let M € N be such that
~ 1 1
M > 2max {logz(clcl) +n (— — —) + 2, log, c1 + o S_ — Zn} )
N 2 p
Then, for I;, by Lemmas 2.6 and 2.7, we find that
I < ||f S( ) ¢ (R™) Z HXQOkHLP() (Qow) (b(QOk)K\IIQom h>|

keZn
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n(L-— 2L )+log,(c181)—n—M
s(+), n h n E 1 + kf P— Pt
fp((-))’j(-)(R )H ||SM(R )kezn( | D

SN

Sl s my Vel sas .

On the other hand, for I, by [80, Lemma 2.4] and Lemmas 2.6 and 2.7, we
conclude that

L<|f

oo
—Jj(s—+5—logae1—-) M
e alPllsun 3 3 27707 2
pha j=1 kezn

(= — L) +logy (c171) 1
x (1 k|) - ry .
(1) (L + 2ok

SIS

which, together with the estimate of I;, implies that

Tt Yra (B™) 1Pl e,

< n
(Tt IS el e gy 1Bl sas -

Thus,
Tyt = Z toWo + Z tovg
QEQ*, UQ)=1 QEQ*, UQ)<1
converges in §'(R") and 7, : f;((f)):;}.)(R”) — S'(R™) is continuous, which com-
pletes the proof of Lemma 2.5. 0

For a sequence t = {tg}geor C C, r € (0,00) and A € (0,00), let

S =

t r
te=1 3 £ Cgeo

reo- im—uq) L T OB er = zql

and t:,,\ = {(t:,,\)Q}QeQ*-
We have the following estimates.

Lemma 2.8. Let p, q, s and ¢ be as in Definition 1.4, r € (0,min{p_,q_}) and
A € (n+ Ciog(s) + rlogy(cicy), 00),

where ¢; and ¢, are as in the condition (S1) and Ciog(s) is as in (1.1) with
g replaced by s. Then there exists a constant C' € [1,00) such that, for all

S(')vd) n
t € fotaty (R,

It

(- < ||#* s(- s(- .
Foy e ®™) = It Ftya T e ®)

To prove Lemma 2.8, we need Lemma 2.9 below, which is just [20, Theorem
3.2] (the vector-valued convolution inequality) and plays a key role throughout

this article. In what follows, for any m € (0,00) and j € Z, let
Njm(x) == 2"(1 4+ 2|z))™™, =z ecR™
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Lemma 2.9. Let p, ¢ € C'8(R") satisfy 1 <p_ <p, <o and 1 < q_ <q; <
0o. Let m € (n,00). Then there exists a positive constant C' such that, for all

sequences { f;}jen C Li,. (R™),
o)
>
jeN

o)
{3 e s}
The following Lemma 2.10 is just [36, Lemma 19] (see also [20, Lemma 6.1]).

JeN Lr() (Rm) Lr() (R™)

Lemma 2.10. Let s € C\%(R") and L € [Ciog(s),00), where Clog(s) is as in
(1.1) with g replaced by s. Then there exists a positive constant C' such that, for
allz, yeR", m € (0,00) andv € Z,
st(x)nv,m-&-L(x —y) < 2 Mom (T = Y).
Proof of Lemma 2.8. Notice that, for all Q € QF, |tg] < ( t )Q. This immedi-
ately implies that [|t]| «cre oy < [[E5All o000 since f )(Rn) is a quasi-
Totyac) B ()

5 (R™)?
Banach lattice (see Remark 2.2(i)). N
Conversely, let P be a given dyadic cube. For any Q) € QF, let vg = tg if
Q) C 3P and vg := 0 otherwise, and let ug = tg — vg. Set v := {vg}geo- and
u := {ugtgeo+. Then, for all ) € Q*, we have

(t:A)Q S (U:)\)Q + (U:,\)Q‘ (2.4)
From the proof of [20, Theorem 3.11], we deduce that, for all ¢ € fs( 5 (R™),
t* s()s ny) ~v t s()s ny?
| T’A”fpé)),;(»(R = ”fzo((»),ql(»(]R )
which implies that

Ipzzﬁ [ > et

QCP,QeQ*

1
1 a() a(-)
3 ( r/\)QXQ} ]

LrC)(P)
1 1
< V|| s, < — .
~ ¢(P) [l Foaty ®) ™ p(P) Tt ot (B™)
_1
1 (. g() | ¢
~ o) [ > {ler = ol ]
QC3P,QeQ* LP('>(3P)

By this and the condition (S1) of ¢, we conclude that
(2.5)

< sup Ip < It

*
v .
[N Y gy
PA ) RY) = o) B™)

Next, we deal with u. To this end, let, for ¢ € Z, and k € Z",

A(i k, P) == {cﬁj €0 : U(Q)=2""(P), QC P+ ké(P)} .
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Then, we have

_ 1
1 () 1 i a(’) q(")
inzm Z {’Q| = +2](UT,A>QXQ} ]
1 = ()1
— m Z Z <|Q| [5+3]
i=0 QCP,QeQ*
\ L(Q)=2""L(P)
a()) a7

X

|ur|"
Z P e el R

kezZ™ Re A(i,k,P)
\ |k[>2

Lp(‘)(P)
Notice that, when z € @, y € R and /(R) = ¢(Q),

L+ @)z =yl ~ 1+ [UQ)] |vg — 2l
From this, we deduce that, for all z € @, p € (0,00), j € Zy and k € Z",

r

2an|uR|r
an»H * Z |uR‘XR Z / 1+ 2]Q|$ _ yl) dy

REA(i,k,P) REA(ik

lur|"
aps [1+4(Q)rg — xr|*

ReA(i,k,P)

Since
A > n+ Clog(s) +rlogy(cicr),

it follows that there exist m € (n,00) and L € (Clog(s), 00) such that
A>m+ L+ rlogy(cicy).

Observe that, when |k| > 2, ¢ € Z,, Q C P with ¢(Q) = 27%(P) and R €
A(i, k, P),
L+ [UQ) g — r| ~ 2'[K].

Then, by Lemma 2.10, we conclude that

o

Pgﬁ 2| X S @Ik

=0 2(Q)=2"%4(P) kezr,|k|>2
QeEQ*, QCP

1
()Y )

, 1

X Njgm+L * Z lur|Xr XQ
REA(i,k,P)
Lp(')(P)
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(e}

1 i m+L—X
SW S Y. @Ik

i=0 | kezn, |k|>2

SR IG RN o

s() 41
n +§]’“R‘XR )

X Nitjpm * >, B!
REA(i,k, P)
LP(')(P)

which, combined with Remark 1.1(i) and the fact that, for all d € [0,1] and
{6}, G,

d
<Z |9j\> <> 61, (2.6)
J J

implies that

Z Z 2z|k,| m+L A

i=0 kezZn, |k|>2

S =

r ES

s 1
X Mitjpm * Z [R5 2 ug|xa
ReA(ik,P) LPT') (P)
L X ey
i=0 keZn, |k|>2
1
r r
X |\ Nitjpm * Z |RI7U 2 ug| xR
ReA(i,k,P) L<T‘) (P)

From this, m € (n,o00), Lemma 2.9, Lemma 2.6(ii) and
A>m+ L+ rlogy(cicy),

we deduce that

¢— Z D@ Y [R5 3 jug|xn

3=

i=0 ‘kkeéz ReA(i,k,P) Lr() (R™)
1

<43 Sy [AEEEN
~14& 4 6(P) )

\ [k|>2

/ %
5 Z Z Qi(erLf)\)‘k‘m+Lf)\|k’rlOg(Clal) Ht S() ()(R” Ht f;((:)),;zﬁ(‘)(Rn)'

i=0 kezn ’
\ [k|>2
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This, together with the arbitrariness of P € Q, further implies that

Hur)\ fs(()) (]Rn) )(Rn)' (27)
Combining (2.4), (2.5) and (2.7), we Conclude that
||t S(()W (Rn) ~ < Ht S()W (Rn)?
which completes the proof of Lemma 2.8. O

Now we give the proof of Theorem 2.3.

Proof of Theorem 2.3. We first show that S, is bounded from F;((_'));qqﬁ(_)(R”) to
f;((_'))’;i_)(R”). Let f € F) ))q()(]R”). From [20, Lemma A.6] (the r-trick lemma)
and its proof, we deduce that for all L € [Ciog(s),00), m € (n +log, 1, 00),

r € (0,min{1,p_,q-})
and z € Q == Qi € 97,
supley s S S2° S [ (2o = o) @ Doy )] dy

lezm 7 (k+1)

which implies that

15, f S< ) (R™)
1 > .
el PRSI
T peo o(P) j=(ipv0) \ kezn
1 q()] <O
: [ * f(y)I" '
x |27" / - dy| X0
[ IEZZ” Qji(k+1) (1 + 23| : _y‘)2m+L "
Lp(-)(P)
1 > .
S| 3 { T e0san
"~ peo qb( ) j=(ipvo) \ kezn lezn
X [nj}erL * (|90J * fXQj(k+l) |T):| Xij} ) (28)

L) (P)
where the last inequality comes from the fact that, when z € Qj;, and y € Q (41,
1+ 2z —y| ~ 14l

Observe that, for any given P € Q, if Q;;, C P, then Qju4y C 3n|l|P for all
[ € Z™. By this and (2.8), we see that

1 > .
- E 7s(:)

™~ pe =
Q Jj=(3pVO0
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T

Ok IFTS)
x [Z(l D) jmerr * (5 * fX3n|lP’r)] } )

lezn
Lp(-)(P)

which, combined with the Minkowski inequality, Lemma 2.10 and Remark 1.1(i),
further implies that

IS

1 —-m

lezn
©© a() e ’
X D [jmer (127005 5 fxauupl?)]
J=(pVO0) ol )

From this, Lemma 2.9, m € (n+log, ¢;, 00) and the condition (S1) of ¢, it follows
that

|| S@f”f:((l')):j(l)(Rn)

, 1
1 . - T
< sup —— o) S+ YD (20, « )
Peg lezr i=(pV0)
LrC) (3n|l|P)
Sl 506 (gn) Z<1+|Z|)—m(1+m)1ogm o

lezn

which implies that S, is bounded from F (()) (H(R™) to fs( 5 (R™).

By repeating the argument used in the proof of [80, Theorem 2.1], with [80,
Lemmas 2.7 and 2.8] therein replaced by Lemmas 2.5 and 2.8 here, we conclude

that T, is bounded from fs( ,(R?) to Fs( (y(R™), the details being omitted.

Finally, by the Calderén reproduemg formula (see for example, [30, Lemma 2.3)),

we know that T, o S, is the identity on Fp(( ))q( )(R”), which Completes the proof

of Theorem 2.3. O
3. SEVERAL EQUIVALENT CHARACTERIZATIONS OF F (]R”)

In this section, we first establish molecular and atomic characterlzatlons for
F;((.’))ﬁ.)(R”) via Sobolev embeddings. Secondly, we characterize F°" () (]R”) i
terms of the Peetre maximal function, which is further applied to show that

S(R™) = Fi) 0 (R") — S'(R")
().

and give out two equivalent quasi-norms of I’ (), ()(R”) which may be useful in
applications.
For notational simplicity, in what follows, for all Q € Q%, let Xg := |Q|™*2xq-
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Proposition 3.1. Let ¢ be a set function as in Definition 1.4, So, S1, po, p1 be
measurable functions satisfying that, for all x € R™, —oo < s1(x) < so(z) < o0,
0 < po(x) < pi(x) < 0o and

n n

so(x) — =s1(x) — )
0( ) p0< ) 1( ) pl( )
Assume that 0 < (po)- < (p1)- < (p1)+ < 00 and so, - € C%8 (R™). Ifg(z) = oo
forallz € R™ or 0 < q_ < q(x) < oo for all x € R", then
)

S0 s1(:),¢ n
po(r.a() R = Lol G (R?).

a(:
Proof. Let t :== {tg}geo € f 0(())’;5( (R™). We need to prove
It

)
¢

£1000 (o) < ||t 90()4> "
For(ia) B™) o) B™)

To this end, let P € Q be any given dyadic Cube. For all Q € Q7 let ug = tg
when Q C P and ug :=0 otherwise Then, by the Sobolev embedding theorem

([72, Theorem 3.1]), namely, f (R”) — fsl( ,(R"), we conclude that
- o)
o (- ~ q(-)
Z Z 2J 1()|tij’Xij}
=(jpV0) keZnr
Lm(‘)(p)
1
q() ©
= Z Z 2J a1() |quk|Xng} = Hu fsl(‘)v1 (Rn)
—~ = p1()a()
J= LP1() (Rn)
j qa(-) w
Sl f001 @) Z > [20ug,, X,
=0 keZn Lp0<'>(]R”)

1
q(-)

~ ST S 20, R, " ,

j=(ipVO0) keZn
LPO(‘)(P)

which implies that

1
q(-)

1 q(’)
tl porcre L Ssup —— 2]0( to. X
| For().a() ®™) peo O(P) ; ;/0 ke%l | Q3k| ka}
} LPo()(P)
~ ||t E '
| £y @)
This finishes the proof of Proposition 3.1 ]

Proposition 3.2. Let ¢ be a set function as in Definition 1.4, So, S1, Po, p1 be
measurable functions satisfying that, for all x € R", —oo < s1(x) < so(x) < 00,
0 < po(z) <pi(z) < oo and

So(z) —

M = s1(x) — m
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loc

inf [so(z) — s1(z)] > 0.

z€eR™

Assume that 0 < (po)— < (p1)+ < 00, So, pio e O (R™) and

Then, for all q € (0, 0],
Tty (RY) = fr( e (R).

pO(')roO

The proof of Proposition 3.2 is similar to that of Proposition 3.1, with [72,
Theorem 3.1] replaced by [72, Theorem 3.2], the details being omitted.

Remark 3.3. (i) When ¢(Q) = 1 for all cube @, the conclusions of Propositions
3.1 and 3.2 are just [72, Theorem 3.1] and [72, Theorem 3.2], respectively.

(ii) When p, ¢, s and ¢ are as in Remark 1.5(ii), Proposition 3.2 goes back to
[80, Proposition 2.5].

Combining Theorem 2.3 and Proposition 3.1, we immediately obtain the fol-
lowing Corollary 3.4, the details being omitted.

Corollary 3.4. Let i € {0,1}, p;, ¢ € P(R") satisfy i é € C'8(R") and s;
be measurable functions satisfying s; € Clﬁ’i (R*)N L"O(R"), and ¢ a set function
satisfying the conditions (S1) and (S2). Under the same assumptions as in
Proposition 3.1, the following conclusion

00 mom S(06 (mn
Foniyaty R™) = FL G0 (R™)

holds true.
Corollary 3.5. Let i € {0,1}, p;, ¢; € P(R™) satisfy i % € C8(R") and s;
be measurable functions satisfying s; € C°5 (R™) N LOO(]R”), and ¢ a set function

loc

satisfying the conditions (S1) and (S2). Assume that, for all x € R™,

so(z) — M = s1(x) — (@)

and inf,egn[so(x) — s1(z)] > 0. Then

006 (mm a6 mm
Footan) (R = Ep 5o (RY)-

Proof. By Proposition 3.2 and (2.6), we see that
fSO(‘)7¢ ()(Rn) SN fSO (Rn) s f81

po(-),q

(R = f00 (R,

1

From this and Theorem 2.3, we deduce that F SO(())q H([RY) < F;ll((f))v’ql(_)(R”),

which completes the proof of Corollary 3.5. U

Next we establish molecular and atomic characterizations of Triebel-Lizorkin-
type spaces with variable exponents.

Definition 3.6. Let K € Z,, L € Z and R € N.

(i) A measurable function mg on R" is called a (K, L, R)-smooth molecule
with @ := Qi € Q, where j € Z and k € Z", if it satisfies the following
conditions:
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(M1) (vanishing moment) when j € N, [, 27mg(z)dx = 0 for all v € Z7}
and |y| < L;

(M2) (smoothness condition) for all multi-indices a € Z7, with |o| < K,
and all z € R"

|Dmg(x)] < 200Hm/23(1 4 2 |¢ — 2o]) 7.

(ii) A measurable function ag on R" is called a (K, L)-smooth atom supported
near ) := Qj; € Q, where j € Z and k € Z", if it satisfies the following
conditions:

(A1) suppag C 3Q;

(A2) (vanishing moment) when j € N, [o, 27aqg(z)dz = 0 for all v € Z7
with |y| < L;

(A3) (smoothness condition) for all multi-indices o € Z7} with |o| < K,

|D%agq(x)] < 20e47/27 for all oz € R™.

Remark 3.7. (i) If L < 0, then the vanishing moment conditions (M1) and (A2)
are void.

(ii) Let ag be a (K, L)-smooth atom with @ := Q;;, € Q* with j € Z, and
k € Z™. Then, by combining the conditions (A1) and (A3), we conclude that, for
all R € (0,00), o € Z'y with |a| < K and z € R™,
1
(1+ 27|z — zg|)R’

|D%aq(z)| < Collal+n/2)j

where C' is a positive constant independent of z, o, @ and ag, but depending
on R. Thus, each (K, L)-smooth atom is a (K, L, R)-smooth molecule up to a
harmless positive constant.

Theorem 3.8. Let p, q, s and ¢ be as in Definition 1./.
(i) Let K € (s4 + max{0,log, ¢}, 00) and

e (mm{lf;,q} —n—s,oo). (3.1)

Suppose that {mqg}qgeo- is a family of (K, L, R)-smooth molecules with
R large enough and that t = {tg}geco+ € f;(())j)()(R”) Then [ :=
> 0co- tomq converges in S'(R™) and

/1

with C' being a positive constant independent of t.

(ii) Conwversely, if f € F;((f))’i.)(]R”), then, for any given K, L € Z., there exist

a sequence t := {tg}tgeor C C and a sequence {ag}geo+ of (K, L)-smooth
atoms such that f =3, . toaq in S'(R") and

g S(0b o
p()a(- Fo(hia() ®™)

t S\t n < C R n
| “f;((»),fm(R )~ “fHFpS((»),f(»(R )

with C' being a positive constant independent of f.
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Remark 3.9. (i) When ¢(P) := 1 for all cubes P C R", conclusions of Theorem
3.8 coincide with those of [35, Corollary 5.6]; when p, ¢, s and ¢ are as in Remark
1.5(ii), Theorem 3.8 goes back to [23, Theorem 3.12] (see also [30, Theorem 3.3]).

(ii) In the case that ¢(P) := 1 for all cubes P C R" and s > 0, the vanishing
moment and the smoothness conditions of Theorem 3.8 can be further refined.
Indeed, it was proved in [20, Theorem 3.11] that the vanishing moment and the
smoothness conditions of atoms can be localized on dyadic cubes associated with
atoms in Theorem 3.8.

Proof of Theorem 3.8. The proof of (ii) is similar to that of [80, Theorme 3.3]
(see also [27, Theorem 4.1]). Indeed, by repeating the argument that used in the
proof of [30, Theorem 3.3], with [80, Lemma 2.8] therein replaced by Lemma 2.8,
we can prove (ii), the details being omitted.

Next we prove (i) by two steps.

Step 1) We show that f = 3", o. tgmq converges in S'(R"). To this end, it
suffices to show that

N
N—>£§I/{—>oo Z Z tijmij (3'2)

J=0 kezZn,|k|<A

exists in S'(R"). For all h € S(R™) and j € Z,, by the vanishing moment
condition (Ml) we see that

[ ey
R™ pezn, |k|<A
D’yh<$Qj )
[ tomou) [y > w-we | dy
R™ pezn, k<A ~EZM, |y|<L v
and, by Taylor’s remainder theorem, we find that, for all y € R,
DVh(zq,,)
hy)— D (- 17ij)ka
~eZ™, |y|<L
|D
N ]le Z
Iv|=L
DYh(&
S0+l =g 1+ 1) sup 3 1+ ey P,

IvI=L
where ¢ € (0,00) and £(y) := y + 0(rq,, — y) with some ¢ € (0,1) depending on
y and zq,,, which, together with the fact that, for all y € R",
|mij (y)| < 2jn/2(1 + 2j|y - ijkD_R?
further implies that

/R ta,uma,, (h(y) dy

keZn, |k|<A
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i (1+[yD)~°
|tQ. |2 J(L—n/2) : — dy
/R kezn, |k|<A " (1+2]|y_ijkDR L

<Z/2NMWLW UL WD gy (3.3)
k (14 27y = zq, )=

Do kezn
where Dy := {x € R": |z| < 1} and, for all v € N,
D, ={xcR": 2"7! < |z| <2"}.

Forallve Z,,ye D, and j € Z,, let WY :={kez": 2|y — rq,.| <1} and,
for ¢ € N,

WP ={kez: 27 <2y — zg,| < 2'}.
Then we have

. 1 .
H(v,joy) =Y lt, [|Qul 3 (1 + 2y — 279k[)~ (A1)

kez™

00 Cih B
~ D D 2 Pl Q]

=0 k‘EWiy’j

—i(R—L ~
~ 22 ( )/ [Z |tij|Xij(z)] dz.
i=0 Yiewi Uik kezZn
Observe that,’ if z € UEEWZy,]:QjE, then z € szo for some %0 € Wf”’j and, for
y € Dy, 1+ 27|y — z| ~ 1+ 2% moreover,
2] <z — ijEO| + |$Q]"]§0 —yl+ 1yl S277 42774 4 20 L2
which implies that

U @ € Q0 21+7+)

kew}

with some positive constant ¢y € N. From this, we deduce that, for all a € (n, ),
v, j € Z, and y € R",

2Jn
U 92— i(R—L—a) / :
3:9) Z: (1+ 2y —2))°

Eewnyak

X [Z ’tij‘%ij(Z)XQ(O,QiJFUJFCO)(’Z)] dz

keZm

S Z 27 L=, <Z |tij|%ijXQ(072i+“+C°)) ).
i=0

keZn
which, combined with (3.3), implies that

A ta,umay, (h(y) dy

keZn, |k|<A
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2 JLf:i 1+2v 502—Z(R L—a)

v=0 =0

X/D e ¥ <Z !?ij\XijXQ<o,zz‘+v“O>> ()AL + [y~ dy,  (3.4)

keZm

where 0y € (0, 00) is determined later.
By (3.1), we find that there exists r € (0, min{1, p_,¢_}) such that

:L—f—ﬂ(r—l) > —L.
p

Let, for all z € R", p(z) = p(z)/r, (p(z))* = % and S be a measurable
function on R™ such that, for all x € R",
n - n
s(x) — — =5(x) — =——.
e R
Then
_ ) n(r—1) ) . n(r—1)
= — Jls =
o= xlean" {s(:c) N p(x) } - :cleann[8<x>] +xleann [ p(x)
=s5_+ ﬁ(7’— 1) > —L.
P

Choosing § € (0,00) and §y € (max{0,log,¢; },00) such that

6 € (n(1—r1)/py + do, 00),

by the Hélder inequality in Remark 1.1(iii), (3.4), Lemma 2.9, Remark 2.2(ii) and
Proposition 3.1, we conclude that

/ tijmij (y>h(y) dy
R™ pezn, k<A
(L+5- —vd —i(R—L—a) —5+06
s 2 22 022 Iie! +0HL<5<‘))*(Rn)
Nj,a * [Z 2j§(.>|tij’XijXQ(O,Z””*CO)]
kezn LPC)(R™)

Z 2750) |tij |5€ij

kezmr

< 9—i(L+35-) i 9—vdo i 9—i(R—L—a)

5 2—j(L+s Z 9= vdo Z 2—1 (R—L—a) (O, 2i+v+co))

v=0

<2 J(L+5- 22 v(do—logy €1) 22
= 1=0

<2 J(L+3-)

PO (Q(021++<0))

S ®)

()(R")

||t||fs(>¢ ( ny
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where R € (0, 00) is chosen large enough, which, together with L > —5_, implies
that (3.2) exists in S'(R"™) and [(f, h)| < ||t||fs(.)¢ (@
Step 2) We prove that || f| £20%  (n)”
p( )»q

dyadic cube and r € (0, min{1,p_,q_}) such that L > n/r —n — s_. Then, by
Remark 1.1(i), we find that

Let P € Q be a given

itz < 1

_1_
a(-)

1 (0.0
e ST 2OLey )"
o(P) ||| .4
j=(3pV0) 20 (P)
w0y 75"
1 0o (ipVO)— T
S o > fetr Z Z Lol * mel”
o(P) ||| .4
j=(ipVO0) ()
L+ (P)
1
a0y o ||”
1 > '
o > et Z Z !fQ| |pj * mql"
7=(pV0) v=(3pV0) (Q)=2 o
L (P)
:::Il%_l%
here SUPYO1 L — 0if jp < 0.

Observe that I; = 0 if jp < 0. Thus, to estimate I;, we only need to assume
jp € N. By [26, Lemma 3.3] (see also [35, Lemma 3.5]), we find that, for all
Q= Q. € Q" with v < j and x € R™,

|05 ¥ mo ()| S 27220 (1 + 2w — wq|) ™,
which, combined with (2.6), implies that

oo jp—1
{z S 950 5™t | Qul

j=jp v=0 kezm

x 207K (1 427 —vakl)R’"}

We claim that, for all v, j € Z, and x € P,

J(v. 4,2, P) = 2207 37 Jto M Quel 220795 (1 4 2% — g, [)
kezn

5 2(v—j)(K—s+)r Z 2—i(R—a—£/r)r

=0
T

XNy,ar * Z |thk |2 XkaXQ (ep,2i~vF<0) (ZE),
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where a € (n/r,00), € € [Ciog(s),0), cp is the center of P, ¢y € N is a positive
constant independent of =, P, i, v, k, Qy" :={k € Z": 2'|x — xq,,| < 1} and,
for all 7 € N,

QY i={keZ": 27 <2z —uq,,| <2'}.

Indeed, it is easy to see that

J(U7j7 x? P) SJ 2j8($)r2(v_])K7‘ Z Z 2_R7‘Z|thk|T|QU’€|_§
i=0 ke
~ 9lis@)+@—j)K]r

T

<3 2*M“ﬁ/ S ltoulTen®)| dyb. (36
7=0 %

Urea? v Quf keQr”

Observe that, if y € Uz 0@, 7, then there exists a ko € Q" such that y € Q 7

vko
and 1+ 2°|z — y| ~ 1 + 2% moreover, since v < jp, it follows that

y—crl<ly—go, |+l —aq, | +|o—crl
52—11 4 22’—11 + 2—jp S 2Z'—”U,
which implies that Up_q=vQ,; C Q(cp,2"7"+) for some constant ¢y € N. From

this, (3.6) and Lemma 2.10, we deduce that, for all a € (n/r,00), v, j € Z, and
r € P,

‘](U7 j7 x, P) S 2]'8(1)7‘2(’07]‘)[(7’ Z 2(a+E/T*R)ri /

=0 keQI v @k
'

2’UTL
T+ 2T =y

x Z tQ. |%QukXQ(CP,2F“+CO)(y) dy

keQl”
< 2(v—j)(K—s+)r Z 2(a+e/r—R)r7L
=0

XT]U,GT’ * Z 21}8(')|th1€|5</QUkXQ(CP72iiv+CO) (I‘),
keQl”

which implies that the claim holds true.
By this claim, (3.5) and Remark 1.1(i), we conclude that

1 N ¢ { f: ]Pi:l (v=j)(K—s4)r Z 2(a+6/7"—R)7‘i

j=jp v=0 =0

X e | | D 1t0ul2OX@uXB(ep.2i-++0) ;

keQ; L2 Py
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which, together with Lemma 2.9, jp € N and Remark 2.2(ii), further implies that

(v=3)(K—s (a+e/r—R)r
1S | 20 o2
Jj=jp v=0
l.
Z |tQuk’2v8()5€ka
kezn LPO)(Q(ep,2i-Fe0))
oo Jp
(v (K—s:)r
Slellycre (Rn){ZZ2 e
Jj=jp v=0

X T o(ate/rRyri [0(Q(cp, 27V F))) g
;2 [o(P)]" } :

From this, K € (s; + max{0,log, ¢, },00) and the fact that, when v < jp,

A(Q(cp, 27")) S(@)'9(Q(ep, 27)) S (&) 7" h(P)
~ Qi+ip—v)logy e o(P),

we deduce that

LSt

jp
s<>¢> @) {2”’1"%201 Z 9—J(K—s4)r ZQU(K—S+—10g251)r

Jj=ip v=0

x ZQ—i(R—a—a/r—logza)r} < ||t||fs()¢ @y (37)

where R € (0, 00) is chosen such that R > a + ¢/r + log, ¢;.
We now estimate Iy. By applying [20, Lemmas A.2 and A.5] and an argument
similar to that used in the proof of [20, Lemma 6.3], we see that, for all j € Z,

Q:=Q., € Q and x € R",
05 % ma(@)] S 277 0VNQI™ 2 (0 kM * XQ) (@),
where
B(j,v) := Kmax{j — v,0} + L max{v — j,0}.
Let
M € (n/r +logy(cicy), 00)
and ¢ € [Clog(s),00) be such that R = 2M + ¢/r. Thus, we have

o0

1
2 S o Z Z Z 9is()ro—B(j0)r
oP) ] 2
J=(pV0) | v=(pV0) £(Q
aC) q(r'> r
X |tQ|T|Q|_§(nj,2M+E/T*nv,ZM-‘r&/r*XQ)T . (38)

LrO)(P)
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By [20, Lemma A.4], we find that, for all v € Z, and ¢(Q) =27,

93s()r=B(Gv)r (77]',2M+€/r * Mv2M+e/r * XQ)T
< 2js(-)rfﬁ(j7v)T2nmaX{”*j’O}(liT)nj72Mr+e * Tl 2Mr+e * XQ

~ 21}3(-)7‘27(Kfs+)r max{j—v,0}
(

N L—Z+4n+s_)rmax{v—3,0}

Nj2Mr+e * Tv2Mr+e * XQ>

which, combined with (3.8) and Lemma 2.10, implies that

[ee)

2§ﬁ > maae Z Z |th Q>

j=(ipV0) =(jpV0) Q)
a0y 0 ||
% 2vs(')rfs(j,v)rnv’2Mr+€ % XQ])

oo

1 / 20m .
< - , 9us()—<(jv)
o(P) 212 priopy (14 29] - —y[)2Mr 2

j=(ipv0) |lezn

90y 70 ||

> “;i] Mo2mrie ¥ XQ | (y) dy , (3.9)
oo

N
B
i
5

where
e(j,v) == (K — sy)max{j —v,0} + (L — n/r + n+ s_) max{v — j,0}.
From this, the fact that, when j > jp, [ € Z", x € P and y € P + l{(P),
L+ 2o —y| 21+ 27|z —y| ~ 1+ i,

the Minkowski inequality, Lemma 2.9 and Remark 1.1(i), we further deduce that

25@ | Z D A 1)y Z > ltal
j=(ipVvo) |lezn =(pV0) £(Q)=2""
% |Q|_%QUS(')T_E(j’v)Tnv,QMT+5 * XQ] Xp.Hg(P))]
LLT')(P)

o

1 Mr
Sm Z(1+|l|)_ Z Nj,Mr * Z Z \tQ|

lezn J=(jpV0) v=(jpV0) £(
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<
2
<
Q‘
ok
3

X Q722U Uy e ¥ XQ] XP“‘(P))]

L+ (P)
1 B . [e.9] o . .
S | 3 (X S periar
lezr i=(pV0) \v=(jp )=27"
07 7 -
% 2US(')T_E(]‘7U)T77’U,2M7‘+€*XQ) ) (3.10)

2 (pyie(p))

L

By the Holder inequality,
K € (s; + max{0,log, ¢ }, 00),
L e (n/r —n —s_,00) and the fact that 0 < ¢_ < g < oo, we see that

a7 76

e}

S5 Y S IR0y ek g

i=(ipV0) \v=(jpV0) £(Q)=2""

( o) qL-)
’S Z Z 2" "G Z |tQ|T|Q|_%2US(.)T77U,2M7"+5 *XQ
\J (pV0) v=(jpPVO0) 0(Q)=2""
r a) ﬁ
S Z Z ‘tQ‘ ‘Q’ 22 nv 2Mr+e * XQ )
v=(jpV0) | £(Q)=2""

which, together with (3.10) and some arguments similar to those used in the
proofs of (3.9) and (3.10), implies that

1 —Mr = r -z
Ing Z(l +p~ Z Z ltol"[Q 2
lezn v=(jpVO0) | £(Q)=2""

1
T

X 2v8(.)r77v72M7“+5 * XQ]

L (i)

sﬁ SSa=mrlf S [va«w-M

lezn v=(jpVv0) Lkezn
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r

X Ty, My ¥ > [tel27V%
(@=2-
a0\ 70

X XP+(l+k)£(P)> ]
piﬂ')

L™ (P+lL(P))
From this, the Minkowski inequality, Remark 1.1(i), Lemmas 2.9 and 2.6(ii), we
deduce that

LS — | 3 (1 )M k)M
at )_k,IEZ"

Sl

o
q(:) ) O

o0

X > > 220lig|xg

v=(jpV0) | (@Q)=2"

LPC) (P+(I+k)L(P))

S ||t||f;((;)>:;>(')(Rn) {kén(l )M 4 (R M [p(P +[g(4}r))k]:2€(P))r}

1
2
< ||t s(), " 14|l —Mr+rlogy(c1cy) 1+ |k —Mr+rlogy(cici)
<l I e ®) {k%n( 1) (1 + |k|)
" e 3.11
I35 0 -

where M is chosen large enough.
Finally, combining (3.7) and (3.11), we conclude that

/]

which completes the proof of Theorem 3.8. |

Fs

(0 gy S SUp(l +12) S It
p(-),q(+) PcQ

(b om
¢ Fo(hia()®™)

Next we establish the Peetre maximal function characterization of F;((f)) ’;}.)(R").

Let (, ®) be a pair of admissible functions. Recall that the Peetre mazimal
function of f € S'(R™) is defined by setting, for all j € Z,, a € (0,00) and
r e R™

. |05 % [z +y)|
©jf)a(x) := sup : :
)= o S o
where ¢y is replaced by ®. The following Lemma 3.10 comes from [71, (2.48) and
(2.66)].

Lemma 3.10. Let (p,®) be a pair of admissible functions, f € S'(R") and
N € N. Then, for allt €[1,2], a € (0,N], £ € Z, and x € R",

* r S —vNro(v+L)n ‘(90U+£)t*f(y)|r
(o) < 03 ameast [ B
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where r is an arbitrary fived positive number, ¢q is replaced by ® and C' is a
positive constant independent of p, ®, f, x, { and t.

Theorem 3.11. Let p, q, s and ¢ be as in Definition 1./. Let

n ~
S (m + log, ¢1 + Clog(s), OO) . (3.12)

Then f € F;((.'));(i.)(R”) if and only if f € S'(R™) and || f|

*
Wb ey < 00, where
Fpiy.a() ®)

1

- o
1 is(- a()
flsr6 gy = SUP 29500 fa
| ’Fpé,;,j},)(R ) peg ¢(P) ._Z (23]
j=(ipV0) L) (P)
Proof. Observe that, by definitions, we have || f|| .sc1.e gay < [ f %000 . Next
p(-),q(-)( ) Fp(»):q(»)(Rn)

* S(')= n

we show that ||f||F;((")>:;’(')(R") < ||f||F;(('.)):;>(')(Rn) for all f e F " (R").
By (3.12), we find that there exist r € (0, min{p_,¢_}) and ¢ € (log, ¢1,00)
such that a > n/r + ¢ + Clog(s). For any given dyadic cube P C R", by Lemma

3.10, we see that

1 > 2
Tp=—mlld D [N
o(P) ||] . ~4
i=@ipVO0) L))
1 s ) s .
g - 2]5(-) 271)Nr2(v+])n
ao || 2 [ (Z
Jj=(3pV0) v=0
179() ﬁ
oy * f()] ) ’
X . dy , 3.13
Lot (3.13)
Lp(')(P)

where N € NN [a,00) is determined later. Notice that j > (jp V 0) and, for all
r € Pand y € (2"1/nP)\(2*v/nP) =: Dy p with k € N,

1+ 2|2 —y| > 27279r2F,
Then it follows that, for all z € P,

/ Isom x f(y)|" dy
g (14 27|z —y|)or

_ N (ors * F)"
- {/2\/51)—1—2/[)1@,13} (1 + 2j|$ - y|)ar dy

k=1

<277 g (|90v+j * f|TX2\/ﬁP) (z)

+9—i(er+n)gjper Z Z_ksrnj,(a—e)r % (|<Pv+j % f|rXDk,p) (2)
k=1
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177
=:1p1 +1po,
which implies that
e 00 @« ﬁ

1 . . "

JP g 2]5(-)7“ 2711Nr2(v+])nIP1
P ) 2= [ 2 ’
J=(ipV0) v=0
Lp(‘)(P)
. - o 1y«
2js(-)r 2var2(v+j)nI
|| [ 2
i=(pV0) v=0
Lp(‘)(P)
:ZJPJ + Jp72. (314)

For Jp1, by Lemmas 2.10 and 2.9, the Minkowski inequality and Remark 1.1(i),
we find that

[un

AR |l R

0o oo a0y 9()
2(n—N7")v2js(~)r|SOU . f|r
TN .

3

j=(pVv0) Lv=0

L% 2vip)

Z v(Nr—n+s_ r) 1

[o(P)]"

1T L
0 q(+)

v ¢)

xlle D0 2Ol = 17
j:(jp\/o) LP(A)(z\/ﬁP)
1
S 2 0w o~ [l s s 3.15

where we used the condition (S1) of ¢ in the third inequality and N € N is chosen
large enough such that N € [a,00) N (2 —5_,00).

For Jps, by an argument similar to the above, we find that

JPZ {ZQ v(Nr—n+rs_ 22 ka

. ﬁ r r
X Z [2 sl ‘9011+] * f’ ]
J=(jpVv0) Lp(‘)(th)

1
T

{22 v(Nr—n+rs_ 22 ker 2 " +;TP)] } Hf’

()0
Fo(yiat) ®™)
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1
$q 2 MEe o, Wl s o 3.16
- {,; I e ey ~ Mmoo (3.16)

Combining the estimates (3.13), (3.14), (3.15) and (3.16), we conclude that

111 PO (an) < sup Jp S ]SDUP(JPI +Jp2) S| f]
€Q

S( ) ¢>< )(Rn)?
which completes the proof of Theorem 3.11. 0

As applications of Theorem 3.11, we obtain two equivalent quasi-norms of the
space F (())q( y(R™). To this end, for all f € S'(R"), let

’ (1 5 {Z [QJ'S(.)Wj *fl]q(-)}

j=0

o (RY

= sup
1 PeQ @

() (P)
and

(R

_s(@) _
|77 = supsup QI [9(Q)] el i * ()]
2 QeQzeQ

Theorem 3.12. Let p, q, s, ¢ be as in Definition 1.4.
(i) If ¢ € (0,27/P+), then f € FS(’W y(R™) if and only if f € S'(R") and
||f|FS( H(R™)[[1 < oo; moreover, there exists a positive constant C, in-
dependent of f, such that

Il R,

(i) If ¢; € (0, 2‘”“’ ) then f € FS() Ja0)(RY) if and only if f € S'(R") and
||f|F5()¢ (R™)|l2 < oo; moreover, there exists a positive constant C, in-
dependent of f, such that

CHI £l 00 gmy < Hf‘F (R™)
Proof. We first show (i). To this end, it suffices to show that
IF1E s R < 1F

since the inverse inequality obviously holds true by definitions.
Let P € Q be a given dyadic cube. By Remark 1.1(i), we see that

= S o« 0 i
(P) ’

Folhia (R™)”

L <Clfl,

s( n
o @)

SO oom
Fo(y ) B™)

<

=0 LrO)(P)
1 (ipv0)—1 0 ﬁ
S =5 27°0; % f]*

Lp(-)(P)
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1 - i
b 3 Rl S
j:(jPVO) Lp(')(P)
where ZJPVO Vo =0if jp <0,
Obv1ously, Ipe < | fll SEANL O

For Ip;, we only need to estlmate it in the case that jp > 0. For any 7 € N
with j < jp — 1, there exists a unique dyadic cube P; such that P C P; and

((P;) = 279, Since s € C\°%(R™) N L>®(R"), it follows that, for all a € (0, c0),
x € Pandye€ P,

2@ |5 f(2)] S 25O (1 + Pz — y[) (0] Faly)
S PO W0 (g5 ) (y)

og(s) .
<2“°g<"’“/"‘ D20 (05 aly) < 2V (25 aly),
which implies that, for all z € P,

2o, (0 I PO D) (37)
yGPj

Thus, choosing r € (0,min{1,p_,q_}) and a as in Theorem 3.11, by Theorem
3.11 and Remark 1.1(i), we conclude that

1 jp—1 ‘ q(-) o)
Ipi < o(P) { Z L}él]g 2js(y)(¢;f)a(y)} }

Jj=0

Lr()(P)
1 jp—1 .
< @ Z HQJS(.)(QOJ HLP< HXP ”Lp(> (R™)
=0 L#(P)
1
jp—1 r aE
¢(P')] [ X Pl o) @y ]
< o ) j . 3.18
17585 {Z e Ioce, T2t e e

On the other hand, by [82, Lemma 2.6], we find that

HXPj HLP(‘)(R") Z 2 re e Ixp ”LP<'>(R”)

and, by the condition (S1) of ¢, we see that ¢(P) > 271e2€12-irlog2Clg(cp 277),
which, together with (3.18) and the condition (S2) of ¢, implies that

jp—1 g r %
7_10g2 1) Qb(Cp, 2 J):| jp(logy ¢ —-2)
. 2’ A A I Py
) (R™) {Z [ ¢(p,)

J

jp—1 ;
Rw{Z?] s } 2T

5()¢’ n
Folyat) ®™)
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where we used the fact that 51 € (0,2"/7+) in the last inequality. Therefore,

\7|F =Sl S
PeQ

which completes the proof of (i).
Now we prove (ii). For all @ € Q*, from (3.17) and Theorem 3.11, we deduce
that, for all x € Q,

Q)] x|zt r@r%% « ()|

||XQ||LP() (Rm) . s(y)
N —¢<Q) fIQI (somf) (v)

1

which implies that Hf]F (R”)HQ Il f] PO @)

Conversely, by choosmg r € (0,min{1, p q }) and an argument similar to
that used in the proof of (i), we conclude that, for any P € Q,

(R

S(6 om
Foyat)®Y)

(@ S /]

LrO(Q)

S(1b om
Fo(yat) ®™)

L
0o a(-)

ﬁ ST [0, )"

J7=(jpV0)
p() (P)

q(’)

Q
—~

Hf )F (&) i 3 $(P)'p(Q)xg

W =Govoy | adr—a-i Xl zoer ey
QeQ,Qcp
LrC)(P)
(Rn) ‘ 2 : ol (F=Flogze)r ' 5=jp (3= +logz 1)
2
=(jpV0)
‘ q ([RY) 2’

where we used the fact that ¢; € (0,27"/7-) in the last inequality, which implies
that

7563 oy S ILE o B
This finishes the proof of (ii) and hence Theorem 3.12. O

Remark 3.13. In the case that p, ¢, s and ¢ are as in Remark 1.5(ii), Theorem
3.12(i) coincides with [80, Corollary 3.3(i)] and Theorem 3.12(ii) goes back to [78,
Theorem 2.2(i)].

We now compare the Triebel-Lizorkin-type space with variable exponents in
this article with the variable Triebel-Lizorkin-Morrey space 5;((.')) o()u(R") intro-

duced by Ho [31] and show that, in general, these two scales of Triebel-Lizorkin
spaces do not cover each other.
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To recall the definition of the variable Triebel-Lizorkin-Morrey space in [31], we
need some notions. A measurable function u(z,7) : R™ x (0, 00) — (0, 00) is said
to belong to W, with ¢ € (0, 00) if there exist C;, Cy € (0,00) and A € [0,1/q)

such that, for all z € R™, u(z,r) > 1if r € [1,00), 72(&2;;) < 4™ ifr € (0,00), and

;
<MY o gcr <<
u(z,r)

Definition 3.14. Let p, q, s, {¢;}jez, be as in Definition 1.4 and u € W,,

Then the variable Triebel-Lizorkin-Morrey space 5;((:)) q(.)u(R”) is defined to be
the set of all f € S'(R™) such that

1
1 > . ) q(-)
s = S 235() | o % q < 0o,
Er0 a0 B™) = u(z, R) {Zo (2l £1] 00
Re(0,00) J= Lp(‘)(B(Z,R))

Remark 3.15. (i) We point out that the Triebel-Lizorkin-type space with variable
exponents in this article can not be covered by the Triebel-Lizorkin-Morrey space
in [31] even when ¢, € (0,2"/P+). To see this, it suffices to show that there exists a
set function ¢ satisfying (S1) and (S2) does not belong to W, for any ¢ € (0, c0).

Indeed, for all @ C R", let ¢(Q) = fQ |z|* dz, where o € (—n,0). Then, by
(65, p.196], we know that ¢ is doubling, which, together with Remark 1.3(iv),
further implies that ¢ satisfies the conditions (S1) and (S2). However, ¢ ¢ W,
for any ¢ € (0,00). To see this, let zy € R™ and r € (1,2) satisfy |zo| > 2r. Then

oa0.r) = 9(QGaor) = [ ol dy ~ faol®
Q(zo,7)
tends 0 as |zg|] — oo since @ € (—n,0), which implies that ¢ ¢ W, for any

€ (0,00).

(ii) Also, the variable Triebel-Lizorkin-Morrey space investigated in [31] can
not be covered by the Triebel-Lizorkin-type space with variable exponents in this
article. To see this, it suffices to show that there exists a function u such that u
belongs to W; but does not satisfy the condition (S2).

Indeed, let, for all z € R™ and 7 € (0,00), u(z,7) := r*®  where \(z) :=

n(l — 1+|x\) Then, as was pointed out in [31, p.380], v € W,;. However, u
does not satisfy the condition (S2). To see this, let z, y € R™ satisfy that

e < |z| < M and |y| = 1+|’”‘ — 1, where € € (0,00) and 7 € (g,00). Then
1+ |z|
@ =yl <ol +yl = l2] + —— -1 <,
but
’U,(x,?") n( 1 1 ) ne
— L = ' \+yl Itz = itz o0, as r — 00,
u(y,r)

which implies that u does not satisfy the condition (S2).

As an application of Theorem 3.12, we prove that the space F;)(’f? o(R™) coincides
with the Morrey space with variable exponent, MZ(')(R”), which is defined to be
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the set of all measurable functions f such that
1
||f||Mi<->(Rn) = gelgmnfﬂm-)(m < 00

where the supremum is taken over all dyadic cubes of R™.

Remark 3.16. (i) We point out that, in [31], Ho studied the variable Morrey
space Mﬁ(')(R”), which is defined in the same way as ./\/li(’)(R") above but with
¢ replaced by u as in Definition 3.14 and the supremum is taken over all balls of
R". From Remark 3.15, we deduce that the Morrey space with variable exponent
MZ(')(R") in this article and the variable Morrey space Mﬁ(')(R”) in [31] do not
cover each other.

(ii) For ¢ : R™ x (0,00) — (0,00) and a variable exponent p : R" — [1,00),
Nakai [52] introduced the variable Morrey space L®¥)(R™), which is defined to
be the set of all measurable functions f such that

HfHL(PW)(]R") ‘= sup ”pr,%B < 00,
balls BCR"

where, for all balls B := B(z,r) C R", ¢(B) := ¢(z,r) and
(

LU
||f||p,@,Br=inf{A€( : |B|/['f§f'} dygl},

and the supremum is taken over all balls B of R".
We claim that, if there exists a positive constant C' such that, for all x € R"”
and 0 <7 < s < 00,

C'o(x,r) < ¢(w,s) < Co(x,7) (3.19)
and, for all balls B C R™ and all y € B,
p(B)|B| ~ [¢(B)FY, (3.20)

then MZ(’)(R”) coincides with L®®)(R™).

Indeed, by (3.19) and the definition of || - we conclude that

: /)l
Wl {2090 /B[¢<B>J waif

On the other hand, by (3.20), we find that

inf{)\e(o 00) : /BuJé;))Hp(y dyél}
Nmf{Ae( |B|/{|f } dygl}

which, combined with (3.21), implies that MZ(')(]R”) coincides with L®#)(R").
This proves the above claim.
Obviously, in general, these two scales of Morrey spaces with variable expo-

nents, MZ(’)(R”) and L®#)(R™), may not cover each other.
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In what follows, for all p € P(R"™), denote by LP()(¢2(R™)) the set of all se-
quences {g;};ez, of measurable functions such that

2

{95} ez, oo gy = || D 19l < o0.
JEL
Lp(')(Rn)

Let (¢, ®) and (¢, U) be two pairs of admissible functions satisfying (2.1). The
operator G is defined by setting, for all f € LPO(R™), G(f) = {¢; * f}jez.,
where, when 7 = 0, ¢y is replaced by @, and its conjugate operator G* is defined
by setting, for all {g; }]€Z+ e LFC (EQ(R”))

G ({gjtiez,) : Z Vi * g

JELy

where, when 7 = 0, 1)y is replaced by V.

Remark 3.17. Let p(-) € C'§(R") satisfy 1 < p_ < py < oo. Then, from the fact

that LPO(R") = FO() (R™) (see [20, Theorem 4.2]), we deduce that the operator

G is bounded from L” CO(R™) to L )(¢?(R™)). Furthermore, by an argument
similar to that used in the proof of [31, Corollary 4.4], we conclude that the
operator G* is bounded from LP)(¢2(R™)) to LPO)(R™).

Proposition 3.18. Let p and ¢ be as in Definition 1./ and ¢, € (0,2%/P+). If
1<p. <py <oo, then
() (mony _ 10,0 n
Mg (R") = F, 0 ,(R")
with equivalent norms.
Proof. We first prove that MZ(')(R ) — FO(‘;;2
fices to show that, for all f € /\/lp(')(R”)

SUD 0 0) {Z |5 * f‘z} S HfHMg“(Rn)’ (3.22)

QeQ ¢
Lr)(Q)

(R™). By Theorem 3.12(i), it suf-

where {(;}32, are as in Definition 1.4.

For all @ := Q(zo,7) € Q, let fi = fXQ(zo,2r) and fo := f — fi. From [20,
Theorem 4.2] and the condition (S1) of ¢, we deduce that

{Z | * f1|2}
=0

1 1
PO®Y ™ R00) PE(Q(zo,2r N P() (Rny* 3.23

LrO(Q)
On the other hand, by the Minkowski inequality, we find that, for all z € R",

{Z\@j*ﬁ(aﬁ)!?} S/R”\Q ) {Z\gojx— } |f(y)| dy
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< ]
R™\Q(x0,2r) |9C - ?/|” Z Sk [z —y[" yl"

where, for k € N, Sy = Qps1 \ Qr and Qy, := Q(xg, 2Fr). Observe that, when
1 € Q(zo,7) and y € Sk, |z —y| > 2Fr. Setting (p(-))* = ) , by the Holder

)
inequality of variable Lebesgue spaces (see Remark 1.1(iii)), [82, Lemma 2.6] and
[31, Proposition 2.4], we see that

Z|‘P]*f2 }

i

120 (Q)

IS Z Sy nHfHLP()(Sk)HXSk“LP()* rylIXQll ro) (®ny

92— kn/py+
S Z Fnokn HfHLP() (Sk) ||XQk+1||LP( )* (R™) ||XQk+1||Lp() R7)
k=1
oo

S Z 27524 f 1| oo 5y
k=1

which, together with the condition (S1) of ¢, implies that

Shoenly | s are e o)
— — (Qr+1)  9(Q)
’ LrO(Q)
< Hf”/vlg(‘)(R”) Z 9—kn/pyoklogy @1, Hf”Mg("(Rn)’ (3.24)
k=1

where we used the fact that ¢; € (0,2"%/P+) in the last inequality.
Combining (3.23) and (3.24), we conclude that

Sup —— =< Z |(Pj f‘z} N glég(ll + 12) S HfHMZ(')(]R“)

QeQ </5
LrO(Q)
and (3.22) holds true.

Next, we prove that Fl?(fz))Q(R”) — MZ(')(R”). Let f € FI?(’.‘?Q(R”). Then, by
the Calderén reproducing formula (see [80, Lemma 2.3]), we find that

f:\I/*<I>*f+Z¢j*goj*f::Zzbj*goj*f (3.25)
j=1 J=0

in §'(R"), where ¥, ®, ¢ and ¢ are as in (2.1). For all j € Z,, we use f; to
denote @; * f. For all Q := Q(zo,7) € Q and j € Zy, let f] := fiXQ(zo,2r) and
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ff = f; = fjl. Then we know that

1 oo
m Z Vj i * f
Jj=0 Lr()(Q)
1 || 1 ||
Sa || e | T
J=0 Lr()(Q) J=0 Lr()(Q)
By Remark 3.17, the condition (S1) of ¢ and Theorem 3.12(i), we see that
1 * 1
JlN_¢( ) g <{fj }j€Z+)‘ Lp(')(]Rn)
1
1 oo 2
S o) {Z |05 * f|2} S lpos gny- (3.26)
7= 17O (Q(ao.2r)

On the other hand, for all z € Q(x, 2r), by the Hélder inequality, we find that

2

S 2| < / SOUE@E| -yl dy.

JEZ 4 R™\Q(x0,27) JEZ4

Thus, by an argument similar to that used in the proof of (3.24), we conclude
that

<
SPIS Hf“FS(’ﬁ,z(Rn)’
which, combined with (3.26), implies that

1 oo
Q) Z%*%*f STt J2 Sl lpos @)
J=0 LrO)(Q)

Therefore, > 72 g1 * ; * f € M‘Z(’)(R") and

Z;@bj * Q5o f‘ ( 5 “f”F;(ﬁ'd;’Q(Rn)a

J= Mg ')(Rn)
which, together with (3.25), implies that FI?(’fz))Q(R”) — Mg(')(R”). This finishes
the proof of Proposition 3.18. OJ

Remark 3.19. In the case that p and ¢ are as in Remark 1.5(ii), the conclusion
of Proposition 3.18 is already known; see, for example, [62, Theorem 3.9].

We end this section by giving another application of Theorem 3.11.
Proposition 3.20. Let p, q, s and ¢ be as in Definition 1./. Then

S(R") = FiM0 (R") — S'(R™),
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Proof. We first prove that S(R") — F;((.'))’(i.)(R”). To prove this embedding, we

need to show that there exists an M € N such that, for all f € S(R"),

/]

F;((:))’j(»)(Rn) 5 Hf”SM(R")’

Let f € S(R") and (¢, ®) be a pair of admissible functions. Let P := Q;.k,
be an arbitrary dyadic cube. If jp > 0, choosing r € (0, min{1,p_,q_}), by [80,
Lemma 2.4], Remark 1.1(i) and Lemmas 2.6 and 2.7, we obtain

L

1 > (. ©) a0)
D) > 20 f1)*
Qb( ) Jj=ijp
Lp(‘)(P)
_1
1 0 . 9—iM q()Y O
S I sy @ =757 {2’3(')—}
@5y |\ 2 (2 T
Lp(-)(P)
1 - 1 -
S llsua @ 5 g /(M
M1( )¢<P) jgj; (1 + | . D(M—&-n)r Lw(P)
1
- ; 1 " Ixell e py
< . 9—i(M—sy)r :
~ ||f||$1\4r-~-1(]R ) {J%; (1 + 2_]P|kP|)(M+n)r ¢(P)
< ”fHSMH(Rn)Q—jp(%+ﬁ—s+—log2 01)(1 4 |kPD—%—&-n(i-%ﬁﬂogﬂq&)
S lsarsr @), (3.27)
where M is chosen large enough.
If jp <0, then we see that
Lpi= o5y |1 22 2o /1
Jj=0 .
Lp( )(P)
1
1 1 [o¢] ] r
S o 12 fllvopy + 57 {Z 25 oy = fll oo } .
~ (P)
o(P) oP) |

When P is away from the origin, by an argument similar to that used in the
proof of (3.27), we conclude that Ip < || f|ls,,., ) With M being sufficiently
large. When one of the corners of P is the origin, then P C Ui_:j(’;”LnSi, where
So := B(0,1) and S; := 2°S\(2°71Sy) for all @ € {1,...,—jp + 1}. From this,
Lemmas 2.6 and 2.7 and the fact that |kp| < 1, we deduce that

1 T

1
- < "
(1+|-M } ~ ||f||SM+1(R )

L o Sl € Z
o(P) LrOE) ~ 6 (P)

i=0 Lr()(S;)
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and, similarly,

1
1 = . r
ST 2y fIle < .
50P) {Z s *f||Lp<>(p>} S I s @
where M is chosen large enough, which implies that Ip < || f||s,,,,®~). Therefore,

S(R™) — Fo{)¢ (R") and ||f|

Next we show that Fp(( )) () R") = S'(R"). To this end, we need to prove that

there exists an M € N such that, for all f € F;((:))’;}.)(R”) and h € S(R"),
|<fa h>| 5 ||f||F;(()>’j()([Rn) ||h||3M+1(R”)'
Let ¢, 1, ® and ¥ be as in Theorem 2.3. Then, by the Calderén reproducing
formula in [80, Lemma 2.3], together with [80, Lemma 2.4], we obtain

ok |</ B ()| * h(z |d:c+2/ D)y * h(z)| da

< Wil 327 / oy % @)L+ )~ da

7=0

F;((")):;ﬁ(')(Rn) 5 ”fHSMH(R")‘

~ [l Sy 41 () 22 M Z/ (L |z))~ M) gz, (3.28)

kezn ¥ Qok

where we used ¢ to replace o and chose M > a. Notice that, for any j € Z,
keZ" ae(0,00) and y € Qji,

/ oy % F(@)| dr < (22 )aly) / (1+ 2e] + 2]y))° de
Qok

Qok
S 275 )ay) (1 + (K]
Then, by the arbitrariness of y € Q;x, we see that

/Q oy F(@)]de S 200+ ) it (¢)al0),

which, combined with (3.28), Theorem 3.11 and Lemmas 2.6 and 2.7, implies that

pj * f(z
|<f7 >’<HhH'SM+1 R")Z2 M Z/ 1—1]-‘/€| n+M dx

kezn on

inteja N fyeq (05.f)a(y)
§||hHSM+1(R")22 FM+j Z YEQ ik \¥j

n+M—a
2 k)
— oM niar—ay 105 )all Lo )
S hllsungeny D24 3 (14 Ji -0 2 2
=0 kezn XQjik "LP(‘)(ij)

SIS

O g 1| S22 (R Zga(a M—s_)
7=0
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a—n— Qb(Q ‘k>
X Z(l + |]€’)( M) ! >¢’ ,(R™) HhHSM+1 R™)>

where a is chosen as in (3.12). This finishes the proof of Proposition 3.20. 0

4. A TRACE THEOREM

In this section, we mainly establish a trace theorem for Triebel-Lizorkin-type
spaces with variable exponents by applying the atomic characterization of these
spaces obtained in Theorem 3.8.

To state our main result of this section, we first give some notation. For
measurable functions p, ¢, s and a set function ¢ being as in Definition 1.4, let

F;g(?))jﬁ 0 (R"!) denote the Triebel-Lizorkin-type spaces with variable exponents

p(+,0), ¢(,0) and 5(-, 0) on R"~! x {0}, where ¢ is defined by setting, for all cubes

Q of R™, $(Q) := ¢(Q x [0,£(Q)). In what follows, let R = R"! x [0, 00)
and R" := R""! x (—o0,0].

Let f € F i (R"). Then, by Theorem 3.8, we have f = 3 ,_o.tgaq in
S'(R™) and

where C' is a positlve constant mdependent of f and, for each ) € QF, aq is a
smooth atom of F )q( )(]R”) Define the trace of f by setting, for all ¥ € R* 1,

)= ) tqag(Z,0). (4.1)

QEeQ*

This definition of Tr(f) is determined canonical for all f € F (( )) ¢( )(R™), since the
actual construction of a¢ in the proof of Theorem 3.8 implies that tgag is obtained
canonically. Moreover, in Lemma 4.3 below, we show that the summation in (4.1)
converges in §'(R™"™1). Thus, the trace operator is well defined.

The main result of this section is the following trace theorem.
Theorem 4.1. Let n > 2, p, ¢ € P(R") satisfy
O0<p_<pi<oo, 0<qg <gs <00
and 1—1), % € C°8(R"), s € C\% (R™) N L*®(R") and ¢ be a set function satisfying

loc

the conditions (S1) and (S2). If
s_—i—(n—l){,;—l]>0, (4.2)

then

s(06 mny S0 5000
Tr F a0 RY) = Foeo) 060

Remark 4.2. (i) When p, ¢, s and ¢ are as in Remark 1.5(ii), Theorem 4.1
goes back to [80, Theorem 6.8]. Moreover, Theorem 4.1 coincides with the trace
theorem for the classmal Triebel-Lizorkin space F; (R") with constant exponents
(see [27, Theorem 11.1 and p. 134]) and, in this case, the condition (4.2) is optimal.

(R™1).
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(ii) In the case that ¢ is as in Remark 1.5(i), it was proved in [20, Theorem
3.13] (see also [56, Theorem 5.1(1)]) that the conclusion of Theorem 4.1 is true if
s and p satisfy that, for all x € R,

1 1
s(x)—m—(n—l) — 1| > (4.3)

min{1,p(z)}

for some § € (0,00), which is a little weaker than (4.2). The reason that the
assumption (4.2), in this case, is a little stronger than that in [20, Theorem 3.13]
(see also (4.3)) comes from an application of Theorem 3.8, which, in this case,
can be further refined; see Remark 3.9(ii).

To prove Theorem 4.1, we first need to show that (4.1) converges in &'(R"!).
Lemma 4.3. Let p, q, s and ¢ be as in Theorem 4.1 satisfying (4.2). Then, for
all f € F30)9 (RY), Ta(f) € S'(R™Y).

Proof. Let f € F;((,'))”;)(,)(R”). Then, by Theorem 3.8, we can write

f= Z tgag

QeQ*
in S'(R™) and

t * s(-), n <
{tatoee ll e gy S I

(.
where, for each @ € QF ag is a (K, L)-smooth atom supported near ¢ of
Fi0e (R™) with K € (sy +log,¢1,00) and L is as in (3.1). Let

p(-).4()
A={QeQ: 3Qn{@z:) R xR: 2, =0} # 0},

where ) denotes the closure of () in R™. Since suppag C 3Q for all Q € Q*, it
follows that ag(-,0) = 0 if @ ¢ A. Observe that, if Q;; € A with j € Z; and
k.= (ki,...,k,) € Z", then |k,| < 2. Therefore,

«Oé om
Fplyat)®™)

2D t0ua0u(0) =3, D 10,00, (20
j=0 kezn =0 kezn, |kn|<2

Thus, to complete the proof of Lemma 4.3, it suffices to show that

N
N_}ig%_)oo Z Z Q1 aQ;, (-0) (4.4)

j=0 keZm,|kn|<2
[k|<A

exists in §'(R"™1). By (4.2), we see that
in{1,p_
n | min{lp }(

s — n—1)
p- p-
1 n—1
=5 —— — 1 —min{l,p_
Lot minfLp
1 -1
> 5. - & (1—min{1,p_})

p-  min{l,p_}
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1 1
—s - 1) | —— 1| >0
e {min{l,p_} } ’
which implies that there exists r € (0, min{1,p_}) such that
s_—£+L(n—1)>0.
p-  Dp-

Let p(-) and s(-) be as in the proof of Theorem 3.8. Then s_ — -= > 0. For all
Jj€Zy and k € Z", let

Apj =R x [k, 277, (k, +1)277).

Then, by the smoothness condition (A3), we know that, for all h € S(R"!) and
j € Z+7

= < Z tijank('v7 0)7h®>

REZT, <2
[k|<

: (1+gh—° ~

< 2 ltq |/ dy
kez‘” [ | <2 " 1 + 2] 0) - ijkDR
k<A

o 1+ g)~° _

~ QIn/2+] lto, |/ ( dydy,,
keZ”ZIanQ " Ag,j (1 + 2J|(y’ O) B ijk|)R
|k|<A

/24 (T+yh)xa,, )

< gin/2+i 20, / Ty = a:; i dy,
k

keZ" [k | <2
|k|<A

where R € (0, 00) is chosen large enough, and ¢ € (0, co) will be determined later.
By an argument similar to that used in the proof of Theorem 3.8, we find that

XA,
A+

where A; = R"! x [-277%1 27771 On the other hand, by choosing § large
enough, we see that

X, (0)/ (1 + Jy) =) 70
/ . { 93/ )+ } @

| . 70
ol ]
Rn—1x[—2-3+1,2-i+1] (1 + [y])o—2

| #0))-
< S dy <1
N/Rnl [(1+\y!)”0] I

which, together with Remark 1.1(ii), implies that

I < 9-i(5-—1) ||t||fs()¢ , (4.5)

) () LE)* (RR)

XA;

—i(1-7=)
SRR |

S e CORT
LBO)* (Rn)
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From this and (4.5), we deduce that T < 277¢~ 7= Ht £ @mny , which, combined

with the fact that s_ — = > 0, implies that (4.4) converges in S'(R™'). This
finishes the proof of Lemma 4.3. |

Next we prove Theorem 4.1 by beginning with several technical lemmas.

Lemma 4.4. Let p;, q;, s; and ¢ be as in Definition 1./ with p, q, s replaced by
Diy i, Si, respectively, where i € {1, 2}. If 51 < s9, p1 < P2, (P1)eo = (P2)oo and
Q1 > G2, then
s2(-),0 n 1(:):¢ n
Fr0a0®Y) = FlGan®?).
Proof. By [20, Proposition 6.5], we find that
LP2O(R") — LPPO(R™).

From this, s; < sy and (2.6), we can easily deduce the desired conclusion, the
details being omitted. This finishes the proof of Lemma 4.4. O

Lemma 4.5. Let p;, q;, s; and ¢ be as in Theorem 4.1 with p, q, s replaced by
Di, @, Si, where i € {1, 2}. Assume that sy = sy and py = p, on R, or R", and
that s1 < sg and py < pg. If

1 1
So9)_ — —(n—1 - > 0, 4.6
( 2) <p2)7 ( ) Hlll’l{l, (p2)7} 1 ( )
then
S1 n 82 n
Te By () (R) = T )0 ) (R™);
moreover, if q(-) is as in Theorem 4.1, then
s1(-),0 n s1(-),0 n
Tr B ) (R = Tr Fp ) (R™).

To prove Lemma 4.5, we need the following conclusion.

Proposition 4.6. Let p, q, s, ¢ be as in Definition 1./ and § € (0,1). Suppose
that, for each Q@ € Q*, Eq C 3@ is a measurable set with |Eg| > 0|Q|. Then, for

allt == {tgtoeo- CC, t € f (R”) if and only of ||t]| | o : < 00, where
p()a()
1t o
fp((')):j(')(Rn)

1
q(-)

1 > . . a()
= sup ——— o) Z Z [2]8()’?562”@‘ 2XEQ]
PeQ j=(ipV0) €(Q)=2-7 Lp(.)( )

Proof. We first suppose that ||t

77— < oo and show that ¢ € f (Rn)
p(.a() R™)

Notice that, for all m € (n,00), @ € Q* and = € Q,

XQ(:U) 5 an,m+Clog(s) * XEq (33)
From this, Lemmas 2.9 and 2.10, we deduce that

Ht”fs(()) ¢( (R™)
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1
o a()
. - . . q(l-)
REreiies 27 Oltal" QI xa]
€Q J=(ipV0) £(Q)=2"7 LrC) (P)
S T
1 0 . XE
< sup Do | | 270 Y ol o
~ P S B
PeQ ¢( ) j=(jpV0) g(g?)ig*j ’Q|2
\ L Lr()(P)
, _ q(’) ﬁ
1 - js(- -3
< sup oy 2|20 X lellel ks,
PeQ ¢< j=(jpV0) QCP
\ i (Q)=2"7 LP()(P)
~ ||t a ;
I I3 ey (&™)

which implies that ¢ € f (R”)
Conversely, by an argument similar to the above and the fact that, for all
m € (n,00), Q@ € Q" and z € Eg, X5,(7) < njo, m+Clog(s) * Xo(x), we conclude

that, for allt € f;((:))”j(.)(R"), (7 g < ||t 0 R This finishes the proof
p(-),q(-

of Proposition 4.6. |

Proof of Lemma /J.5. From Remark 1.2(i) and the condition that p; = py on
R? or R”, we deduce that (p1)s = (P2)s- Let 79 := min{(¢g2)—,(¢1)-} and
r1 := max{(q2)+, (¢1)+}. Then, by Lemma 4.4 and (2.6), we see that

2(+),¢ n s1(+),0 n s1(+),0 n
FliimeRY) = F s o (R™) — FJLTT(R™) (4.7)
and
5200 (om 5206 mom 519 (om
FO0 Ry o p09 (R oy RO Re), (4.8)

By Lemma 4.3 and an argument similar to that used in the proof of [20, Lemma
7.2], with [20, Theorem 3.8 and Lemma 7.1] replaced by Theorem 3.8 and Propo-

sition 4.6, we conclude that, for all f € Fsl(())r1 (R™), Tr(f) exists in S'(R"!) and

Tr F;l()rl (R") C Tr FS2 (]R”) From this, (4.7) and (4.8), we deduce that
s1(-),9 n 51(),¢ (o 2(),¢ s2(),¢ n
Tr F ()q()(R ) CTrF, (o (R )CTrF ()TO(]R ) C Tr FQ()qQ()(R )
51():0 (pn 2("), 51(:),¢ n
CTerl() (R)CTrF ()TO(R)CTrFl() ()(R ),
which completes the proof of Lemma 4.5. |

Remark 4.7. By the proof of Lemma 4.5, we see that the condition (4.6) is only

used to ensure that Tr F 32(())q ((R") exists in S'(R"™'). Thus, by an argument

similar to that used in the proof of Lemma 4.5, we have the following conclusion,
the details being omitted. Under the same assumption as in Lemma 4.5, if, for

all f € Fs2()) ¢( )(R™), the trace of f defined as in (4.1) exists in S'(R"1), then,
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for all g € 7 ()) ,(R"), the trace of g defined as in (4.1) also exists in S'(R™1);
IMOTeover,

Te £ 000 (RY) = Tr F220) (R™).

p1(-),q1(- (-),a2(+)

Lemma 4.8. Let p;, q, s; be as in Theorem 4.1 with p and s replaced by p; and s;,
i € {1,2}. Assume that si(x) = so(x) and pi(x) = pa(x) for all z € R™1 x {0}.
If (4.2) is satisfied with (s, p) replaced, respectively, by (s1,p1) and (s, pa), then

s1(),¢ n s2(+),® n
Tr F 210), ()(]R) Tr F P2 () ()(R)

Proof. For all x € R™ and ¢ € {1,2}, let 5;(z) := s;(z) if z € R” and 5;(x) :=
min{s;(z), sy(x)} otherwise, and, for all z € R", 5(x) := min{s;(x), so(z)}. Sim-
ilarly, for i € {1,2}, let p;(z) := p;(x) if x € R™ and

pi(x) == min{p:(x), p2(z)}

otherwise, and, for all x € R",

p(x) := min{p;(z), p2(v)}.
Then, by applying Lemma 4.5 and Remark 4.7, we conclude that

81() n 51(J7¢ n 51() n
T F (g RY) =T E L o (RY) = Tr 5 (5 (RY)
3(-),¢ n 32(+),9 n 2(-),¢ n
=Tr B 500 (R") = Tr B3 (R) = Tr 007 ) (RY),
which completes the proof of Lemma 4.8. O

In what follows, let Q(R") := Q and Q*(R") := Q*. Denote by Q(R""") the
set of all dyadic cubes of R"™ and Q*(R"~") the set of all dyadic cubes @ of
R with £(Q) < 1

Proof of Theorem j.1. By Lemma 4.8, we may assume that ¢ = p with p and
s independent of the n-th coordinate x, with |z,| < 2. Indeed, let, for all
(Z,2,) € R x [=2,2], po(T,2,) 1= p(&,0). Then py € Clog(R"*1 x [—2,2]).
By [19, Proposition 4.1. 7], we find that py has an extension p € C'°5(R") with
p— = (Po)— and pss = (Po)wo- Define 5 by setting, for all (Z,x,) € R*! x R,
3(F,z,) := s(T,0). Then it is easy to see that 5 € C\°8 (R") N L®(R"). Moreover,
p and s are independent of the n-th coordinate z,, with |z, | < 2, and satisfy

s. ! (n—1) ! 11 >0
5 ———-(n-1)|———e— — .
5 win{L,7 ]
Then, by Lemma 4.8, we see that
s().¢ n (). n
Tr P29 (RY) = Te Fo)8 (RY).
For notational simplicity, let, for all ¥ € R* !,
~ - 1
0) := 0 —’——:——j
B(.0),6 mpn—1 B(0).6 n—1
Fory " (R™) = Fpeg) b0 (R™)

and

B8(0),0 (mpn—1\ . 5(0 n—
prO <R = fPCO ),p(0) (R -
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We finish the proof of Theorem 4.1 by two steps.
Step 1) We show that, for all f € F )q()(R") Tr(f) € S'(R™!) and

Tr(f 03 <
Ty 1]

Without loss of generality, we may assume that || f|

3.8, we see that
f= 2. tes
QeQ*(R™)
in §'(R ”) where, for all Q € QF, ag is a (K, L)-smooth atom supported near )
of F (( (R™) with

Fo) (R (4.9)

FOS ®m) T 1. By Theorem

()

K € (sy +max{0,log, ¢ },00) and L € ( -—n—s_, oo) (4.10)

min{1,p_}
and t := {to}geco-mrn) € f (R”) which can be chosen such that
¢

b S “O - 4.11
fps.;,;.><R>~“f lezcre en (4.11)

Since supp ag C 3@Q, it follows that, if ¢ ¢ {0,1,2}, then
a5 ((i-1)e@)ie@y (5 0) =0,

which implies that Tr(f) can be rewritten as

2
Do D tuenud)ind) axi-ne@iednC 0)-
=0 QGQ*(Rn—l)

Therefore, to show (4.9), by Theorem 3.8 again, it can be reduced to prove that

each
@) (NS L
bg = [UQ)]2 a5, -1 )it(@)

is a (K, L)-smooth atom supported near Q of Fﬁm; (R” 1) with

K € ((s(+,0))+ + max{0,log, ¢1 }, ), (4.12)
~ n—1
Le (min{l, G0 (n—1) = (s(-0))_, oo) (4.13)
and
H acer || oo s < 00, (4.14)

where, for all Q € Q*(R"1)

@) ._ -3
)\@ = [((Q)] tQX[('L 1¢(0),it(3))"
By (4.2), we see that
n—1

min{1, (p(-,0))-}

—(n—1) = (s(-,0)-
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and then, by Remark 3.7(i), we know that the vanishing moment for (K, L)-
smooth atoms of Fﬁm) d)(R" 1) is void. Since suppag C 3Q, K < K and, for all
a € 77, with |of § K and all z € R", | D% ()| < 2UeFn/2)i it follows that,
for i € {0,1,2}, & € Z", with |d| < K, and all = € R",

]Dabg)(xﬂ < o(lal+n/2);

and supp b(i) C 3Q. Thus, for i € {0,1,2}, bg) is a (I?, Z)—smooth atom sup-
ported near @ of F’BCO (R” ) with (K, L) as in (4.12) and (4.13).

Let A®) .= {)\%)};QGQ*(RWU, where i € {0,1,2}. Next we show that, for any
given dyadic cube P C R*7!,

_1
p(+,0)
p(50)

1 } .

L i (BEO \D |1 F=3y ~

=5 ST [P G) b
J=(3pV0) QeQ*®n—1)

J ~
(=" LrC0) (B)

is finite. By || f] 00 () = 1 and (4.11), we see that there exists a positive

constant Cj such that, for all P € Q(R"),

500
1 o 1 p(*)
] X S e <
=(jpV0) QEQ* (RM)
L(Q)=2" J

LrC)(P)

which, together with Remark 1.1(ii), implies that, for all P € Q(R"™),

= A . p()
/Rn >, 2 {2”(')It@||62|‘2%x4 de < 1. (4.15)

j=(pVO0) QEQ (R™)
(Q)=2"J

On the other hand, for all dyadic cube P € Q(R™!), we have

(i) _ 7 p(@0)

R™L S (Gov0) Geamn1) |Q|5 Cog(P)
{(@Q)=2"7
p(,0)
-y ¥ 2]/7F”“WA%@\ Xl
7=(ipV0) Qegrn-1) C’0¢( )
0(0)=2—1

)| p(%,0)

- \@wcam )

0(Q)=2"J
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SN > reongiart
2(Px[0,6(P Q

j= (j =V0) QEQ (Rn—1)
©Q)=2-7

-1 (#,0)
X [Cb¢(P)] /X5<i;xnﬂ dFdz,,

i

where

which, combined with the fact that {@i}éeg* (rn-1y are disjoint each other, (4.15)
and the condition (S1) of ¢, implies that, for all P € Q(R™1),

oo

1P | 2950\ ]
2(Px[0,(P)) Z Z @

i=(pV0) | Geomn—1)
£(Q)=2"1
p(z,0)

p(z) ) rE)
(2i— 1)Z(Q) (Q))] dfdxn

1
" Cod(B) X

o0

§/ 2jsm ’t |
2B [0.4(F)) Z Z Qx[(i-1)6(Q),it(Q))

i=(ipV0) | Geamn-1)
0(Q)=2"7

w[3

L lh@r:
Cod(P x [0, ()

p(z)
A 5 <
Xgw =@ ,w(@)] sl

where we used the fact that p(z,0) = p(z, z,,) for all (z,x,) € R” with |z,| < 2
in the last inequality. By this and Remark 1.1(ii), we conclude that, for all

P e Q(R™Y),

p(,0) p(%o)
1 - : )< 1
= 2]ﬁ(-',0) )\(j) Q75X~
F1 TR PP B
j—(]P\/O) Qeo* (R )

0(Q)=2-J

Lr(0)(P)

is finite, which implies that |[A®|| < 1, namely, (4.14) holds true.

fﬁ(' ,0), ¢ (Rn 1 )
Therefore,

2
Iy S 21N sy S Wl oy
1=
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Step 2) We prove that the operator Tr is surjective. Let f € Fpﬁ(COO) (]R" ).
Then, by Theorem 3.8, we find that there exist a sequence

)\ = {/\@}QEQ*(R"L_I C (C

and a sequence {ag}gcg-gn-1) of (K, L)-smooth atoms of Fﬁgo(; (R” DY with K

and L satisfying (4.10) such that f= > Geo-mn-1) Agag converges in S'(R"~ h
and

_ < _ :
||A||ffg700)),¢(Rn71) ~ ”f”ngbO))@(Rn,l)’ (416)
moreover, for all P € Q(R™1),
p(7,0)

2IBE) N\ <|v(T
/ Z > - Aalxg(®) dr <1, (4.17)

] \/0 QEQQSR: 1) |Q|2”)\Hf£gbo))v$(Rn—l)
£(Q)=2-7

Let n € C®(R) satisfy suppn C (=%, %) and 5(0) = 1. For all Q € Q(R™) and

£ € R, let 15(6) = (272 "g),
9= ) Mw®mg= ) tobo,
QeQ*(R~1) QeQ*(R™)
where, for all Q@ € Q*(R") and z := (7,z,) € R",

bo(@) = [(Q)] Zag ® ng(x) = [((Q)] 2ag(@)ng(wn),
tg = [L(Q)]*\g if Q = Q x [0,£(Q)) and tq := 0 otherwise.

Next we show that ¢g converges in &’'(R") and

g1

11
272

< ~
F;((.‘))’vj(')(Rn) ~ HfHFf(g()())>’¢(Rn71)'

It is easy to show that each bg is a (K, L)-smooth atom supported near ) of

Fp (H(R") with K and L as in (4.10). By Proposition 4.6 and the fact that

{Q x [ 0°Q), €(~))}©€Q* (rn—1y are disjoint each other, we find that

t * n s
Hte}aeo @nllpsers  (@n)

o0

— sup (1) S S 2Ol

peon) OP) |1 _G) Geo,
»() 1/p(+)
X 1Q % [0, 6@ X5 0.3y

Lp(')(P)

oo

1 js(- -5
~ sup ﬁ Z Z 2/ ()|A@||Q| 2X©X[%€(@)7f(@)

PeQ(R™) ¢ §=(ipV0) Qeo, Lr()(P)
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1 ~ _s()
~ sup == | Y [QI g
PEQ(Rn_l) ¢(P) QEQ*(R”_l)
Qcp

(4.18)

Y

LPO)(Px[0,6(P)))

A1-1/2., I
XIQI Xau26).0@)

where ©; := {Q € Q*(R"™) : Q x [0,£(Q)) C P, {(Q) = 277}. On the other

hand, let I' := H/\Hfﬁc,o),g(wfl). Then, for all P € Q(R™™1), by (4.17), we find
p(+0)
that
p(z)
1 / 11
== |_ _ |)\Q||Q| QP |Q‘ n— IXQ «0 @ dx
o(P) JPxio.up) @EQ;RM) ()
Qch
_s(@) 1 ] P(l’)
NNN |Q‘ RT3 \s[T ] dz
¢ QEQ*(R” 1) QX[ Z Z(Q
QcP

. ~ 1 (@,0)
Z > [ [reengaie " @ s
Q

¢ J (jV0) QGeo*mn—1)
QCP
Z(Q):Q J

which, together with Remark 1.1(ii), implies that

1 ~ _s() ~ _1
) > QI AGNQI™ 2 Xgx1100).0)
Qego*(®rn—1)
ocPh L) (Px[0,6(P)))

A
S I gy

From this and (4.18), we further deduce that

< -

Therefore, by Theorem 3. 8() and (4 16), we conclude that g = > 0. (rn) tobo
converges in §'(R"), g € F() o (R") and

. < ~ :
190y oy 171 ooy

furthermore, Tr(g) = f in §'(R™™!), which implies that

. 5(-),9 n 5(+,0),¢ n—1
Tr: Fono R >_>FpC0)pC0)(R )

is surjective and hence completes the proof of Theorem 4.1. O
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