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Abstract. In this article, the authors first introduce the Triebel–Lizorkin-

type space F
s(·),φ
p(·),q(·)(R

n) with variable exponents, and establish its ϕ-transform

characterization in the sense of Frazier and Jawerth, which further implies that
this new scale of function spaces is well defined. The smooth molecular and the

smooth atomic characterizations of F
s(·),φ
p(·),q(·)(R

n) are also obtained, which are

used to prove a trace theorem of F
s(·),φ
p(·),q(·)(R

n). The authors also characterize

the space F
s(·),φ
p(·),q(·)(R

n) via Peetre maximal functions.

1. Introduction

Between 1960’s and 1970’s, the Besov space Bs
p,q(Rn) and the Triebel–Lizorkin

space F s
p,q(Rn) were introduced and investigated accompanying with the devel-

opment of the theory of function spaces (see, for example, [66]). These spaces
form a very general unifying scale of many well-known classical concrete function
spaces such as Lebesgue spaces, Hölder-Zygmund spaces, Sobolev spaces, Bessel-
potential spaces, Hardy spaces and BMO, which have their own history. A com-
prehensive treatment of these function spaces and their history can be founded
in Triebel’s monographes [66, 67, 68, 69]. Recently, to clarify the relations among
Besov spaces, Triebel–Lizorkin spaces and Q spaces (see [16, 24]), Besov-type
spaces Bs,τ

p,q (Rn) and Triebel–Lizorkin-type spaces F s,τ
p,q (Rn) and their homoge-

neous counterparts for all admissible parameters were introduced and studied in
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[76, 77, 80]. Moreover, the Besov-type and the Triebel–Lizorkin-type spaces, in-
cluding some of their special cases related to Q spaces, have been used to study
the existence and the regularity of solutions of some partial differential equations
such as (fractional) Navier-Stokes equations; see, for example, [43, 44, 45, 70, 81].
For more properties of these spaces, we refer the reader to [63, 64, 78, 79].

On the other hand, in recent years, there has been a growing interesting in
generalizing classical spaces such as Lebesgue and Sobolev spaces to cases with
either variable integrability or variable smoothness (see [13, 19]), which are ob-
viously not covered by any function space with invariable exponents. Spaces
of variable integrability can be traced back to Birnbaum-Orlicz [10], Orlicz [58]
and Nakano [54, 55]. In particular, the definition of so-called Musielak-Orlicz
spaces was clearly written by Nakano in [54, Section 89], while it seems that
Orlicz was mainly interested in the completeness of function spaces. But the
modern development was started with the article [37] of Kováčik and Rákosńık
in 1991 and widely used in the study of harmonic analysis as well as partial
differential equations; see, for example, [6, 12, 13, 14, 17, 18, 19, 21, 32, 48].
The motivation to study such function spaces also comes from applications to
fluid dynamic, image processing and the calculus of variation; see, for example,
[1, 2, 3, 11, 21, 25, 59, 60].

To complete the theory of the variable exponent Lebesgue and Sobolev spaces,
Almeida and Samko [5] and Gurka et al. [30] introduced and investigated variable
exponent Bessel potential spaces Lα,p(·) with variable integrability index p(·).
Later, Xu [73, 74, 75] studied Besov spaces Bs

p(·),q(Rn) and Triebel–Lizorkin spaces

F s
p(·),q(Rn) with the variable exponent p(·) but invariable exponents q and s. Along

a different line of study, when Leopold [38, 39, 40, 41] and Leopold and Schrohe
[42] studied pseudo-differential operators with symbols of the type

(1 + |ξ|2)s(x)/2,

they defined and investigated related Besov spaces with variable smoothness,

B
s(·)
p,p (Rn). Function spaces of variable smoothness including Besov space B

s(·)
p,q (Rn)

and Triebel–Lizorkin space F
s(·)
p,q (Rn) have been studied by Besov [7, 8, 9], which

was a generalization of Leopold’s work. Another interesting research direction of
function spaces with variable integrability is the theory of Hardy spaces Hp(·)(Rn)
with variable exponents as well as local Hardy spaces hp(·)(Rn), which was intro-
duced and investigated by Nakai and Sawano [53] and they proved that

hp(·)(Rn) = F 0
p(·),2(Rn).

Independently, Cruz-Uribe and Wang in [15] also investigated the variable expo-
nent Hardy space with some weaker conditions than those used in [53].

As we can see from the trace and the embedding theorems of the classical
function spaces, the smoothness and the integrability often interact each other;
see, for example, [80, Theorem 6.8 and Corollary 2.2]. As was pointed out in [4,
p. 1629] and [20, p. 1733], the unifications of the trace and the Sobolev embedding
do not occur on function spaces with only one index variable. For example, the
trace space of the variable exponent Sobolev space W k,p(·) is no longer a space
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of the same type (see [19]), since they involve an interaction between integrabil-
ity and smoothness. As one of motivations, to tackle this problem, Alexandre
and Hästö [20] introduced and investigated Triebel–Lizorkin spaces with variable

smoothness and integrability F
s(·)
p(·),q(·)(R

n) with s(·) ≥ 0, and showed that these

spaces behaved nicely with respect to the trace operator. Subsequently, Vyb́ıral
[72] established Sobolev and Jawerth embeddings of these spaces and, moreover,

Kempka [34] characterized F
s(·)
p(·),q(·)(R

n) by local means, and Kempka and Vyb́ıral

[36] obtained the equivalent characterization via ball means of differences. The

main difficulty of studying F
s(·)
p(·),q(·)(R

n) is the absence of the vector-valued in-

equality for the boundedness on Lp(·)(`q(·)(Rn)) of the Hardy-Littlewood maximal
function, which, in the classical case with p, q, s being constant exponents, is
a very important tool in studying the space F s

p,q(Rn). The vector-valued con-
volution inequality developed in [20, Theorem 3.2] (see also Lemma 2.9 below)
supplies a well remedy for this absence.

Vyb́ıral [72] and Kempka [34] also studied the Besov space B
s(·)
p(·),q(R

n) with the

only index q being a constant, which is a quite natural case, since the norm in the
Besov space is usually defined via the iterated space `q(Lp(Rn)). Furthermore,

Almeida and Hästö [4] introduced and investigated the Besov space B
s(·)
p(·),q(·)(R

n)

with all three variable exponents, which makes a further step in completing the
unification process of function spaces with variable smoothness and integrabil-

ity. The atomic characterization of B
s(·)
p(·),q(·)(R

n) was established by Drihem [22]

and some equivalent characterizations via local means and ball means of differ-
ences were also obtained by Kempka and Vybŕal [36]. Moreover, Noi and Sawano
[57] investigated the complex interpolation of Besov spaces and Triebel–Lizorkin
spaces with variable exponents (see also [79] for the complex interpolation of
Besov-type spaces and Triebel–Lizorkin-type spaces but with invariable expo-
nents) and, in [56], Noi studied the trace and the extension operators for Beosv
spaces and Triebel–Lizorkin spaces with variable exponents. Very recently, Izuki
et al. [33] gave out an elementary introduction to function spaces with variable
exponents and a survey of related function spaces.

More generally, Kempka [35] introduced and studied 2-microlocal Besov and
Triebel–Lizorkin spaces with variable integrability and gave out characterizations
by decompositions in atoms, molecules and wavelets, which cover the usual Besov
and Triebel–Lizorkin spaces as well as spaces of variable smoothness and integra-

bility and also include the space F
s(·)
p(·),q(·)(R

n) without the restriction s(·) ≥ 0. The

trace of 2-microlocal Besov and Triebel–Lizorkin spaces with variable exponents
was studied by Moura et al. [49], as well as Gonçalves et al. [29]. Moreover, Ho
[31] investigated the variable Triebel–Lizorkin-Morrey space, which is an exten-
sion of Triebel–Lizorkin-Morrey spaces in [61, 62] and also generalizes the function

space F
s(·)
p(·),q(·)(R

n) in [20].

Here, we should point out that, different from the classical case with exponents

being constants, the definition of B
s(·)
p(·),q(·)(R

n) is more complicated than that of
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F
s(·)
p(·),q(·)(R

n). The main reason is that the mixed Lebesgue-sequence space

`q(·)(Lp(·)(Rn))

(see [4, Definition 3.1]) involved in the definition of B
s(·)
p(·),q(·)(R

n), as was pointed

out by Almeida and Hästö in [4, Remark 4.2], does not enjoy one key feature
of iterated function spaces, namely, inheritance of properties from constituent
spaces. To limit the length of this article, we leave the study of Besov-type
spaces with all variable exponents in a furthercoming article.

The purpose of this article is to introduce and study a more generalized scale of
function spaces, based on the Triebel–Lizorkin-type space F s,τ

p,q (Rn), with variable
exponent of smoothness, s(·), variable exponents of integrability, p(·) and q(·),
and a set function φ, denoted by F

s(·),φ
p(·),q(·)(R

n). These spaces generalize classical

Triebel–Lizorkin-type spaces and Triebel–Lizorkin spaces with variable smooth-
ness and integrability. Molecular and atomic characterizations, Peetre maximal
function characterizations of these spaces are also established in this article. As
applications, we show a trace theorem of Triebel–Lizorkin-type spaces with vari-
able exponents and give out some equivalent quasi-norms under some restrictions
of the set function φ.

We begin with some basic notation. In what follows, for a measurable function
p(·) : Rn → (0,∞) and a measurable set E of Rn, let

p−(E) := ess inf
x∈E

p(x) and p+(E) := ess sup
x∈E

p(x).

For notational simplicity, we let p− := p−(Rn) and p+ := p+(Rn). Denote by
P(Rn) the collection of all measurable functions p(·) : Rn → (0,∞) satisfying
0 < p− ≤ p+ <∞.

For p(·) ∈ P(Rn) and a measurable set E ⊂ Rn, the space Lp(·)(E) is defined
to be the set of all measurable functions f such that

‖f‖Lp(·)(E) := inf

{
λ ∈ (0,∞) :

∫
E

[
|f(x)|
λ

]p(x)

dx ≤ 1

}
<∞.

For r ∈ (0,∞), denote by Lrloc(Rn) the set of all r-locally integrable functions on
Rn. Denote by L∞(Rn) the set of all measurable functions f such that

‖f‖L∞(Rn) := ess sup
y∈Rn

|f(y)| <∞.

Remark 1.1. Let p(·) ∈ P(Rn).
(i) It was presented in [53, p. 3671] (see also [13, Theorem 2.17]) that, for all

λ ∈ C,
‖λf‖Lp(·)(Rn) = |λ|‖f‖Lp(·)(Rn)

and, if r ∈ (0,min{p−, 1}], then, for all f, g ∈ Lp(·)(Rn),

‖f + g‖rLp(·)(Rn) ≤ ‖f‖
r
Lp(·)(Rn) + ‖g‖rLp(·)(Rn).

(ii) If ∫
Rn

[
|f(x)|
δ

]p(x)

dx ≤ C̃
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for some δ ∈ (0,∞) and some positive constant C̃ independent of δ, then it is
easy to see that ‖f‖Lp(·)(Rn) ≤ Cδ, where C is a positive constant independent of

δ, but depending on p− (or p+) and C̃.
(iii) Let p(·) ∈ P(Rn) satisfy 1 < p− ≤ p+ <∞. Define the conjugate exponent

p̃(·) of p(·) by setting, for all x ∈ Rn, p̃(x) := p(x)
p(x)−1

. It was proved, in [13,

Theorem 2.6], that, if f ∈ Lp(·)(Rn) and g ∈ Lp̃(·)(Rn), then fg ∈ L1(Rn) and∫
Rn
|f(x)g(x)| dx ≤ C‖f‖Lp(·)(Rn)‖g‖Lp̃(·)(Rn),

where C is a positive constant depending on p− or p+, but independent of f and
g.

(iv) Obviously, the space Lp(·)(Rn) has the lattice property, namely, if |f | ≤ |g|,
then

‖f‖Lp(·)(Rn) ≤ ‖g‖Lp(·)(Rn).

Recall that a measurable function g ∈ P(Rn) is said to satisfy the locally log-

Hölder continuous condition, denoted by g ∈ C log
loc (Rn), if there exists a positive

constant Clog(g) such that, for all x, y ∈ Rn,

|g(x)− g(y)| ≤ Clog(g)

log(e+ 1/|x− y|)
, (1.1)

and g is said to satisfy the globally log-Hölder continuous condition, denoted by
g ∈ C log(Rn), if g ∈ C log

loc (Rn) and there exist positive constants C∞ and g∞ such
that, for all x ∈ Rn,

|g(x)− g∞| ≤
C∞

log(e+ |x|)
.

Remark 1.2. (i) Let g ∈ C log(Rn). Then g∞ = lim|x|→∞ p(x).
(ii) Let g ∈ P(Rn). Then g ∈ C log(Rn) if and only if 1/g ∈ C log(Rn).

For all x ∈ Rn and r ∈ (0,∞), denote by Q(x, r) the cube centered at x with
side-length r, whose sides parallel axes of coordinates. Let φ : Rn × [0,∞) →
(0,∞) be a measurable function. In this article, we always suppose that φ satisfies
the following two conditions:

(S1) there exist positive constants c1 and c̃1 such that, for all x ∈ Rn and
r ∈ (0,∞),

(c̃1)−1 ≤ φ(x, r)

φ(x, 2r)
≤ c1;

(S2) there exists a positive constant c2 such that, for all x, y ∈ Rn and r ∈
(0,∞) with |x− y| ≤ r,

(c2)−1 ≤ φ(x, r)

φ(y, r)
≤ c2.

In what follows, for all cubes Q := Q(x, r) with x ∈ Rn and r ∈ (0,∞), let

φ(Q) := φ(Q(x, r)) := φ(x, r).
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Remark 1.3. (i) We point out that the conditions (S1) and (S2) of φ are, re-
spectively, called the doubling condition and the compatibility condition, which
have been used by Nakai [50, 51] and Nakai and Sawano [53] when they studied
generalized Campanato spaces.

(ii) Let φ(Q) := |Q|τ with τ ∈ [0,∞) for all cubes Q. Then, obviously, φ
satisfies the conditions (S1) and (S2).

(iii) Let p(·) ∈ C log(Rn). The set function φ, defined by setting, for all cubes
Q,

φ(Q) :=
‖χQ‖Lp(·)(Rn)

|Q|
,

which is just [53, Example 6.4], satisfies the conditions (S1) and (S2).
(iv) Let φ be a nondecreasing set function, namely, there exists a positive

constant C such that, for all cubes Q1 ⊂ Q2, φ(Q1) ≤ Cφ(Q2). If φ satisfies the
condition (S1), then φ also satisfies the condition (S2). Indeed, for all x, y ∈ Rn

and r ∈ (0,∞) with |x − y| ≤ r, it is easy to see that Q(x, r) ⊂ Q(y, 2r) and
Q(y, r) ⊂ Q(x, 2r) and, by the condition (S1), we see that

1 .
φ(x, r)

φ(x, 2r)
.
φ(x, r)

φ(y, r)
.
φ(y, 2r)

φ(y, r)
. 1

with the implicit positive constants independent of x, y and r. Thus, φ satisfies
the condition (S2).

(v) Let φ(Q) :=
∫
Q
w(x) dx for all cubes Q, where w is a classical Muckenhoupt

Ap(Rn)-weight with p ∈ [1,∞]. It is well known that each Muckenhoupt Ap(Rn)-
weight is doubling, thus, by (iv), we conclude that φ satisfies the conditions (S1)
and (S2). For the definition and properties of Muckenhoupt Ap(Rn)-weights, we
refer the reader to [65].

Let S(Rn) be the space of all Schwartz functions on Rn and S ′(Rn) its topologi-
cal dual space. We say a pair (ϕ,Φ) of functions to be admissible if ϕ, Φ ∈ S(Rn)
satisfy

supp ϕ̂ ⊂
{
ξ ∈ Rn :

1

2
≤ |ξ| ≤ 2

}
and |ϕ̂(ξ)| ≥ c > 0 when

3

5
≤ |ξ| ≤ 5

3
(1.2)

and

supp Φ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and |Φ̂(ξ)| ≥ c > 0 when |ξ| ≤ 5

3
, (1.3)

where f̂(ξ) :=
∫
Rn f(x)e−ix·ξ dx for all ξ ∈ Rn and f ∈ L1(Rn), and c is a positive

constant independent of ξ ∈ Rn. Throughout the article, for all ϕ ∈ S(Rn),

j ∈ N := {1, 2, . . . } and x ∈ Rn, we put ϕj(x) := 2jnϕ(2jx) and ϕ̃(x) := ϕ(−x).
For j ∈ Z and k ∈ Zn, denote by Qjk the dyadic cube 2−j([0, 1)n + k), xQjk :=

2−jk its lower left corner and `(Qjk) its side length. Let

Q := {Qjk : j ∈ Z, k ∈ Zn}, Q∗ := {Q ∈ Q : `(Q) ≤ 1}

and jQ := − log2 `(Q) for all Q ∈ Q.
Now we introduce Triebel–Lizorkin-type spaces with variable exponents.
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Definition 1.4. Let (ϕ,Φ) be a pair of admissible functions on Rn. Let p, q ∈
P(Rn) satisfy

0 < p− ≤ p+ <∞, 0 < q− ≤ q+ <∞

and 1
p
, 1
q
∈ C log(Rn), s ∈ C log

loc (Rn) ∩ L∞(Rn) and φ be a set function satisfying

the conditions (S1) and (S2). Then the Triebel–Lizorkin-type space with variable

exponents, F
s(·),φ
p(·),q(·)(R

n), is defined to be the set of all f ∈ S ′(Rn) such that

‖f‖
F
s(·),φ
p(·),q(·)(R

n)
:= sup

P∈Q

1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=max{jP ,0}

[
2js(·)|ϕj ∗ f(·)|

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

<∞,

where, when j = 0, ϕ0 is replaced by Φ, and the supremum is taken over all
dyadic cubes P in Rn.

Remark 1.5. Let p(·), q(·), s(·) be as in Definition 1.4.
(i) When φ(Q) := 1 for all cubes Q, then

F
s(·),φ
p(·),q(·)(R

n) = F
s(·)
p(·),q(·)(R

n),

where F
s(·)
p(·),q(·)(R

n) denotes the Triebel–Lizorkin space with variable smoothness

and integrability which is introduced and investigated in [20]. We point out that

Diening et al. [20] studied the space F
s(·)
p(·),q(·)(R

n) under an additional assumption

that s is nonnegative, which is generalized to the case that s : Rn → R and
s ∈ C log

loc (Rn) ∩ L∞(Rn) by Kempka in [35].
(ii) When p, q, s are constant exponents and φ(Q) := |Q|τ with τ ∈ [0,∞) for

all cubes Q, then

F
s(·),φ
p(·),q(·)(R

n) = F s,τ
p,q (Rn),

where F s,τ
p,q (Rn) denotes the Triebel–Lizorkin-type space which was introduced and

studied in [80].
(iii) When q, s are constant exponents and φ(Q) := |Q|τ with τ ∈ [0,∞) for

all cubes Q, then

F
s(·),φ
p(·),q(·)(R

n) = F s,τ
p(·),q(R

n),

which was investigated in [47].
(iv) The condition, 0 < p− ≤ p+ < ∞, is quite natural, since there also

exists the restriction p <∞ in the case of constant exponents. The assumption,
0 < q− ≤ q+ < ∞, is different from the case of constant exponents where
q =∞ is included. This restriction comes from the application of the convolution
inequality in [20, Theorem 3.2] (see also Lemma 2.9 below), when proving that

the space F
s(·),φ
p(·),q(·)(R

n) is independent of the choice of admissible function pairs

(ϕ,Φ). Observe that, even when φ(Q) = 1 for all cubes Q, this restriction is
necessary; see [36, p. 857].

This article is organized as follows.



TRIEBEL–LIZORKIN TYPE SPACES 153

Section 2 is devoted to showing that the space F
s(·),φ
p(·),q(·)(R

n) is independent of

the choice of admissible function pairs (ϕ,Φ), which is a consequence of the ϕ-

transform characterization of F
s(·),φ
p(·),q(·)(R

n) in the sense of Frazier and Jawerth

(see Corollary 2.4 below). Different from the method used in the case of con-
stant exponents, in the proof of the boundedness of the ϕ-transform Sϕ from

F
s(·),φ
p(·),q(·)(R

n) to f
s(·),φ
p(·),q(·)(R

n) (the sequence space corresponding to the function

space F
s(·),φ
p(·),q(·)(R

n)), we make full use of the so-called r-trick lemma (namely, [20,

Lemma A.6]) and the vector-valued convolution inequality (namely, [20, Theorem
3.2]; see also Lemma 2.9 below). We point out that the vector-valued convolution
inequality also plays an essential role throughout the remainder of this article.

In Section 3, we establish equivalent characterizations of F
s(·),φ
p(·),q(·)(R

n) in term of

molecules, atoms (see Theorem 3.8 below) or Peetre maximal functions (see The-
orem 3.11 below). To prove Theorem 3.8, we borrow some ideas from the proof of
[23, Theorem 3.12] which gives the atomic characterization of the Besov-type and
the Triebel–Lizorkin-type spaces, and the proof of [35, Theorem 3.13] which gives
the molecular characterization of 2-microlocal Besov and Triebel–Lizorkin spaces
with variable integrability. The Sobolev embedding (see Proposition 3.1 below)
plays a key role in the proof of Theorem 3.8, which may be of independent inter-
est. The proof of Theorem 3.11 is similar to that of [46, Theorem 3.2] (see also [71,
Theorem 2.6]) and strongly depends on the vector-valued convolution inequality
on Lp(·)(`q(·)(Rn)); see Lemma 2.9 below. As applications of Theorem 3.11, some

equivalent norms of F
s(·),φ
p(·),q(·)(R

n) are obtained (see Theorem 3.12 below), which

are further used to show that the spaces F
s(·),φ
p(·),q(·)(R

n) include the Morrey space

with variable exponents Mp(·)
φ (Rn) as a special case; see Proposition 3.18 below.

At the end of Section 3, via some examples, we show that, in general, the scales
of Triebel–Lizorkin-type spaces with variable exponents and variable Triebel–
Lizorkin-Morrey spaces (see [31]) do not cover each other (see Remark 3.15 below).
Here we point out that Triebel–Lizorkin-type spaces with variable exponents in
this article cover the Triebel–Lizorkin-type spaces F s,τ

p,q (Rn) for all τ ∈ [0,∞), but
the variable Triebel–Lizorkin-Morrey space in [31] does only cover the Triebel–
Lizorkin-type space F s,τ

p,q (Rn) for τ ∈ [0, 1/p).

In Section 4, as an application of the atomic characterization of F
s(·),φ
p(·),q(·)(R

n),

we mainly establish a trace theorem of Triebel–Lizorkin-type spaces with variable
exponents (see Theorem 4.1 below). In the case that φ is as in Remark 1.5(i),
the corresponding result of Theorem 4.1 was obtained in [20, Theorem 3.13] with
a certain weaker condition (see Remark 4.2(ii) below), however, the convergence

of the trace of f ∈ F
s(·)
p(·),q(·)(R

n) was not given out exactly in [20, p. 1760]. In

Section 4, we first show that the trace operator is well defined on the space

F
s(·),φ
p(·),q(·)(R

n) (see Lemma 4.3 below), with a certain restriction on p and s, by an

argument similar to that used in the proof of Theorem 3.8(i). Indeed, in Lemma

4.3 below, we prove that the trace of f ∈ F
s(·),φ
p(·),q(·)(R

n) converges in S ′(Rn−1).

Then, similar to the proof of [20, Theorem 3.13], we show that the trace space of
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F
s(·),φ
p(·),q(·)(R

n) is independent of the n-th coordinate of variable exponents p(·) and

s(·), and complete the proof by an argument similar to that used in the proof of
[80, Theorem 6.8].

Finally, we make some conventions on notation. Throughout this article, we
denote by C a positive constant which is independent of the main parameters,
but may vary from line to line. The symbols A . B means A ≤ CB. If A . B
and B . A, then we write A ∼ B. For all a, b ∈ R, let

a ∨ b := max{a, b}.

If E is a subset of Rn, we denote by χE its characteristic function. For all cubes
Q, we use cQ to denote its the center. For all k := (k1, . . . , kn) ∈ Zn, let

|k| := |k1|+ · · ·+ |kn|.

Let N := {1, 2, . . . } and Z+ := {0} ∪ N.

2. The ϕ-transform characterization

In this section, we first introduce the sequence space f
s(·),φ
p(·),q(·)(R

n) corresponding

to the space F
s(·),φ
p(·),q(·)(R

n) and then establish their ϕ-transform characterization in

the sense of Frazier and Jawerth [27]. As a consequence of the ϕ-transform

characterization, we conclude that the space F
s(·),φ
p(·),q(·)(R

n) is independent of the

choice of admissible function pairs (ϕ,Φ).

Definition 2.1. Let p(·), s(·) and φ be as in Definition 1.4 and q(·) as either in

Definition 1.4 or q(·) ≡ ∞. Then the sequence space f
s(·),φ
p(·),q(·)(R

n) is defined to be

the set of all sequences t := {tQ}Q∈Q∗ ⊂ C such that

‖t‖
f
s(·),φ
p(·),q(·)(R

n)
:= sup

P∈Q

1

φ(P )

∥∥∥∥∥∥
{ ∑
Q⊂P,Q∈Q∗

[
|Q|−[

s(·)
n

+ 1
2

]|tQ|χQ
]q(·)} 1

q(·)
∥∥∥∥∥∥
Lp(·)(P )

<∞

with the usual modification made when q(·) ≡ ∞, where the supremum is taken
over all dyadic cubes P in Rn.

Remark 2.2. (i) It is easy to see that f
s(·),φ
p(·),q(·)(R

n) is a quasi-Banach lattice, namely,

for all t(1) := {t(1)
Q }Q∈Q∗ ⊂ C and t(2) := {t(2)

Q }Q∈Q∗ ⊂ C, if |t(1)
Q | ≤ |t

(2)
Q | for all

Q ∈ Q∗, then

‖t(1)‖
f
s(·),φ
p(·),q(·)(R

n)
≤ ‖t(2)‖

f
s(·),φ
p(·),q(·)(R

n)
.

(ii) Let D0(Rn) := {Q ⊂ Rn : Q is a cube and `(Q) = 2−j0 for some j0 ∈ Z}.
Then it is easy to prove that the supremum in Definitions 1.4 and 2.1 can be
equivalently taken over all cubes in D0(Rn), the details being omitted.

Let (ϕ,Φ) be a pair of admissible functions. Then (ϕ̃, Φ̃) is also a pair of ad-
missible functions. Thus, by [27, pp. 130-131] or [28, Lemma (6.9)], we know that
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there exist Schwartz functions ψ and Ψ satisfying (1.2) and (1.3), respectively,
such that, for all ξ ∈ Rn,

Φ̂(ξ)Ψ̂(ξ) +
∞∑
j=1

ϕ̂(2−jξ)ψ̂(2−jξ) = 1. (2.1)

Recall that the ϕ-transform Sϕ is defined to be the mapping taking each f ∈
S ′(Rn) to the sequence Sϕ(f) := {(Sϕf)Q}Q∈Q∗ , where (Sϕf)Q := |Q|1/2Φ∗f(xQ)
if `(Q) = 1 and (Sϕf)Q := |Q|1/2ϕjQ ∗ f(xQ) if `(Q) < 1; the inverse ϕ-transform
Tψ is defined to be the mapping taking a sequence t := {tQ}Q∈Q∗ ⊂ C to

Tψt :=
∑

Q∈Q∗, `(Q)=1

tQΨQ +
∑

Q∈Q∗, `(Q)<1

tQψQ;

see, for example, [80, p. 31].

Now we state the following ϕ-transform characterization for F
s(·),φ
p(·),q(·)(R

n), which

is the main result of this section. For the corresponding result of Triebel–Lizorkin-
type spaces, see [80, Theorem 2.1].

Theorem 2.3. Let p, q, s and φ be as in Definition 1.4 and ϕ, ψ, Φ and

Ψ be as in (2.1). Then the operators Sϕ : F
s(·),φ
p(·),q(·)(R

n) → f
s(·),φ
p(·),q(·)(R

n) and

Tψ : f
s(·),φ
p(·),q(·)(R

n)→ F
s(·),φ
p(·),q(·)(R

n) are bounded. Furthermore, Tψ◦Sϕ is the identity

on F
s(·),φ
p(·),q(·)(R

n).

We remark that Tψ is well defined for all t ∈ f s(·),φp(·),q(·)(R
n); see Lemma 2.5 below.

The proof of Theorem 2.3 is given later. From Theorem 2.3 and an argument
similar to that used in the proof of [27, Remark 2.6], we immediately deduce the
following conclusion, the details being omitted.

Corollary 2.4. With all the notation as in Definition 1.4, the space F
s(·),φ
p(·),q(·)(R

n)

is independent of the choice of the admissible function pairs (ϕ,Φ).

Now we start to show Theorem 2.3. First, we need the following property.

Lemma 2.5. Let p, q, s and φ be as in Definition 1.4. Then, for all t ∈
f
s(·),φ
p(·),q(·)(R

n),

Tψt :=
∑

Q∈Q∗, `(Q)=1

tQΨQ +
∑

Q∈Q∗, `(Q)<1

tQψQ

converges in S ′(Rn); moreover, Tψ : f
s(·),φ
p(·),q(·)(R

n)→ S ′(Rn) is continuous.

To prove Lemma 2.5, we need the following technical lemmas.

Lemma 2.6. Let φ be a set function satisfying the conditions (S1) and (S2).
Then

(i) there exists a positive constant C such that, for any j ∈ Z+ and k ∈ Zn,

φ(Qjk) ≤ C2j log2 c1(|k|+ 1)log2(c1c̃1);
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(ii) there exists a positive constant C such that, for all Q ∈ Q and l ∈ Zn,

φ(Q+ l`(Q))

φ(Q)
≤ C(1 + |l|)log2(c1c̃1),

where c1 and c̃1 are as in the condition (S1).

Proof. We first prove (i). For any j ∈ Z+ and k ∈ Zn, let δk ∈ Z+ be such
that 2δk ≤ n(|k| + 1) < 2δk+1 and cQjk the center of the cube Qjk. Then, by the

conditions (S1) and (S2) of φ and the fact that |cQjk | ≤ n2−j(|k| + 1), we see
that

φ(Qjk) = φ(Q(cQjk, 2
−j)) ≤ cδk+1

1 φ(Q(cQjk , 2
−j+δk+1))

≤ c2c
δk+1
1 φ(Q(0, 2−j+δk+1)) . cj+δk1 (c̃1)δkφ(Q(0, 1))

. 2j log2 c1(|k|+ 1)log2(c1c̃1),

which completes the proof of (i).
Next we show (ii). If |l| ≤ 1, namely, `(Q)|l| ≤ `(Q), then, by the condition

(S2) of φ, we find that

c−1
2 ≤

φ(Q+ l`(Q))

φ(Q)
≤ c2. (2.2)

If |l| > 1, namely, `(Q)|l| > `(Q), then there exists a γl ∈ N such that 2γl ≤ |l| <
2γl+1. Thus, `(Q)2γl+1 > `(Q)|l|. From the condition (S1) of φ, we deduce that

φ(Q+ l`(Q)) = φ(Q(cQ + l`(Q), `(Q)))

≤ cγl+1
1 φ(Q(cQ + l`(Q), `(Q)2γl+1))

and

φ(Q) = φ(Q(cQ, `(Q))) ≥
(

1

c̃1

)γl+1

φ(Q(cQ, `(Q)2γl+1)),

which, combined with the condition (S2) of φ, implies that

φ(Q+ l`(Q))

φ(Q)
≤ c

γl+1
1 φ(Q(cQ + l`(Q), `(Q)2γl+1))

(c̃1)−γl−1φ(Q(cQ, `(Q)2γl+1))

≤ c2c
γl+1
1 (c̃1)γl+1 ∼ |l|log2(c1c̃1).

This, together with (2.2), then finishes the proof of (ii) and hence Lemma 2.6. �

Lemma 2.7. Let p(·) ∈ C log(Rn). Then there exists a positive constant C such
that, for all dyadic cubes Qjk with j ∈ Z+ and k ∈ Zn,

1

C
2
− n
p−

j
(1 + |k|)n( 1

p+
− 1
p−

)≤‖χQjk‖Lp(·)(Rn)

≤C2
− n
p+

j
(1 + |k|)n( 1

p−
− 1
p+

)
. (2.3)

Proof. Let Q00 be the dyadic cube Qjk with j = 0 and k = (0, . . . , 0) ∈ Zn. For
any j ∈ Z+ and k ∈ Zn, it is easy to see that Qjk ⊂ 2(1 + |k|)Q00. Then, from
[82, Lemma 2.6], we deduce that

‖χQjk‖Lp(·)(Rn).

[
|Qjk|

|2(1 + |k|)Q00|

] 1
p+

‖χ2(1+|k|)Q00‖Lp(·)(Rn)
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.

[
|Qjk|

|2(1 + |k|)Q00|

] 1
p+

[
|2(1 + |k|)Q00|

|Q00|

] 1
p−
‖χQ00‖Lp(·)(Rn)

∼ 2
− n
p+

j
(1 + |k|)n( 1

p−
− 1
p+

)

and, similarly,

‖χQjk‖Lp(·)(Rn) & 2
− n
p−

j
(1 + |k|)n( 1

p+
− 1
p−

)
,

which completes the proof of (2.3) and hence Lemma 2.7. �

In what follows, for h ∈ S(Rn) and M ∈ Z+, let

‖h‖SM (Rn) := sup
|γ|≤M

sup
x∈Rn
|∂γh(x)|(1 + |x|)n+M+γ.

Proof of Lemma 2.5. To prove this lemma, it suffices to show that there exists

an M ∈ N such that, for all t ∈ f s(·),φp(·),q(·)(R
n) and h ∈ S(Rn),

|〈Tψt, h〉| . ‖t‖fs(·),φ
p(·),q(·)(R

n)
‖h‖SM (Rn).

Indeed, by Remark 1.1(iv), we see that, for any Q ∈ Q∗,

|tQ|= ‖tQχQ‖Lp(·)(Q)‖χQ‖−1
Lp(·)(Q)

≤

∥∥∥∥∥∥∥∥∥

∑
Q̃⊂Q
Q̃∈Q∗

[
|Q̃|−

s(·)
n
− 1

2 |tQ̃|χQ̃
]q(·)

1
q(·)
∥∥∥∥∥∥∥∥∥
Lp(·)(Q)

‖χQ‖−1
Lp(·)(Q)

|Q|
s−
n

+ 1
2

≤‖t‖
f
s(·),φ
p(·),q(·)(R

n)
‖χQ‖−1

Lp(·)(Q)
φ(Q)|Q|

s−
n

+ 1
2 ,

which implies that

|〈Tψt, h〉| ≤
∑
`(Q)=1

|tQ||〈ΨQ, h〉|+
∑
`(Q)<1

|tQ||〈ψQ, h〉|

≤ ‖t‖
f
s(·),φ
p(·),q(·)(R

n)

 ∑
`(Q)=1

‖χQ‖−1
Lp(·)(Q)

φ(Q)|〈ΨQ, h〉|

+
∑
`(Q)<1

|Q|
s−
n

+ 1
2‖χQ‖−1

Lp(·)(Q)
φ(Q)|〈ψQ, h〉|

 =: I1 + I2.

Let M ∈ N be such that

M > 2 max

{
log2(c1c̃1) + n

(
1

p−
− 1

p+

)
+
n

2
, log2 c1 +

n

p−
− s− − 2n

}
.

Then, for I1, by Lemmas 2.6 and 2.7, we find that

I1≤‖f‖fs(·),φ
p(·),q(·)(R

n)

∑
k∈Zn
‖χQ0k

‖−1
Lp(·)(Q0k)

φ(Q0k)|〈ΨQ0k
, h〉|
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. ‖f‖
f
s(·),φ
p(·),q(·)(R

n)
‖h‖SM (Rn)

∑
k∈Zn

(1 + |k|)n( 1
p−
− 1
p+

)+log2(c1c̃1)−n−M

. ‖f‖
f
s(·),φ
p(·),q(·)(R

n)
‖h‖SM (Rn).

On the other hand, for I2, by [80, Lemma 2.4] and Lemmas 2.6 and 2.7, we
conclude that

I2≤‖f‖fs(·),φ
p(·),q(·)(R

n)
‖h‖SM (Rn)

∞∑
j=1

∑
k∈Zn

2
−j(s−+n

2
−log2 c1− n

p−
)
2−jM

×(1 + |k|)n( 1
p−
− 1
p+

)+log2(c1c̃1) 1

(1 + |2−jk|)n+M

. ‖f‖
f
s(·),φ
p(·),q(·)(R

n)
‖h‖SM (Rn),

which, together with the estimate of I1, implies that

|〈Tψt, h〉| . ‖t‖fs(·),φ
p(·),q(·)(R

n)
‖h‖SM (Rn).

Thus,

Tψt =
∑

Q∈Q∗, `(Q)=1

tQΨQ +
∑

Q∈Q∗, `(Q)<1

tQψQ

converges in S ′(Rn) and Tψ : f
s(·),φ
p(·),q(·)(R

n) → S ′(Rn) is continuous, which com-

pletes the proof of Lemma 2.5. �

For a sequence t = {tQ}Q∈Q∗ ⊂ C, r ∈ (0,∞) and λ ∈ (0,∞), let

(t∗r,λ)Q :=

 ∑
R∈Q∗, `(R)=`(Q)

|tR|r

[1 + `(R)−1|xR − xQ|]λ


1
r

, Q ∈ Q∗,

and t∗r,λ := {(t∗r,λ)Q}Q∈Q∗ .
We have the following estimates.

Lemma 2.8. Let p, q, s and φ be as in Definition 1.4, r ∈ (0,min{p−, q−}) and

λ ∈ (n+ Clog(s) + r log2(c1c̃1),∞),

where c1 and c̃1 are as in the condition (S1) and Clog(s) is as in (1.1) with
g replaced by s. Then there exists a constant C ∈ [1,∞) such that, for all

t ∈ f s(·),φp(·),q(·)(R
n),

‖t‖
f
s(·),φ
p(·),q(·)(R

n)
≤ ‖t∗r,λ‖fs(·),φ

p(·),q(·)(R
n)
≤ C‖t‖

f
s(·),φ
p(·),q(·)(R

n)
.

To prove Lemma 2.8, we need Lemma 2.9 below, which is just [20, Theorem
3.2] (the vector-valued convolution inequality) and plays a key role throughout
this article. In what follows, for any m ∈ (0,∞) and j ∈ Z, let

ηj,m(x) := 2jn(1 + 2j|x|)−m, x ∈ Rn.
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Lemma 2.9. Let p, q ∈ C log(Rn) satisfy 1 < p− ≤ p+ <∞ and 1 < q− ≤ q+ <
∞. Let m ∈ (n,∞). Then there exists a positive constant C such that, for all
sequences {fj}j∈N ⊂ L1

loc (Rn),∥∥∥∥∥∥
{∑
j∈N

|ηj,m ∗ fj|q(·)
} 1

q(·)
∥∥∥∥∥∥
Lp(·)(Rn)

≤ C

∥∥∥∥∥∥
{∑
j∈N

|fj|q(·)
} 1

q(·)
∥∥∥∥∥∥
Lp(·)(Rn)

.

The following Lemma 2.10 is just [36, Lemma 19] (see also [20, Lemma 6.1]).

Lemma 2.10. Let s ∈ C log
loc (Rn) and L ∈ [Clog(s),∞), where Clog(s) is as in

(1.1) with g replaced by s. Then there exists a positive constant C such that, for
all x, y ∈ Rn, m ∈ (0,∞) and v ∈ Z+,

2vs(x)ηv,m+L(x− y) ≤ C2vs(y)ηv,m(x− y).

Proof of Lemma 2.8. Notice that, for all Q ∈ Q∗, |tQ| ≤ (t∗r,λ)Q. This immedi-

ately implies that ‖t‖
f
s(·),φ
p(·),q(·)(R

n)
≤ ‖t∗r,λ‖fs(·),φ

p(·),q(·)(R
n)
, since f

s(·),φ
p(·),q(·)(R

n) is a quasi-

Banach lattice (see Remark 2.2(i)).
Conversely, let P be a given dyadic cube. For any Q ∈ Q∗, let vQ := tQ if

Q ⊂ 3P and vQ := 0 otherwise, and let uQ := tQ − vQ. Set v := {vQ}Q∈Q∗ and
u := {uQ}Q∈Q∗ . Then, for all Q ∈ Q∗, we have

(t∗r,λ)Q . (v∗r,λ)Q + (u∗r,λ)Q. (2.4)

From the proof of [20, Theorem 3.11], we deduce that, for all t ∈ f s(·),1p(·),q(·)(R
n),

‖t∗r,λ‖fs(·),1
p(·),q(·)(R

n)
. ‖t‖

f
s(·),1
p(·),q(·)(R

n)
,

which implies that

IP :=
1

φ(P )

∥∥∥∥∥∥
[ ∑
Q⊂P,Q∈Q∗

{
|Q|−[

s(·)
n

+ 1
2

](v∗r,λ)QχQ

}q(·)] 1
q(·)
∥∥∥∥∥∥
Lp(·)(P )

.
1

φ(P )

∥∥v∗r,λ∥∥fs(·),1
p(·),q(·)(R

n)
.

1

φ(P )
‖v‖

f
s(·),1
p(·),q(·)(R

n)

∼ 1

φ(P )

∥∥∥∥∥∥
[ ∑
Q⊂3P,Q∈Q∗

{
|Q|−[

s(·)
n

+ 1
2

]|tQ|χQ
}q(·)] 1

q(·)
∥∥∥∥∥∥
Lp(·)(3P )

.

By this and the condition (S1) of φ, we conclude that

‖v∗r,λ‖fs(·),φ
p(·),q(·)(R

n)
≤ sup

P∈Q
IP . ‖t‖fs(·),φ

p(·),q(·)(R
n)
. (2.5)

Next, we deal with u. To this end, let, for i ∈ Z+ and k ∈ Zn,

A(i, k, P ) :=
{
Q̃ ∈ Q∗ : `(Q̃) = 2−i`(P ), Q̃ ⊂ P + k`(P )

}
.



160 D. YANG, C. ZHUO, W. YUAN

Then, we have

JP :=
1

φ(P )

∥∥∥∥∥∥
[ ∑
Q⊂P,Q∈Q∗

{
|Q|−[

s(·)
n

+ 1
2

](u∗r,λ)QχQ

}q(·)] 1
q(·)
∥∥∥∥∥∥
Lp(·)(P )

=
1

φ(P )

∥∥∥∥∥∥∥

∞∑
i=0

∑
Q⊂P,Q∈Q∗
`(Q)=2−i`(P )

(
|Q|−[

s(·)
n

+ 1
2

]

×


∑
k∈Zn
|k|≥2

∑
R∈A(i,k,P )

|uR|r

[1 + `(Q)−1|xR − xQ|]λ


1
r

χQ


q(·)


1
q(·)
∥∥∥∥∥∥∥∥∥∥
Lp(·)(P )

.

Notice that, when x ∈ Q, y ∈ R and `(R) = `(Q),

1 + [`(Q)]−1|x− y| ∼ 1 + [`(Q)]−1|xQ − xR|.

From this, we deduce that, for all x ∈ Q, µ ∈ (0,∞), j ∈ Z+ and k ∈ Zn,

ηjQ,µ ∗

 ∑
R∈A(i,k,P )

|uR|χR

r (x) =
∑

R∈A(i,k,P )

∫
R

2njQ |uR|r

(1 + 2jQ |x− y|)µ
dy

∼
∑

R∈A(i,k,P )

|uR|r

[1 + `(Q)−1|xQ − xR|]µ
.

Since

λ > n+ Clog(s) + r log2(c1c̃1),

it follows that there exist m ∈ (n,∞) and L ∈ (Clog(s),∞) such that

λ > m+ L+ r log2(c1c̃1).

Observe that, when |k| ≥ 2, i ∈ Z+, Q ⊂ P with `(Q) = 2−i`(P ) and R ∈
A(i, k, P ),

1 + [`(Q)]−1|xQ − xR| ∼ 2i|k|.
Then, by Lemma 2.10, we conclude that

JP .
1

φ(P )

∥∥∥∥∥∥∥

∞∑
i=0

 ∑
`(Q)=2−i`(P )
Q∈Q∗, Q⊂P

 ∑
k∈Zn, |k|≥2

(2i|k|)m+L−λ|Q|−[
s(·)
n

+ 1
2

]r

× ηjQ,m+L ∗

 ∑
R∈A(i,k,P )

|uR|χR

r
1
r

χQ


q(·)


1
q(·)
∥∥∥∥∥∥∥∥∥
Lp(·)(P )
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.
1

φ(P )

∥∥∥∥∥∥

∞∑
i=0

 ∑
k∈Zn, |k|≥2

(2i|k|)m+L−λ

× ηi+jP ,m ∗

 ∑
R∈A(i,k,P )

|R|−[
s(·)
n

+ 1
2

]|uR|χR


r

q(·)
r


1
q(·)
∥∥∥∥∥∥∥∥
Lp(·)(P )

,

which, combined with Remark 1.1(i) and the fact that, for all d ∈ [0, 1] and
{θj}j ⊂ C, (∑

j

|θj|

)d

≤
∑
j

|θj|d, (2.6)

implies that

JP .
1

φ(P )

∥∥∥∥∥∥
∞∑
i=0

∑
k∈Zn, |k|≥2

(2i|k|)m+L−λ

× ηi+jP ,m ∗

 ∑
R∈A(i,k,P )

|R|−[
s(·)
n

+ 1
2

]|uR|χR


r∥∥∥∥∥∥

1
r

L
p(·)
r (P )

.
1

φ(P )


∞∑
i=0

∑
k∈Zn, |k|≥2

(2i|k|)m+L−λ

×

∥∥∥∥∥∥ηi+jP ,m ∗
 ∑

R∈A(i,k,P )

|R|−[
s(·)
n

+ 1
2

]|uR|χR


r∥∥∥∥∥∥

L
p(·)
r (P )


1
r

.

From this, m ∈ (n,∞), Lemma 2.9, Lemma 2.6(ii) and

λ > m+ L+ r log2(c1c̃1),

we deduce that

JP .
1

φ(P )


∞∑
i=0

∑
k∈Zn
|k|≥2

(2i|k|)m+L−λ

∥∥∥∥∥∥
∑

R∈A(i,k,P )

|R|−[
s(·)
n

+ 1
2

]|uR|χR

∥∥∥∥∥∥
r

Lp(·)(Rn)


1
r

.


∞∑
i=0

∑
k∈Zn
|k|≥2

(2i|k|)m+L−λ
[
φ(P + k`(P ))

φ(P )

]r
1
r

‖t‖
f
s(·),φ
p(·),q(·)(R

n)

.


∞∑
i=0

∑
k∈Zn
|k|≥2

2i(m+L−λ)|k|m+L−λ|k|r log(c1c̃1)


1
r

‖t‖
f
s(·),φ
p(·),q(·)(R

n)
∼ ‖t‖

f
s(·),φ
p(·),q(·)(R

n)
.
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This, together with the arbitrariness of P ∈ Q, further implies that

‖u∗r,λ‖fs(·),φ
p(·),q(·)(R

n)
. ‖t‖

f
s(·),φ
p(·),q(·)(R

n)
. (2.7)

Combining (2.4), (2.5) and (2.7), we conclude that

‖t∗r,λ‖fs(·),φ
p(·),q(·)(R

n)
. ‖t‖

f
s(·),φ
p(·),q(·)(R

n)
,

which completes the proof of Lemma 2.8. �

Now we give the proof of Theorem 2.3.

Proof of Theorem 2.3. We first show that Sϕ is bounded from F
s(·),φ
p(·),q(·)(R

n) to

f
s(·),φ
p(·),q(·)(R

n). Let f ∈ F
s(·),φ
p(·),q(·)(R

n). From [20, Lemma A.6] (the r-trick lemma)

and its proof, we deduce that, for all L ∈ [Clog(s),∞), m ∈ (n+ log2 c1,∞),

r ∈ (0,min{1, p−, q−})
and x ∈ Q := Qjk ∈ Q∗,

sup
z∈Q
|ϕj ∗ f(z)|r . 2jn

∑
l∈Zn

∫
Qj(k+l)

(1 + 2j|x− y|)−(2m+L)|ϕj ∗ f(y)|r dy,

which implies that

‖Sϕf‖fs(·),φ
p(·),q(·)(R

n)

. sup
P∈Q

1

φ(P )

∥∥∥∥∥∥
 ∞∑
j=(jP∨0)

{∑
k∈Zn

2js(·)

×

[
2jn
∑
l∈Zn

∫
Qj(k+l)

|ϕj ∗ f(y)|r

(1 + 2j| · −y|)2m+L
dy

] 1
r

χQjk


q(·)


1
q(·)
∥∥∥∥∥∥∥∥
Lp(·)(P )

. sup
P∈Q

1

φ(P )

∥∥∥∥∥∥
 ∞∑
j=(jP∨0)

{∑
k∈Zn

2js(·)
∑
l∈Zn

(1 + |l|)−m

×
[
ηj,m+L ∗ (|ϕj ∗ fχQj(k+l)

|r)
]
χQjk

} q(·)
r


1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

, (2.8)

where the last inequality comes from the fact that, when x ∈ Qjk and y ∈ Qj(k+l),

1 + 2j|x− y| ∼ 1 + |l|.
Observe that, for any given P ∈ Q, if Qjk ⊂ P , then Qj(k+l) ⊂ 3n|l|P for all
l ∈ Zn. By this and (2.8), we see that

‖Sϕf‖fs(·),φ
p(·),q(·)(R

n)
. sup

P∈Q

1

φ(P )

∥∥∥∥∥∥
 ∞∑
j=(jP∨0)

{
2jrs(·)
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×

[∑
l∈Zn

(1 + |l|)−mηj,m+L ∗ (|ϕj ∗ fχ3n|l|P |r)

]} q(·)
r


1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

,

which, combined with the Minkowski inequality, Lemma 2.10 and Remark 1.1(i),
further implies that

‖Sϕf‖fs(·),φ
p(·),q(·)(R

n)

. sup
P∈Q

1

φ(P )

{∑
l∈Zn

(1 + |l|)−m

×

∥∥∥∥∥∥∥
 ∞∑
j=(jP∨0)

[
ηj,m+L ∗ (|2js(·)ϕj ∗ fχ3n|l|P |r)

] q(·)
r

 r
q(·)
∥∥∥∥∥∥∥
L
p(·)
r (P )


1
r

.

From this, Lemma 2.9, m ∈ (n+log2 c1,∞) and the condition (S1) of φ, it follows
that

‖Sϕf‖fs(·),φ
p(·),q(·)(R

n)

. sup
P∈Q

1

φ(P )


∑
l∈Zn

(1 + |l|)−m

∥∥∥∥∥∥∥
 ∞∑
j=(jP∨0)

(
2js(·)|ϕj ∗ f |

)q(·) 1
q(·)
∥∥∥∥∥∥∥
r

Lp(·)(3n|l|P )


1
r

. ‖f‖
F
s(·),φ
p(·),q(·)(R

n)

[∑
l∈Zn

(1 + |l|)−m(1 + |l|)log2 c1

] 1
r

. ‖f‖
F
s(·),φ
p(·),q(·)(R

n)
,

which implies that Sϕ is bounded from F
s(·),φ
p(·),q(·)(R

n) to f
s(·),φ
p(·),q(·)(R

n).

By repeating the argument used in the proof of [80, Theorem 2.1], with [80,
Lemmas 2.7 and 2.8] therein replaced by Lemmas 2.5 and 2.8 here, we conclude

that Tψ is bounded from f
s(·),φ
p(·),q(·)(R

n) to F
s(·),φ
p(·),q(·)(R

n), the details being omitted.

Finally, by the Calderón reproducing formula (see, for example, [80, Lemma 2.3]),

we know that Tψ ◦ Sϕ is the identity on F
s(·),φ
p(·),q(·)(R

n), which completes the proof

of Theorem 2.3. �

3. Several equivalent characterizations of F
s(·),φ
p(·),q(·)(R

n)

In this section, we first establish molecular and atomic characterizations for

F
s(·),φ
p(·),q(·)(R

n) via Sobolev embeddings. Secondly, we characterize F
s(·),φ
p(·),q(·)(R

n) in

terms of the Peetre maximal function, which is further applied to show that

S(Rn) ↪→ F
s(·),φ
p(·),q(·)(R

n) ↪→ S ′(Rn)

and give out two equivalent quasi-norms of F
s(·),φ
p(·),q(·)(R

n), which may be useful in

applications.
For notational simplicity, in what follows, for all Q ∈ Q∗, let χ̃Q := |Q|−1/2χQ.
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Proposition 3.1. Let φ be a set function as in Definition 1.4, s0, s1, p0, p1 be
measurable functions satisfying that, for all x ∈ Rn, −∞ < s1(x) ≤ s0(x) < ∞,
0 < p0(x) ≤ p1(x) <∞ and

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
.

Assume that 0 < (p0)− ≤ (p1)− ≤ (p1)+ <∞ and s0,
1
p0
∈ C log

loc (Rn). If q(x) =∞
for all x ∈ Rn or 0 < q− ≤ q(x) <∞ for all x ∈ Rn, then

f
s0(·),φ
p0(·),q(·)(R

n) ↪→ f
s1(·),φ
p1(·),q(·)(R

n).

Proof. Let t := {tQ}Q∈Q∗ ∈ f s0(·),φ
p0(·),q(·)(R

n). We need to prove

‖t‖
f
s1(·),φ
p1(·),q(·)(R

n)
. ‖t‖

f
s0(·),φ
p0(·),q(·)(R

n)
.

To this end, let P ∈ Q be any given dyadic cube. For all Q ∈ Q∗, let uQ := tQ
when Q ⊂ P and uQ := 0 otherwise. Then, by the Sobolev embedding theorem

([72, Theorem 3.1]), namely, f
s0(·),1
p0(·),q(·)(R

n) ↪→ f
s1(·),1
p1(·),q(·)(R

n), we conclude that∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

∑
k∈Zn

[
2js1(·)|tQjk |χ̃Qjk

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp1(·)(P )

=

∥∥∥∥∥∥
{
∞∑
j=0

∑
k∈Zn

[
2js1(·)|uQjk |χ̃Qjk

]q(·)} 1
q(·)
∥∥∥∥∥∥
Lp1(·)(Rn)

= ‖u‖
f
s1(·),1
p1(·),q(·)(R

n)

. ‖u‖
f
s0(·),1
p0(·),q(·)(R

n)
∼

∥∥∥∥∥∥
{
∞∑
j=0

∑
k∈Zn

[
2js0(·)|uQjk |χ̃Qjk

]q(·)} 1
q(·)
∥∥∥∥∥∥
Lp0(·)(Rn)

∼

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

∑
k∈Zn

[
2js0(·)|tQjk |χ̃Qjk

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp0(·)(P )

,

which implies that

‖t‖
f
s1(·),φ
p1(·),q(·)(R

n)
. sup

P∈Q

1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

∑
k∈Zn

[
2js0(·)|tQjk |χ̃Qjk

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp0(·)(P )

∼‖t‖
f
s0(·),φ
p0(·),q(·)(R

n)
.

This finishes the proof of Proposition 3.1 �

Proposition 3.2. Let φ be a set function as in Definition 1.4, s0, s1, p0, p1 be
measurable functions satisfying that, for all x ∈ Rn, −∞ < s1(x) ≤ s0(x) < ∞,
0 < p0(x) ≤ p1(x) <∞ and

s0(x)− n

p0(x)
= s1(x)− n

p1(x)
.
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Assume that 0 < (p0)− ≤ (p1)+ <∞, s0,
1
p0
∈ C log

loc (Rn) and

inf
x∈Rn

[s0(x)− s1(x)] > 0.

Then, for all q ∈ (0,∞],

f
s0(·),φ
p0(·),∞(Rn) ↪→ f

s1(·),φ
p1(·),q (Rn).

The proof of Proposition 3.2 is similar to that of Proposition 3.1, with [72,
Theorem 3.1] replaced by [72, Theorem 3.2], the details being omitted.

Remark 3.3. (i) When φ(Q) = 1 for all cube Q, the conclusions of Propositions
3.1 and 3.2 are just [72, Theorem 3.1] and [72, Theorem 3.2], respectively.

(ii) When p, q, s and φ are as in Remark 1.5(ii), Proposition 3.2 goes back to
[80, Proposition 2.5].

Combining Theorem 2.3 and Proposition 3.1, we immediately obtain the fol-
lowing Corollary 3.4, the details being omitted.

Corollary 3.4. Let i ∈ {0, 1}, pi, q ∈ P(Rn) satisfy 1
pi
, 1

q
∈ C log(Rn) and si

be measurable functions satisfying si ∈ C log
loc (Rn) ∩ L∞(Rn), and φ a set function

satisfying the conditions (S1) and (S2). Under the same assumptions as in
Proposition 3.1, the following conclusion

F
s0(·),φ
p0(·),q(·)(R

n) ↪→ F
s1(·),φ
p1(·),q(·)(R

n)

holds true.

Corollary 3.5. Let i ∈ {0, 1}, pi, qi ∈ P(Rn) satisfy 1
pi
, 1

qi
∈ C log(Rn) and si

be measurable functions satisfying si ∈ C log
loc (Rn) ∩ L∞(Rn), and φ a set function

satisfying the conditions (S1) and (S2). Assume that, for all x ∈ Rn,

s0(x)− n

p0(x)
= s1(x)− n

p1(x)

and infx∈Rn [s0(x)− s1(x)] > 0. Then

F
s0(·),φ
p0(·),q0(·)(R

n) ↪→ F
s1(·),φ
p1(·),q1(·)(R

n).

Proof. By Proposition 3.2 and (2.6), we see that

f
s0(·),φ
p0(·),q0(·)(R

n) ↪→ f
s0(·),φ
p0(·),∞(Rn) ↪→ f

s1(·),φ
p1(·),(q1)−

(Rn) ↪→ f
s1(·),φ
p1(·),q1(·)(R

n).

From this and Theorem 2.3, we deduce that F
s0(·),φ
p0(·),q0(·)(R

n) ↪→ F
s1(·),φ
p1(·),q1(·)(R

n),

which completes the proof of Corollary 3.5. �

Next we establish molecular and atomic characterizations of Triebel–Lizorkin-
type spaces with variable exponents.

Definition 3.6. Let K ∈ Z+, L ∈ Z and R ∈ N.

(i) A measurable function mQ on Rn is called a (K,L,R)-smooth molecule
with Q := Qjk ∈ Q, where j ∈ Z and k ∈ Zn, if it satisfies the following
conditions:
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(M1) (vanishing moment) when j ∈ N,
∫
Rn x

γmQ(x) dx = 0 for all γ ∈ Zn+
and |γ| < L;

(M2) (smoothness condition) for all multi-indices α ∈ Zn+, with |α| ≤ K,
and all x ∈ Rn

|DαmQ(x)| ≤ 2(|α|+n/2)j(1 + 2j|x− xQ|)−R.

(ii) A measurable function aQ on Rn is called a (K,L)-smooth atom supported
near Q := Qjk ∈ Q, where j ∈ Z and k ∈ Zn, if it satisfies the following
conditions:

(A1) supp aQ ⊂ 3Q;
(A2) (vanishing moment) when j ∈ N,

∫
Rn x

γaQ(x) dx = 0 for all γ ∈ Zn+
with |γ| < L;

(A3) (smoothness condition) for all multi-indices α ∈ Zn+ with |α| ≤ K,

|DαaQ(x)| ≤ 2(|α|+n/2)j for all x ∈ Rn.

Remark 3.7. (i) If L < 0, then the vanishing moment conditions (M1) and (A2)
are void.

(ii) Let aQ be a (K,L)-smooth atom with Q := Qjk ∈ Q∗ with j ∈ Z+ and
k ∈ Zn. Then, by combining the conditions (A1) and (A3), we conclude that, for
all R ∈ (0,∞), α ∈ Zn+ with |α| ≤ K and x ∈ Rn,

|DαaQ(x)| ≤ C2(|α|+n/2)j 1

(1 + 2j|x− xQ|)R
,

where C is a positive constant independent of x, α, Q and aQ, but depending
on R. Thus, each (K,L)-smooth atom is a (K,L,R)-smooth molecule up to a
harmless positive constant.

Theorem 3.8. Let p, q, s and φ be as in Definition 1.4.

(i) Let K ∈ (s+ + max{0, log2 c̃1},∞) and

L ∈
(

n

min{1, p−, q−}
− n− s−,∞

)
. (3.1)

Suppose that {mQ}Q∈Q∗ is a family of (K,L,R)-smooth molecules with

R large enough and that t := {tQ}Q∈Q∗ ∈ f
s(·),φ
p(·),q(·)(R

n). Then f :=∑
Q∈Q∗ tQmQ converges in S ′(Rn) and

‖f‖
F
s(·),φ
p(·),q(·)(R

n)
≤ C‖t‖

f
s(·),φ
p(·),q(·)(R

n)

with C being a positive constant independent of t.

(ii) Conversely, if f ∈ F s(·),φ
p(·),q(·)(R

n), then, for any given K, L ∈ Z+, there exist

a sequence t := {tQ}Q∈Q∗ ⊂ C and a sequence {aQ}Q∈Q∗ of (K,L)-smooth
atoms such that f =

∑
Q∈Q∗ tQaQ in S ′(Rn) and

‖t‖
f
s(·),φ
p(·),q(·)(R

n)
≤ C‖f‖

F
s(·),φ
p(·),q(·)(R

n)

with C being a positive constant independent of f .
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Remark 3.9. (i) When φ(P ) := 1 for all cubes P ⊂ Rn, conclusions of Theorem
3.8 coincide with those of [35, Corollary 5.6]; when p, q, s and φ are as in Remark
1.5(ii), Theorem 3.8 goes back to [23, Theorem 3.12] (see also [80, Theorem 3.3]).

(ii) In the case that φ(P ) := 1 for all cubes P ⊂ Rn and s ≥ 0, the vanishing
moment and the smoothness conditions of Theorem 3.8 can be further refined.
Indeed, it was proved in [20, Theorem 3.11] that the vanishing moment and the
smoothness conditions of atoms can be localized on dyadic cubes associated with
atoms in Theorem 3.8.

Proof of Theorem 3.8. The proof of (ii) is similar to that of [80, Theorme 3.3]
(see also [27, Theorem 4.1]). Indeed, by repeating the argument that used in the
proof of [80, Theorem 3.3], with [80, Lemma 2.8] therein replaced by Lemma 2.8,
we can prove (ii), the details being omitted.

Next we prove (i) by two steps.
Step 1) We show that f =

∑
Q∈Q∗ tQmQ converges in S ′(Rn). To this end, it

suffices to show that

lim
N→∞,Λ→∞

N∑
j=0

∑
k∈Zn, |k|≤Λ

tQjkmQjk (3.2)

exists in S ′(Rn). For all h ∈ S(Rn) and j ∈ Z+, by the vanishing moment
condition (M1), we see that∫

Rn

∑
k∈Zn, |k|≤Λ

tQjkmQjk(y)h(y) dy

=

∫
Rn

∑
k∈Zn, |k|≤Λ

tQjkmQjk(y)

h(y)−
∑

γ∈Zn, |γ|<L

(y − xQjk)γ
Dγh(xQjk)

γ!

 dy

and, by Taylor’s remainder theorem, we find that, for all y ∈ Rn,∣∣∣∣∣∣h(y)−
∑

γ∈Zn, |γ|≤L

(y − xQjk)γ
Dγh(xQjk)

γ!

∣∣∣∣∣∣
. |y − xQjk |L

∑
|γ|=L

|Dγh(ξ(y))|
γ!

. (1 + |y − xQjk |)L(1 + |y|)−δ sup
ξ∈Rn

∑
|γ|=L

(1 + |ξ|)δ |D
γh(ξ)|
γ!

,

where δ ∈ (0,∞) and ξ(y) := y + θ(xQjk − y) with some θ ∈ (0, 1) depending on
y and xQjk , which, together with the fact that, for all y ∈ Rn,

|mQjk(y)| ≤ 2jn/2(1 + 2j|y − xQjk |)−R,
further implies that∣∣∣∣∣∣

∫
Rn

∑
k∈Zn, |k|≤Λ

tQjkmQjk(y)h(y) dy

∣∣∣∣∣∣
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.
∫
Rn

∑
k∈Zn, |k|≤Λ

|tQjk |2−j(L−n/2) (1 + |y|)−δ

(1 + 2j|y − xQjk |)R−L
dy

.
∞∑
v=0

∫
Dv

∑
k∈Zn
|tQjk |2−j(L−n/2) (1 + |y|)−δ

(1 + 2j|y − xQjk |)R−L
dy, (3.3)

where D0 := {x ∈ Rn : |x| ≤ 1} and, for all v ∈ N,

Dv := {x ∈ Rn : 2v−1 < |x| ≤ 2v}.

For all v ∈ Z+, y ∈ Dv and j ∈ Z+, let W y,j
0 := {k ∈ Zn : 2j|y − xQjk | ≤ 1} and,

for i ∈ N,

W y,j
i := {k ∈ Zn : 2i−1 < 2j|y − xQjk | ≤ 2i}.

Then we have

H(v, j, y) :=
∑
k∈Zn
|tQjk ||Qjk|−

1
2 (1 + 2j|y − 2−jk|)−(R−L)

∼
∞∑
i=0

∑
k∈W y,j

i

2−i(R−L)|tQjk ||Qjk|−
1
2

∼
∞∑
i=0

2−i(R−L)

∫
∪
k̃∈Wy,j

i

Q
jk̃

2jn

[∑
k∈Zn
|tQjk |χ̃Qjk(z)

]
dz.

Observe that, if z ∈ ∪k̃∈W y,j
i
Qjk̃, then z ∈ Qjk̃0

for some k̃0 ∈ W y,j
i and, for

y ∈ Dv, 1 + 2j|y − z| ∼ 1 + 2i; moreover,

|z| ≤ |z − xQjk̃0
|+ |xQjk̃0

− y|+ |y| . 2−j + 2−j+i + 2v . 2i+v,

which implies that ⋃
k̃∈W y,j

i

Qjk̃ ⊂ Q(0, 2i+v+c0)

with some positive constant c0 ∈ N. From this, we deduce that, for all a ∈ (n,∞),
v, j ∈ Z+ and y ∈ Rn,

H(v, j, y)∼
∞∑
i=0

2−i(R−L−a)

∫
∪
k̃∈Wy,j

i

Q
jk̃

2jn

(1 + 2j|y − z|)a

×

[∑
k∈Zn
|tQjk |χ̃Qjk(z)χQ(0,2i+v+c0 )(z)

]
dz

.
∞∑
i=0

2−i(R−L−a)ηj,a ∗

(∑
k∈Zn
|tQjk |χ̃QjkχQ(0,2i+v+c0 )

)
(y),

which, combined with (3.3), implies that∣∣∣∣∣∣
∫
Rn

∑
k∈Zn, |k|≤Λ

tQjkmQjk(y)h(y) dy

∣∣∣∣∣∣



TRIEBEL–LIZORKIN TYPE SPACES 169

. 2−jL
∞∑
v=0

∞∑
i=0

(1 + 2v)−δ02−i(R−L−a)

×
∫
Dv

ηj,a ∗

(∑
k∈Zn
|t̃Qjk |χQjkχQ(0,2i+v+c0 )

)
(y)(1 + |y|)−δ+δ0 dy, (3.4)

where δ0 ∈ (0,∞) is determined later.
By (3.1), we find that there exists r ∈ (0,min{1, p−, q−}) such that

s− +
n

p−
(r − 1) > −L.

Let, for all x ∈ Rn, p̃(x) := p(x)/r, (p̃(x))∗ := p̃(x)
p̃(x)−1

and s̃ be a measurable

function on Rn such that, for all x ∈ Rn,

s(x)− n

p(x)
= s̃(x)− n

p̃(x)
.

Then

s̃−= inf
x∈Rn

{
s(x) +

n(r − 1)

p(x)

}
≥ inf

x∈Rn
[s(x)] + inf

x∈Rn

[
n(r − 1)

p(x)

]
= s− +

n

p−
(r − 1) > −L.

Choosing δ ∈ (0,∞) and δ0 ∈ (max{0, log2 c̃1},∞) such that

δ ∈ (n(1− r)/p+ + δ0,∞),

by the Hölder inequality in Remark 1.1(iii), (3.4), Lemma 2.9, Remark 2.2(ii) and
Proposition 3.1, we conclude that∣∣∣∣∣∣

∫
Rn

∑
k∈Zn, |k|≤Λ

tQjkmQjk(y)h(y) dy

∣∣∣∣∣∣
. 2−j(L+s̃−)

∞∑
v=0

2−vδ0
∞∑
i=0

2−i(R−L−a)
∥∥(1 + | · |)−δ+δ0

∥∥
L(p̃(·))∗ (Rn)

×

∥∥∥∥∥ηj,a ∗
[∑
k∈Zn

2js̃(·)|tQjk |χ̃QjkχQ(0,2i+v+c0 )

]∥∥∥∥∥
Lp̃(·)(Rn)

. 2−j(L+s̃−)

∞∑
v=0

2−vδ0
∞∑
i=0

2−i(R−L−a)

∥∥∥∥∥∑
k∈Zn

2js̃(·)|tQjk |χ̃Qjk

∥∥∥∥∥
Lp̃(·)(Q(0,2i+v+c0 ))

. 2−j(L+s̃−)

∞∑
v=0

2−vδ0
∞∑
i=0

2−i(R−L−a)φ(Q(0, 2i+v+c0))‖t‖
f
s̃(·),φ
p̃(·),q(·)(R

n)

. 2−j(L+s̃−)

∞∑
v=0

2−v(δ0−log2 c̃1)

∞∑
i=0

2−i(R−L−a−log2 c̃1)‖t‖
f
s(·),φ
p(·),q(·)(R

n)

. 2−j(L+s̃−)‖t‖
f
s(·),φ
p(·),q(·)(R

n)
,
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where R ∈ (0,∞) is chosen large enough, which, together with L > −s̃−, implies
that (3.2) exists in S ′(Rn) and |〈f, h〉| . ‖t‖

f
s(·),φ
p(·),q(·)(R

n)
.

Step 2 ) We prove that ‖f‖
F
s(·),φ
p(·),q(·)(R

n)
. ‖t‖

f
s(·),φ
p(·),q(·)(R

n)
. Let P ∈ Q be a given

dyadic cube and r ∈ (0,min{1, p−, q−}) such that L > n/r − n − s−. Then, by
Remark 1.1(i), we find that

1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

[
2js(·)|ϕj ∗ f |

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

.
1

φ(P )

∥∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

2js(·)r
(jP∨0)−1∑
v=0

∑
`(Q)=2−v

|tQ|r|ϕj ∗mQ|r

q(·)
r


r
q(·)
∥∥∥∥∥∥∥∥

1
r

L
p(·)
r (P )

+
1

φ(P )

∥∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

2js(·)r
∞∑

v=(jp∨0)

∑
`(Q)=2−v

|tQ|r|ϕj ∗mQ|r

q(·)
r


r
q(·)
∥∥∥∥∥∥∥∥

1
r

L
p(·)
r (P )

=: I1 + I2,

here
∑(jP∨0)−1

v=0 · · · = 0 if jP ≤ 0.
Observe that I1 = 0 if jP ≤ 0. Thus, to estimate I1, we only need to assume

jP ∈ N. By [26, Lemma 3.3] (see also [35, Lemma 3.5]), we find that, for all
Q := Qvk ∈ Q∗ with v ≤ j and x ∈ Rn,

|ϕj ∗mQ(x)| . 2vn/22(v−j)K(1 + 2v|x− xQ|)−R,

which, combined with (2.6), implies that

I1.
1

φ(P )

∥∥∥∥∥
{
∞∑

j=jP

jP−1∑
v=0

2js(·)r
∑
k∈Zn
|tQvk |r|Qvk|−

r
2

× 2(v−j)Kr(1 + 2v| · −xQvk |)−Rr
}∥∥∥∥∥

1
r

L
p(·)
r (P )

. (3.5)

We claim that, for all v, j ∈ Z+ and x ∈ P ,

J(v, j, x, P ) := 2js(x)r
∑
k∈Zn
|tQvk |r|Qvk|−

r
2 2(v−j)Kr(1 + 2v|x− xQvk |)−Rr

. 2(v−j)(K−s+)r

∞∑
i=0

2−i(R−a−ε/r)r

×ηv,ar ∗

 ∑
k∈Ωx,vi

|tQvk |2vs(·)χ̃QvkχQ(cP ,2
i−v+c0 )

r (x),



TRIEBEL–LIZORKIN TYPE SPACES 171

where a ∈ (n/r,∞), ε ∈ [Clog(s),∞), cP is the center of P , c0 ∈ N is a positive
constant independent of x, P, i, v, k, Ωx,v

0 := {k ∈ Zn : 2v|x− xQvk | ≤ 1} and,
for all i ∈ N,

Ωx,v
i :=

{
k ∈ Zn : 2i−1 < 2v|x− xQvk | ≤ 2i

}
.

Indeed, it is easy to see that

J(v, j, x, P ) . 2js(x)r2(v−j)Kr
∞∑
i=0

∑
k∈Ωx,vi

2−Rri|tQvk |r|Qvk|−
r
2

∼ 2[js(x)+(v−j)K]r

×
∞∑
i=0

2−Rri+vn
∫
∪
k̃∈Ω

x,v
i

Q
vk̃

 ∑
k∈Ωx,vi

|tQvk |χ̃Qvk(y)

r dy
 . (3.6)

Observe that, if y ∈ ∪k̃∈Ωx,vi
Qvk̃, then there exists a k̃0 ∈ Ωx,v

i such that y ∈ Qvk̃0

and 1 + 2v|x− y| ∼ 1 + 2i; moreover, since v ≤ jP , it follows that

|y − cP | ≤ |y − xQ
vk̃0
|+ |x− xQ

vk̃0
|+ |x− cP |

. 2−v + 2i−v + 2−jP . 2i−v,

which implies that ∪k̃∈Ωx,vi
Qvk̃ ⊂ Q(cP , 2

i−v+c0) for some constant c0 ∈ N. From

this, (3.6) and Lemma 2.10, we deduce that, for all a ∈ (n/r,∞), v, j ∈ Z+ and
x ∈ P ,

J(v, j, x, P ) . 2js(x)r2(v−j)Kr
∞∑
i=0

2(a+ε/r−R)ri

∫
∪
k̃∈Ω

x,v
i

Q
vk̃

2vn

(1 + 2v|x− y|)ar+ε

×

 ∑
k∈Ωx,vi

|tQvk |χ̃QvkχQ(cP ,2
i−v+c0 )(y)

r dy
. 2(v−j)(K−s+)r

∞∑
i=0

2(a+ε/r−R)ri

×ηv,ar ∗

 ∑
k∈Ωx,vi

2vs(·)|tQvk |χ̃QvkχQ(cP ,2
i−v+c0 )

r (x),

which implies that the claim holds true.
By this claim, (3.5) and Remark 1.1(i), we conclude that

I1.
1

φ(P )

{
∞∑

j=jP

jP−1∑
v=0

2(v−j)(K−s+)r

∞∑
i=0

2(a+ε/r−R)ri

×

∥∥∥∥∥∥ηv,ar ∗
 ∑

k∈Ω·,vi

|tQvk |2vs(·)χ̃QvkχB(cP ,2
i−v+c0 )

r∥∥∥∥∥∥
L
p(·)
r (P )


1
r

,
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which, together with Lemma 2.9, jP ∈ N and Remark 2.2(ii), further implies that

I1.
1

φ(P )

{
∞∑

j=jP

jP∑
v=0

2(v−j)(K−s+)r

∞∑
i=0

2(a+ε/r−R)ri

×

∥∥∥∥∥∑
k∈Zn
|tQvk |2vs(·)χ̃Qvk

∥∥∥∥∥
r

Lp(·)(Q(cP ,2
i−v+c0 ))


1
r

. ‖t‖
f
s(·),φ
p(·),q(·)(R

n)

{
∞∑

j=jP

jP∑
v=0

2(v−j)(K−s+)r

×
∞∑
i=0

2(a+ε/r−R)ri [φ(Q(cP , 2
i−v+c0))]r

[φ(P )]r

} 1
r

.

From this, K ∈ (s+ + max{0, log2 c̃1},∞) and the fact that, when v ≤ jP ,

φ(Q(cP , 2
i−v+c0)). (c̃1)iφ(Q(cP , 2

−v)) . (c̃1)i+jP−vφ(P )

∼ 2(i+jP−v) log2 c̃1φ(P ),

we deduce that

I1. ‖t‖fs(·),φ
p(·),q(·)(R

n)

{
2jP log2 c̃1

∞∑
j=jP

2−j(K−s+)r

jP∑
v=0

2v(K−s+−log2 c̃1)r

×
∞∑
i=0

2−i(R−a−ε/r−log2 c̃1)r

} 1
r

. ‖t‖
f
s(·),φ
p(·),q(·)(R

n)
, (3.7)

where R ∈ (0,∞) is chosen such that R > a+ ε/r + log2 c̃1.
We now estimate I2. By applying [20, Lemmas A.2 and A.5] and an argument

similar to that used in the proof of [20, Lemma 6.3], we see that, for all j ∈ Z+,
Q := Qvk ∈ Q∗ and x ∈ Rn,

|ϕj ∗mQ(x)| . 2−β(j,v)|Q|−1/2(ηj,R ∗ ηv,R ∗ χQ)(x),

where

β(j, v) := K max{j − v, 0}+ Lmax{v − j, 0}.
Let

M ∈ (n/r + log2(c1c̃1),∞)

and ε ∈ [Clog(s),∞) be such that R = 2M + ε/r. Thus, we have

I2.
1

φ(P )

∥∥∥∥∥∥


∞∑
j=(jP∨0)

 ∞∑
v=(jP∨0)

∑
`(Q)=2−v

2js(·)r2−β(j,v)r

× |tQ|r|Q|−
r
2 (ηj,2M+ε/r ∗ ηv,2M+ε/r ∗ χQ)r

] q(·)
r


r
q(·)
∥∥∥∥∥∥∥

1
r

Lp(·)(P )

. (3.8)
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By [20, Lemma A.4], we find that, for all v ∈ Z+ and `(Q) = 2−v,

2js(·)r−β(j,v)r(ηj,2M+ε/r ∗ ηv,2M+ε/r ∗ χQ)r

. 2js(·)r−β(j,v)r2nmax{v−j,0}(1−r)ηj,2Mr+ε ∗ ηv,2Mr+ε ∗ χQ
∼ 2vs(·)r2−(K−s+)rmax{j−v,0}

×2−(L−n
r

+n+s−)rmax{v−j,0}ηj,2Mr+ε ∗ ηv,2Mr+ε ∗ χQ,

which, combined with (3.8) and Lemma 2.10, implies that

I2.
1

φ(P )

∥∥∥∥∥∥


∞∑
j=(jP∨0)

ηj,2Mr ∗

 ∞∑
v=(jP∨0)

∑
`(Q)=2−v

|tQ|r|Q|−
r
2

× 2vs(·)r−ε(j,v)rηv,2Mr+ε ∗ χQ

]) q(·)
r


r
q(·)
∥∥∥∥∥∥∥

1
r

L
p(·)
r (P )

.
1

φ(P )

∥∥∥∥∥∥


∞∑
j=(jP∨0)

∑
l∈Zn

∫
P+l`(P )

2jn

(1 + 2j| · −y|)2Mr

 ∞∑
v=(jP∨0)

2vs(·)−ε(j,v)

×
∑

`(Q)=2−v

[
|tQ|
|Q| 12

]r
ηv,2Mr+ε ∗ χQ

 (y) dy


q(·)
r


r
q(·)
∥∥∥∥∥∥∥∥

1
r

L
p(·)
r (P )

, (3.9)

where

ε(j, v) := (K − s+) max{j − v, 0}+ (L− n/r + n+ s−) max{v − j, 0}.

From this, the fact that, when j ≥ jP , l ∈ Zn, x ∈ P and y ∈ P + l`(P ),

1 + 2j|x− y| ≥ 1 + 2jP |x− y| ∼ 1 + |l|,

the Minkowski inequality, Lemma 2.9 and Remark 1.1(i), we further deduce that

I2.
1

φ(P )

∥∥∥∥∥∥


∞∑
j=(jP∨0)

∑
l∈Zn

(1 + |l|)−Mrηj,Mr ∗

 ∞∑
v=(jP∨0)

∑
`(Q)=2−v

|tQ|r

× |Q|−
r
2 2vs(·)r−ε(j,v)rηv,2Mr+ε ∗ χQ

]
χP+l`(P )

)] q(·)
r


r
q(·)
∥∥∥∥∥∥∥

1
r

L
p(·)
r (P )

.
1

φ(P )

∥∥∥∥∥∥
∑
l∈Zn

(1 + |l|)−Mr


∞∑

j=(jP∨0)

ηj,Mr ∗

 ∞∑
v=(jP∨0)

∑
`(Q)=2−v

|tQ|r
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× |Q|−
r
2 2vs(·)r−ε(j,v)rηv,2Mr+ε ∗ χQ

]
χP+l`(P )

)] q(·)
r


r
q(·)
∥∥∥∥∥∥∥

1
r

L
p(·)
r (P )

.
1

φ(P )

∑
l∈Zn

(1 + |l|)−Mr

∥∥∥∥∥∥
 ∞∑
j=(jP∨0)

 ∞∑
v=(jP∨0)

∑
`(Q)=2−v

|tQ|r|Q|−
r
2

× 2vs(·)r−ε(j,v)rηv,2Mr+ε ∗ χQ

) q(·)
r


r
q(·)
∥∥∥∥∥∥∥
L
p(·)
r (P+l`(P ))


1
r

. (3.10)

By the Hölder inequality,

K ∈ (s+ + max{0, log2 c̃1},∞),

L ∈ (n/r − n− s−,∞) and the fact that 0 < q− ≤ q+ <∞, we see that ∞∑
j=(jP∨0)

 ∞∑
v=(jP∨0)

∑
`(Q)=2−v

|tQ|r|Q|−
r
2 2vs(·)r−ε(j,v)rηv,2Mr+ε ∗ χQ


q(·)
r


r
q(·)

.


∞∑

j=(jP∨0)

∞∑
v=(jP∨0)

2−ε(j,v)r

 ∑
`(Q)=2−v

|tQ|r|Q|−
r
2 2vs(·)rηv,2Mr+ε ∗ χQ


q(·)
r


r
q(·)

.


∞∑

v=(jP∨0)

 ∑
`(Q)=2−v

|tQ|r|Q|−
r
2 2vs(·)rηv,2Mr+ε ∗ χQ


q(·)
r


r
q(·)

,

which, together with (3.10) and some arguments similar to those used in the
proofs of (3.9) and (3.10), implies that

I2.
1

φ(P )

∑
l∈Zn

(1 + |l|)−Mr

∥∥∥∥∥∥


∞∑
v=(jP∨0)

 ∑
`(Q)=2−v

|tQ|r|Q|−
r
2

×2vs(·)rηv,2Mr+ε ∗ χQ

] q(·)
r


r
q(·)
∥∥∥∥∥∥∥
L
p(·)
r (P+l`(P ))


1
r

.
1

φ(P )

∑
l∈Zn

(1 + |l|)−Mr

∥∥∥∥∥∥
 ∞∑
v=(jP∨0)

[ ∑
k∈Zn

(1 + |k|)−Mr
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×ηv,Mr ∗

 ∑
`(Q)=2−v

|tQ|2vs(·)χ̃Q


r

×χP+(l+k)`(P )

)] q(·)
r


r
q(·)
∥∥∥∥∥∥∥
L
p(·)
r (P+l`(P ))


1
r

.

From this, the Minkowski inequality, Remark 1.1(i), Lemmas 2.9 and 2.6(ii), we
deduce that

I2.
1

φ(P )

[ ∑
k,l∈Zn

(1 + |l|)−Mr(1 + |k|)−Mr

×

∥∥∥∥∥∥∥∥


∞∑
v=(jP∨0)

 ∑
`(Q)=2−v

2vs(·)|tQ|χ̃Q

q(·)


1
q(·)
∥∥∥∥∥∥∥∥
r

Lp(·)(P+(l+k)`(P ))


1
r

. ‖t‖
f
s(·),φ
p(·),q(·)(R

n)

{ ∑
k,l∈Zn

(1 + |l|)−Mr(1 + |k|)−Mr [φ(P + (l + k)`(P ))]r

[φ(P )]r

} 1
r

. ‖t‖
f
s(·),φ
p(·),q(·)(R

n)

{ ∑
k,l∈Zn

(1 + |l|)−Mr+r log2(c1c̃1)(1 + |k|)−Mr+r log2(c1c̃1)

} 1
2

∼‖t‖
f
s(·),φ
p(·),q(·)(R

n)
, (3.11)

where M is chosen large enough.
Finally, combining (3.7) and (3.11), we conclude that

‖f‖
F
s(·),φ
p(·),q(·)(R

n)
. sup

P∈Q
(I1 + I2) . ‖t‖

f
s(·),φ
p(·),q(·)(R

n)
,

which completes the proof of Theorem 3.8. �

Next we establish the Peetre maximal function characterization of F
s(·),φ
p(·),q(·)(R

n).

Let (ϕ,Φ) be a pair of admissible functions. Recall that the Peetre maximal
function of f ∈ S ′(Rn) is defined by setting, for all j ∈ Z+, a ∈ (0,∞) and
x ∈ Rn,

(ϕ∗jf)a(x) := sup
y∈Rn

|ϕj ∗ f(x+ y)|
(1 + 2j|y|)a

,

where ϕ0 is replaced by Φ. The following Lemma 3.10 comes from [71, (2.48) and
(2.66)].

Lemma 3.10. Let (ϕ,Φ) be a pair of admissible functions, f ∈ S ′(Rn) and
N ∈ N. Then, for all t ∈ [1, 2], a ∈ (0, N ], ` ∈ Z+ and x ∈ Rn,

[(ϕ∗2−`tf)a(x)]r ≤ C
∞∑
v=0

2−vNr2(v+`)n

∫
Rn

|(ϕv+`)t ∗ f(y)|r

(1 + 2`|x− y|)ar
dy,
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where r is an arbitrary fixed positive number, ϕ0 is replaced by Φ and C is a
positive constant independent of ϕ, Φ, f , x, ` and t.

Theorem 3.11. Let p, q, s and φ be as in Definition 1.4. Let

a ∈
(

n

min{p−, q−}
+ log2 c̃1 + Clog(s),∞

)
. (3.12)

Then f ∈ F s(·),φ
p(·),q(·)(R

n) if and only if f ∈ S ′(Rn) and ‖f‖∗
F
s(·),φ
p(·),q(·)(R

n)
<∞, where

‖f‖∗
F
s(·),φ
p(·),q(·)(R

n)
:= sup

P∈Q

1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

[
2js(·)(ϕ∗jf)a

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

.

Proof. Observe that, by definitions, we have ‖f‖
F
s(·),φ
p(·),q(·)(R

n)
≤ ‖f‖∗

F
s(·),φ
p(·),q(·)(R

n)
. Next

we show that ‖f‖∗
F
s(·),φ
p(·),q(·)(R

n)
. ‖f‖

F
s(·),φ
p(·),q(·)(R

n)
for all f ∈ F s(·),φ

p(·),q(·)(R
n).

By (3.12), we find that there exist r ∈ (0,min{p−, q−}) and ε ∈ (log2 c̃1,∞)
such that a > n/r + ε + Clog(s). For any given dyadic cube P ⊂ Rn, by Lemma
3.10, we see that

JP :=
1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

[
2js(·)(ϕ∗jf)a

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

.
1

φ(P )

∥∥∥∥∥∥


∞∑
j=(jP∨0)

[
2js(·)

(
∞∑
v=0

2−vNr2(v+j)n

×
∫
Rn

|ϕv+j ∗ f(y)|r

(1 + 2j| · −y|)ar
dy

) 1
r

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

, (3.13)

where N ∈ N ∩ [a,∞) is determined later. Notice that j ≥ (jP ∨ 0) and, for all
x ∈ P and y ∈ (2k+1

√
nP )\(2k

√
nP ) =: Dk,P with k ∈ N,

1 + 2j|x− y| & 2j2−jP 2k.

Then it follows that, for all x ∈ P ,∫
Rn

|ϕv+j ∗ f(y)|r

(1 + 2j|x− y|)ar
dy

=

{∫
2
√
nP

+
∞∑
k=1

∫
Dk,P

}
|ϕv+j ∗ f(y)|r

(1 + 2j|x− y|)ar
dy

. 2−jnηj,ar ∗
(
|ϕv+j ∗ f |rχ2

√
nP

)
(x)

+2−j(εr+n)2jP εr
∞∑
k=1

2−kεrηj,(a−ε)r ∗
(
|ϕv+j ∗ f |rχDk,P

)
(x)
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=: IP,1 + IP,2,

which implies that

JP .
1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

[
2js(·)r

∞∑
v=0

2−vNr2(v+j)nIP,1

] q(·)
r


1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

+
1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

[
2js(·)r

∞∑
v=0

2−vNr2(v+j)nIP,2

] q(·)
r


1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

=: JP,1 + JP,2. (3.14)

For JP,1, by Lemmas 2.10 and 2.9, the Minkowski inequality and Remark 1.1(i),
we find that

JP,1.
1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

[
∞∑
v=0

2(n−Nr)v2js(·)r|ϕv+j ∗ f |r
] q(·)

r


r
q(·)
∥∥∥∥∥∥∥

1
r

L
p(·)
r (2

√
nP )

.

{
∞∑
v=0

2−v(Nr−n+s−r)
1

[φ(P )]r

×

∥∥∥∥∥∥∥


∞∑
j=(jp∨0)

[
2(v+j)s(·)|ϕv+j ∗ f |r

]q(·)
1
q(·)
∥∥∥∥∥∥∥
r

Lp(·)(2
√
nP )


1
r

.

{
∞∑
v=0

2−v(Nr−n+s−r)

} 1
r

‖f‖
F
s(·),φ
p(·),q(·)(R

n)
∼ ‖f‖

F
s(·),φ
p(·),q(·)(R

n)
, (3.15)

where we used the condition (S1) of φ in the third inequality and N ∈ N is chosen
large enough such that N ∈ [a,∞) ∩ (n

r
− s−,∞).

For JP,2, by an argument similar to the above, we find that

JP,2.

{
∞∑
v=0

2−v(Nr−n+rs−)

∞∑
k=1

2−kε
1

[φ(P )]r

×

∥∥∥∥∥∥∥


∞∑
j=(jp∨0)

[
2(v+j)s(·)|ϕv+j ∗ f |r

]q(·)
1
q(·)
∥∥∥∥∥∥∥
r

Lp(·)(Dk,P )


1
r

.

{
∞∑
v=0

2−v(Nr−n+rs−)

∞∑
k=1

2−kεr
[φ(2k+1+nP )]r

[φ(P )]r

} 1
r

‖f‖
F
s(·),φ
p(·),q(·)(R

n)
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.

{
∞∑
k=1

2−k(ε−log2 c̃1)

} 1
r

‖f‖
F
s(·),φ
p(·),q(·)(R

n)
∼ ‖f‖

F
s(·),φ
p(·),q(·)(R

n)
. (3.16)

Combining the estimates (3.13), (3.14), (3.15) and (3.16), we conclude that

‖f‖∗
F
s(·),φ
p(·),q(·)(R

n)
≤ sup

P∈Q
JP . sup

P∈Q
(JP,1 + JP,2) . ‖f‖

F
s(·),φ
p(·),q(·)(R

n)
,

which completes the proof of Theorem 3.11. �

As applications of Theorem 3.11, we obtain two equivalent quasi-norms of the

space F
s(·),φ
p(·),q(·)(R

n). To this end, for all f ∈ S ′(Rn), let

∥∥∥f ∣∣∣F s(·),φ
p(·),q(·)(R

n)
∥∥∥

1
:= sup

P∈Q

1

φ(P )

∥∥∥∥∥∥
{
∞∑
j=0

[
2js(·)|ϕj ∗ f |

]q(·)} 1
q(·)
∥∥∥∥∥∥
Lp(·)(P )

and ∥∥∥f ∣∣∣F s(·),φ
p(·),q(·)(R

n)
∥∥∥

2
:= sup

Q∈Q
sup
x∈Q
|Q|−

s(x)
n [φ(Q)]−1‖χQ‖Lp(·)(Rn)|ϕjQ ∗ f(x)|.

Theorem 3.12. Let p, q, s, φ be as in Definition 1.4.

(i) If c̃1 ∈ (0, 2n/p+), then f ∈ F
s(·),φ
p(·),q(·)(R

n) if and only if f ∈ S ′(Rn) and

‖f |F s(·),φ
p(·),q(·)(R

n)‖1 < ∞; moreover, there exists a positive constant C, in-

dependent of f , such that

C−1‖f‖
F
s(·),φ
p(·),q(·)(R

n)
≤
∥∥∥f ∣∣∣F s(·),φ

p(·),q(·)(R
n)
∥∥∥

1
≤ C‖f‖

F
s(·),φ
p(·),q(·)(R

n)
.

(ii) If c1 ∈ (0, 2−n/p−), then f ∈ F
s(·),φ
p(·),q(·)(R

n) if and only if f ∈ S ′(Rn) and

‖f |F s(·),φ
p(·),q(·)(R

n)‖2 < ∞; moreover, there exists a positive constant C, in-

dependent of f , such that

C−1‖f‖
F
s(·),φ
p(·),q(·)(R

n)
≤
∥∥∥f ∣∣∣F s(·),φ

p(·),q(·)(R
n)
∥∥∥

2
≤ C‖f‖

F
s(·),φ
p(·),q(·)(R

n)
.

Proof. We first show (i). To this end, it suffices to show that

‖f |F s(·),φ
p(·),q(·)(R

n)‖1 . ‖f‖F s(·),φ
p(·),q(·)(R

n)
,

since the inverse inequality obviously holds true by definitions.
Let P ∈ Q be a given dyadic cube. By Remark 1.1(i), we see that

IP :=
1

φ(P )

∥∥∥∥∥∥
{
∞∑
j=0

[
2js(·)|ϕj ∗ f |

]q(·)} 1
q(·)
∥∥∥∥∥∥
Lp(·)(P )

.
1

φ(P )

∥∥∥∥∥∥∥


(jP∨0)−1∑
j=0

[
2js(·)|ϕj ∗ f |

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )
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+
1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

[
2js(·)|ϕj ∗ f |

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

=: IP,1 + IP,2,

where
∑(jP∨0−1)

j=0 · · · = 0 if jP ≤ 0.

Obviously, IP,2 ≤ ‖f‖F s(·),φ
p(·),q(·)(R

n)
.

For IP,1, we only need to estimate it in the case that jP > 0. For any j ∈ N
with j ≤ jP − 1, there exists a unique dyadic cube Pj such that P ⊂ Pj and

`(Pj) = 2−j. Since s ∈ C log
loc (Rn) ∩ L∞(Rn), it follows that, for all a ∈ (0,∞),

x ∈ P and y ∈ Pj,

2js(x)|ϕj ∗ f(x)|. 2js(x)(1 + 2j|x− y|)a(ϕ∗jf)a(y)

. 2j[s(x)−s(y)]2js(y)(ϕ∗jf)a(y)

. 2j
Clog(s)

log(e+1/|x−y|) 2js(y)(ϕ∗jf)a(y) . 2js(y)(ϕ∗jf)a(y),

which implies that, for all x ∈ P ,

2js(x)|ϕj ∗ f(x)| . inf
y∈Pj

2js(y)(ϕ∗jf)a(y). (3.17)

Thus, choosing r ∈ (0,min{1, p−, q−}) and a as in Theorem 3.11, by Theorem
3.11 and Remark 1.1(i), we conclude that

IP,1.
1

φ(P )

∥∥∥∥∥∥
{
jP−1∑
j=0

[
inf
y∈Pj

2js(y)(ϕ∗jf)a(y)

]q(·)} 1
q(·)
∥∥∥∥∥∥
Lp(·)(P )

.
1

φ(P )

∥∥∥∥∥
jP−1∑
j=0

∥∥2js(·)(ϕ∗jf)a
∥∥r
Lp(·)(Pj)

‖χPj‖−rLp(·)(Rn)

∥∥∥∥∥
1
r

L
p(·)
r (P )

. ‖f‖
F
s(·),φ
p(·),q(·)(R

n)

{
jP−1∑
j=0

[
φ(Pj)

φ(P )

]r [ ‖χP‖Lp(·)(Rn)

‖χPj‖Lp(·)(Rn)

]r} 1
r

. (3.18)

On the other hand, by [82, Lemma 2.6], we find that

‖χPj‖Lp(·)(Rn) & 2
−j n

p+ 2
jP

n
p+ ‖χP‖Lp(·)(Rn)

and, by the condition (S1) of φ, we see that φ(P ) ≥ 2j log2 c̃12−jP log2 c̃1φ(cP , 2
−j),

which, together with (3.18) and the condition (S2) of φ, implies that

IP,1. ‖f‖F s(·),φ
p(·),q(·)(R

n)

{
jP−1∑
j=0

2
j( n
p+
−log2 c̃1)r

[
φ(cP , 2

−j)

φ(Pj)

]r} 1
r

2
jP (log2 c̃1− n

p+
)

. ‖f‖
F
s(·),φ
p(·),q(·)(R

n)

{
jP−1∑
j=0

2
j( n
p+
−log2 c̃1)r

} 1
r

2
jP (log2 c̃1− n

p+
) ∼ ‖f‖

F
s(·),φ
p(·),q(·)(R

n)
,
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where we used the fact that c̃1 ∈ (0, 2n/p+) in the last inequality. Therefore,∥∥∥f ∣∣∣F s(·),φ
p(·),q(·)(R

n)
∥∥∥

1
= sup

P∈Q
IP . ‖f‖F s(·),φ

p(·),q(·)(R
n)
,

which completes the proof of (i).
Now we prove (ii). For all Q ∈ Q∗, from (3.17) and Theorem 3.11, we deduce

that, for all x ∈ Q,

[φ(Q)]−1‖χQ‖Lp(·)(Rn)|Q|−
s(x)
n |ϕjQ ∗ f(x)|

.
‖χQ‖Lp(·)(Rn)

φ(Q)
inf
y∈Q
|Q|−

s(y)
n (ϕ∗jQf)a(y)

.
1

φ(Q)

∥∥∥|Q|− s(·)n (ϕ∗jQf)a

∥∥∥
Lp(·)(Q)

. ‖f‖
F
s(·),φ
p(·),q(·)(R

n)
,

which implies that ‖f |F s(·),φ
p(·),q(·)(R

n)‖2 . ‖f‖F s(·),φ
p(·),q(·)(R

n)
.

Conversely, by choosing r ∈ (0,min{1, p−, q−}) and an argument similar to
that used in the proof of (i), we conclude that, for any P ∈ Q,

1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

[
2js(·)|ϕj ∗ f |

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

.
∥∥∥f ∣∣∣F s(·),φ

p(·),q(·)(R
n)
∥∥∥

2

∥∥∥∥∥∥∥∥∥∥


∞∑

j=(jP∨0)

 ∑
`(Q̃)=2−j
Q̃∈Q,Q̃⊂P

φ(P )−1φ(Q̃)χQ̃
‖χQ̃‖Lp(·)(Rn)


q(·)


1
q(·)
∥∥∥∥∥∥∥∥∥∥
Lp(·)(P )

.
∥∥∥f ∣∣∣F s(·),φ

p(·),q(·)(R
n)
∥∥∥

2


∞∑

j=(jP∨0)

2
j( n
p−

+log2 c1)r


1
r

2
−jP ( n

p−
+log2 c1)

.
∥∥∥f ∣∣∣F s(·),φ

p(·),q(·)(R
n)
∥∥∥

2
,

where we used the fact that c1 ∈ (0, 2−n/p−) in the last inequality, which implies
that

‖f‖
F
s(·),φ
p(·),q(·)(R

n)
. ‖f |F s(·),φ

p(·),q(·)(R
n)‖2.

This finishes the proof of (ii) and hence Theorem 3.12. �

Remark 3.13. In the case that p, q, s and φ are as in Remark 1.5(ii), Theorem
3.12(i) coincides with [80, Corollary 3.3(i)] and Theorem 3.12(ii) goes back to [78,
Theorem 2.2(i)].

We now compare the Triebel–Lizorkin-type space with variable exponents in

this article with the variable Triebel–Lizorkin-Morrey space Es(·)p(·),q(·),u(R
n) intro-

duced by Ho [31] and show that, in general, these two scales of Triebel–Lizorkin
spaces do not cover each other.
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To recall the definition of the variable Triebel–Lizorkin-Morrey space in [31], we
need some notions. A measurable function u(x, r) : Rn× (0,∞)→ (0,∞) is said
to belong to Wq with q ∈ (0,∞) if there exist C1, C2 ∈ (0,∞) and λ ∈ [0, 1/q)

such that, for all x ∈ Rn, u(x, r) > 1 if r ∈ [1,∞), u(x,2r)
u(x,r)

≤ 4nλ if r ∈ (0,∞), and

C−1
2 ≤

u(x, t)

u(x, r)
≤ C2 if 0 < r ≤ t ≤ 2r.

Definition 3.14. Let p, q, s, {ϕj}j∈Z+ be as in Definition 1.4 and u ∈ Wp+ .

Then the variable Triebel–Lizorkin-Morrey space Es(·)p(·),q(·),u(R
n) is defined to be

the set of all f ∈ S ′(Rn) such that

‖f‖Es(·)
p(·),q(·),u(Rn)

:= sup
z∈Rn

R∈(0,∞)

1

u(z,R)

∥∥∥∥∥∥
{
∞∑
j=0

[
2js(·)|ϕj ∗ f |

]q(·)} 1
q(·)
∥∥∥∥∥∥
Lp(·)(B(z,R))

<∞.

Remark 3.15. (i) We point out that the Triebel–Lizorkin-type space with variable
exponents in this article can not be covered by the Triebel–Lizorkin-Morrey space
in [31] even when c̃1 ∈ (0, 2n/p+). To see this, it suffices to show that there exists a
set function φ satisfying (S1) and (S2) does not belong toWq for any q ∈ (0,∞).

Indeed, for all Q ⊂ Rn, let φ(Q) :=
∫
Q
|x|α dx, where α ∈ (−n, 0). Then, by

[65, p. 196], we know that φ is doubling, which, together with Remark 1.3(iv),
further implies that φ satisfies the conditions (S1) and (S2). However, φ /∈ Wq

for any q ∈ (0,∞). To see this, let x0 ∈ Rn and r ∈ (1, 2) satisfy |x0| ≥ 2r. Then

φ(x0, r) := φ(Q(x0, r)) =

∫
Q(x0,r)

|y|α dy ∼ |x0|α

tends 0 as |x0| → ∞ since α ∈ (−n, 0), which implies that φ /∈ Wq for any
q ∈ (0,∞).

(ii) Also, the variable Triebel–Lizorkin-Morrey space investigated in [31] can
not be covered by the Triebel–Lizorkin-type space with variable exponents in this
article. To see this, it suffices to show that there exists a function u such that u
belongs to W1 but does not satisfy the condition (S2).

Indeed, let, for all x ∈ Rn and r ∈ (0,∞), u(x, r) := rλ(x), where λ(x) :=
n(1 − 1

1+|x|). Then, as was pointed out in [31, p. 380], u ∈ W1. However, u

does not satisfy the condition (S2). To see this, let x, y ∈ Rn satisfy that

ε < |x| < (1+ε)r+ε
2+ε

and |y| = 1+|x|
1+ε
− 1, where ε ∈ (0,∞) and r ∈ (ε,∞). Then

|x− y| ≤ |x|+ |y| = |x|+ 1 + |x|
1 + ε

− 1 < r,

but
u(x, r)

u(y, r)
= rn( 1

1+|y|−
1

1+|x| ) = r
nε

1+|x| →∞, as r →∞,

which implies that u does not satisfy the condition (S2).

As an application of Theorem 3.12, we prove that the space F 0,φ
p(·),2(Rn) coincides

with the Morrey space with variable exponent, Mp(·)
φ (Rn), which is defined to be
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the set of all measurable functions f such that

‖f‖Mp(·)
φ (Rn)

:= sup
P∈Q

1

φ(P )
‖f‖Lp(·)(P ) <∞,

where the supremum is taken over all dyadic cubes of Rn.

Remark 3.16. (i) We point out that, in [31], Ho studied the variable Morrey

space Mp(·)
u (Rn), which is defined in the same way as Mp(·)

φ (Rn) above but with
φ replaced by u as in Definition 3.14 and the supremum is taken over all balls of
Rn. From Remark 3.15, we deduce that the Morrey space with variable exponent

Mp(·)
φ (Rn) in this article and the variable Morrey space Mp(·)

u (Rn) in [31] do not
cover each other.

(ii) For ϕ : Rn × (0,∞) → (0,∞) and a variable exponent p : Rn → [1,∞),
Nakai [52] introduced the variable Morrey space L(p,ϕ)(Rn), which is defined to
be the set of all measurable functions f such that

‖f‖L(p,ϕ)(Rn) := sup
balls B⊂Rn

‖f‖p,ϕ,B <∞,

where, for all balls B := B(x, r) ⊂ Rn, ϕ(B) := ϕ(x, r) and

‖f‖p,ϕ,B := inf

{
λ ∈ (0,∞) :

1

ϕ(B)|B|

∫
B

[
|f(y)|
λ

]p(y)

dy ≤ 1

}
,

and the supremum is taken over all balls B of Rn.
We claim that, if there exists a positive constant C such that, for all x ∈ Rn

and 0 < r < s <∞,

C−1φ(x, r) ≤ φ(x, s) ≤ Cφ(x, r) (3.19)

and, for all balls B ⊂ Rn and all y ∈ B,

ϕ(B)|B| ∼ [φ(B)]p(y), (3.20)

then Mp(·)
φ (Rn) coincides with L(p,ϕ)(Rn).

Indeed, by (3.19) and the definition of ‖ · ‖Mp(·)
φ (Rn)

, we conclude that

‖f‖Mp(·)
φ (Rn)

∼ sup
balls B⊂Rn

inf

{
λ ∈ (0,∞) :

∫
B

[
|f(y)|
φ(B)λ

]p(y)

dy ≤ 1

}
. (3.21)

On the other hand, by (3.20), we find that

inf

{
λ ∈ (0,∞) :

∫
B

[
|f(y)|
φ(B)λ

]p(y)

dy ≤ 1

}

∼ inf

{
λ ∈ (0,∞) :

1

ϕ(B)|B|

∫
B

[
|f(y)|
λ

]p(y)

dy ≤ 1

}
which, combined with (3.21), implies that Mp(·)

φ (Rn) coincides with L(p,ϕ)(Rn).
This proves the above claim.

Obviously, in general, these two scales of Morrey spaces with variable expo-

nents, Mp(·)
φ (Rn) and L(p,ϕ)(Rn), may not cover each other.
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In what follows, for all p ∈ P(Rn), denote by Lp(·)(`2(Rn)) the set of all se-
quences {gj}j∈Z+ of measurable functions such that

‖{gj}j∈Z+‖Lp(·)(`2(Rn)) :=

∥∥∥∥∥∥∥
∑
j∈Z+

|gj|2


1
2

∥∥∥∥∥∥∥
Lp(·)(Rn)

<∞.

Let (ϕ,Φ) and (ψ,Ψ) be two pairs of admissible functions satisfying (2.1). The
operator G is defined by setting, for all f ∈ Lp(·)(Rn), G(f) := {ϕj ∗ f}j∈Z+ ,
where, when j = 0, ϕ0 is replaced by Φ, and its conjugate operator G∗ is defined

by setting, for all {gj}j∈Z+ ∈ LP̃ (·)(`2(Rn)),

G∗({gj}j∈Z+) :=
∑
j∈Z+

ψj ∗ gj,

where, when j = 0, ψ0 is replaced by Ψ.

Remark 3.17. Let p(·) ∈ C log(Rn) satisfy 1 < p− ≤ p+ <∞. Then, from the fact

that LP̃ (·)(Rn) = F 0
P̃ (·),2(Rn) (see [20, Theorem 4.2]), we deduce that the operator

G is bounded from LP̃ (·)(Rn) to LP̃ (·)(`2(Rn)). Furthermore, by an argument
similar to that used in the proof of [31, Corollary 4.4], we conclude that the
operator G∗ is bounded from Lp(·)(`2(Rn)) to Lp(·)(Rn).

Proposition 3.18. Let p and φ be as in Definition 1.4 and c̃1 ∈ (0, 2n/p+). If
1 < p− ≤ p+ <∞, then

Mp(·)
φ (Rn) = F 0,φ

p(·),2(Rn)

with equivalent norms.

Proof. We first prove that Mp(·)
φ (Rn) ↪→ F 0,φ

p(·),2(Rn). By Theorem 3.12(i), it suf-

fices to show that, for all f ∈Mp(·)
φ (Rn),

sup
Q∈Q

1

φ(Q)

∥∥∥∥∥∥
{
∞∑
j=0

|ϕj ∗ f |2
} 1

2

∥∥∥∥∥∥
Lp(·)(Q)

. ‖f‖Mp(·)
φ (Rn)

, (3.22)

where {ϕj}∞j=0 are as in Definition 1.4.
For all Q := Q(x0, r) ∈ Q, let f1 := fχQ(x0,2r) and f2 := f − f1. From [20,

Theorem 4.2] and the condition (S1) of φ, we deduce that

I1 :=
1

φ(Q)

∥∥∥∥∥∥
{
∞∑
j=0

|ϕj ∗ f1|2
} 1

2

∥∥∥∥∥∥
Lp(·)(Q)

.
1

φ(Q)
‖f1‖Lp(·)(Rn) ∼

1

φ(Q)
‖f‖Lp(·)(Q(x0,2r)) . ‖f‖Mp(·)

φ (Rn)
. (3.23)

On the other hand, by the Minkowski inequality, we find that, for all x ∈ Rn,{
∞∑
j=0

|ϕj ∗ f2(x)|2
} 1

2

.
∫
Rn\Q(x0,2r)

{
∞∑
j=0

|ϕj(x− y)|2
} 1

2

|f(y)| dy
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.
∫
Rn\Q(x0,2r)

|f(y)|
|x− y|n

dy ∼
∞∑
k=1

∫
Sk

|f(y)|
|x− y|n

dy,

where, for k ∈ N, Sk := Qk+1 \ Qk and Qk := Q(x0, 2
kr). Observe that, when

x ∈ Q(x0, r) and y ∈ Sk, |x − y| ≥ 2kr. Setting (p(·))∗ := p(·)
p(·)−1

, by the Hölder

inequality of variable Lebesgue spaces (see Remark 1.1(iii)), [82, Lemma 2.6] and
[31, Proposition 2.4], we see that∥∥∥∥∥∥

{
∞∑
j=0

|ϕj ∗ f2|2
} 1

2

∥∥∥∥∥∥
Lp(·)(Q)

.
∞∑
k=1

1

2knrn
‖f‖Lp(·)(Sk)‖χSk‖Lp(·)∗ (Rn)‖χQ‖Lp(·)(Rn)

.
∞∑
k=1

2−kn/p+

rn2kn
‖f‖Lp(·)(Sk)‖χQk+1

‖Lp(·)∗ (Rn)‖χQk+1
‖Lp(·)(Rn)

.
∞∑
k=1

2−kn/p+‖f‖Lp(·)(Sk),

which, together with the condition (S1) of φ, implies that

I2 :=
1

φ(Q)

∥∥∥∥∥∥
{
∞∑
j=0

|ϕj ∗ f2|2
} 1

2

∥∥∥∥∥∥
Lp(·)(Q)

.
∞∑
k=1

2−kn/p+
‖f‖Lp(·)(Qk+1)

φ(Qk+1)

φ(Qk+1)

φ(Q)

. ‖f‖Mp(·)
φ (Rn)

∞∑
k=1

2−kn/p+2k log2 c̃1 ∼ ‖f‖Mp(·)
φ (Rn)

, (3.24)

where we used the fact that c̃1 ∈ (0, 2n/p+) in the last inequality.
Combining (3.23) and (3.24), we conclude that

sup
Q∈Q

1

φ(Q)

∥∥∥∥∥∥
{
∞∑
j=0

|ϕj ∗ f |2
} 1

2

∥∥∥∥∥∥
Lp(·)(Q)

. sup
Q∈Q

(I1 + I2) . ‖f‖Mp(·)
φ (Rn)

and (3.22) holds true.

Next, we prove that F 0,φ
p(·),2(Rn) ↪→ Mp(·)

φ (Rn). Let f ∈ F 0,φ
p(·),2(Rn). Then, by

the Calderón reproducing formula (see [80, Lemma 2.3]), we find that

f = Ψ ∗ Φ ∗ f +
∞∑
j=1

ψj ∗ ϕj ∗ f =:
∞∑
j=0

ψj ∗ ϕj ∗ f (3.25)

in S ′(Rn), where Ψ, Φ, ϕ and ψ are as in (2.1). For all j ∈ Z+, we use fj to
denote ϕj ∗ f . For all Q := Q(x0, r) ∈ Q and j ∈ Z+, let f 1

j := fjχQ(x0,2r) and
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f 2
j := fj − f 1

j . Then we know that

1

φ(Q)

∥∥∥∥∥
∞∑
j=0

ψj ∗ ϕj ∗ f

∥∥∥∥∥
Lp(·)(Q)

.
1

φ(Q)

∥∥∥∥∥
∞∑
j=0

ψj ∗ f 1
j

∥∥∥∥∥
Lp(·)(Q)

+
1

φ(Q)

∥∥∥∥∥
∞∑
j=0

ψj ∗ f 2
j

∥∥∥∥∥
Lp(·)(Q)

=: J1 + J2.

By Remark 3.17, the condition (S1) of φ and Theorem 3.12(i), we see that

J1∼
1

φ(Q)

∥∥∥G∗ ({f 1
j

}
j∈Z+

)∥∥∥
Lp(·)(Rn)

.
1

φ(Q)

∥∥∥∥∥∥
{
∞∑
j=0

|ϕj ∗ f |2
} 1

2

∥∥∥∥∥∥
Lp(·)(Q(x0,2r))

. ‖f‖F 0,φ
p(·),2(Rn). (3.26)

On the other hand, for all x ∈ Q(x0, 2r), by the Hölder inequality, we find that∣∣∣∣∣∣
∑
j∈Z+

ψj ∗ f 2
j (x)

∣∣∣∣∣∣ .
∫
Rn\Q(x0,2r)

∑
j∈Z+

|fj(y)|2
 1

2

|x− y|−n dy.

Thus, by an argument similar to that used in the proof of (3.24), we conclude
that

J2 . ‖f‖F 0,φ
p(·),2(Rn),

which, combined with (3.26), implies that

1

φ(Q)

∥∥∥∥∥
∞∑
j=0

ψj ∗ ϕj ∗ f

∥∥∥∥∥
Lp(·)(Q)

. J1 + J2 . ‖f‖F 0,φ
p(·),2(Rn).

Therefore,
∑∞

j=0 ψj ∗ ϕj ∗ f ∈M
p(·)
φ (Rn) and∥∥∥∥∥

∞∑
j=0

ψj ∗ ϕj ∗ f

∥∥∥∥∥
Mp(·)

φ (Rn)

. ‖f‖F 0,φ
p(·),2(Rn),

which, together with (3.25), implies that F 0,φ
p(·),2(Rn) ↪→Mp(·)

φ (Rn). This finishes

the proof of Proposition 3.18. �

Remark 3.19. In the case that p and φ are as in Remark 1.5(ii), the conclusion
of Proposition 3.18 is already known; see, for example, [62, Theorem 3.9].

We end this section by giving another application of Theorem 3.11.

Proposition 3.20. Let p, q, s and φ be as in Definition 1.4. Then

S(Rn) ↪→ F
s(·),φ
p(·),q(·)(R

n) ↪→ S ′(Rn).
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Proof. We first prove that S(Rn) ↪→ F
s(·),φ
p(·),q(·)(R

n). To prove this embedding, we

need to show that there exists an M ∈ N such that, for all f ∈ S(Rn),

‖f‖
F
s(·),φ
p(·),q(·)(R

n)
. ‖f‖SM (Rn).

Let f ∈ S(Rn) and (ϕ,Φ) be a pair of admissible functions. Let P := QjP kP

be an arbitrary dyadic cube. If jP > 0, choosing r ∈ (0,min{1, p−, q−}), by [80,
Lemma 2.4], Remark 1.1(i) and Lemmas 2.6 and 2.7, we obtain

1

φ(P )

∥∥∥∥∥∥
{
∞∑

j=jP

[
2js(·)|ϕj ∗ f |

]q(·)} 1
q(·)
∥∥∥∥∥∥
Lp(·)(P )

. ‖f‖SM+1(Rn)
1

φ(P )

∥∥∥∥∥∥
{
∞∑

j=jP

[
2js(·)

2−jM

(1 + | · |)n+M

]q(·)} 1
q(·)
∥∥∥∥∥∥
Lp(·)(P )

. ‖f‖SM+1(Rn)
1

φ(P )

{
∞∑

j=jP

2−j(M−s+)r

∥∥∥∥ 1

(1 + | · |)(M+n)r

∥∥∥∥
L
p(·)
r (P )

} 1
r

. ‖f‖SM+1(Rn)

{
∞∑

j=jP

2−j(M−s+)r 1

(1 + 2−jP |kP |)(M+n)r

} 1
r ‖χP‖Lp(·)(P )

φ(P )

. ‖f‖SM+1(Rn)2
−jP (M

2
+ n
p+
−s+−log2 c1)

(1 + |kP |)
−M

2
+n( 1

p−
− 1
p+

)+log2(c1c̃1)

. ‖f‖SM+1(Rn), (3.27)

where M is chosen large enough.
If jP ≤ 0, then we see that

IP :=
1

φ(P )

∥∥∥∥∥∥
{
∞∑
j=0

[
2js(·)|ϕj ∗ f |

]q(·)} 1
q(·)
∥∥∥∥∥∥
Lp(·)(P )

.
1

φ(P )
‖Φ ∗ f‖Lp(·)(P ) +

1

φ(P )

{
∞∑
j=1

2js+r‖ϕj ∗ f‖rLp(·)(P )

} 1
r

.

When P is away from the origin, by an argument similar to that used in the
proof of (3.27), we conclude that IP . ‖f‖SM+1(Rn) with M being sufficiently

large. When one of the corners of P is the origin, then P ⊂ ∪−jP+n
i=0 Si, where

S0 := B(0, 1) and Si := 2iS0\(2i−1S0) for all i ∈ {1, . . . ,−jP + 1}. From this,
Lemmas 2.6 and 2.7 and the fact that |kP | ≤ 1, we deduce that

1

φ(P )
‖Φ ∗ f‖Lp(·)(P ) .

1

φ(P )

{−jP+n∑
i=0

∥∥∥∥ 1

(1 + | · |)M

∥∥∥∥r
Lp(·)(Si)

} 1
r

. ‖f‖SM+1(Rn)
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and, similarly,

1

φ(P )

{
∞∑
j=1

2js+r‖ϕj ∗ f‖rLp(·)(P )

} 1
r

. ‖f‖SM+1(Rn),

where M is chosen large enough, which implies that IP . ‖f‖SM+1(Rn). Therefore,

S(Rn) ↪→ F
s(·),φ
p(·),q(·)(R

n) and ‖f‖
F
s(·),φ
p(·),q(·)(R

n)
. ‖f‖SM+1(Rn).

Next we show that F
s(·),φ
p(·),q(·)(R

n) ↪→ S ′(Rn). To this end, we need to prove that

there exists an M ∈ N such that, for all f ∈ F s(·),φ
p(·),q(·)(R

n) and h ∈ S(Rn),

|〈f, h〉| . ‖f‖
F
s(·),φ
p(·),q(·)(R

n)
‖h‖SM+1(Rn).

Let ϕ, ψ, Φ and Ψ be as in Theorem 2.3. Then, by the Calderón reproducing
formula in [80, Lemma 2.3], together with [80, Lemma 2.4], we obtain

|〈f, h〉| ≤
∫
Rn
|Φ ∗ f(x)||Ψ ∗ h(x)| dx+

∞∑
j=1

∫
Rn
|ϕj ∗ f(x)||ψj ∗ h(x)| dx

. ‖h‖SM+1(Rn)

∞∑
j=0

2−jM
∫
Rn
|ϕj ∗ f(x)|(1 + |x|)−(n+M) dx

∼‖h‖SM+1(Rn)

∞∑
j=0

2−jM
∑
k∈Zn

∫
Q0k

|ϕj ∗ f(x)|(1 + |x|)−(n+M) dx, (3.28)

where we used Φ to replace ϕ0 and chose M > a. Notice that, for any j ∈ Z+,
k ∈ Zn, a ∈ (0,∞) and y ∈ Qjk,∫

Q0k

|ϕj ∗ f(x)| dx. (ϕ∗jf)a(y)

∫
Q0k

(1 + 2j|x|+ 2j|y|)a dx

. 2ja(ϕ∗jf)a(y)(1 + |k|)a.
Then, by the arbitrariness of y ∈ Qjk, we see that∫

Q0k

|ϕj ∗ f(x)| dx . 2ja(1 + |k|)a inf
y∈Qjk

(ϕ∗jf)a(y),

which, combined with (3.28), Theorem 3.11 and Lemmas 2.6 and 2.7, implies that

|〈f, h〉|. ‖h‖SM+1(Rn)

∞∑
j=0

2−jM
∑
k∈Zn

∫
Q0k

|ϕj ∗ f(x)|
(1 + |k|)n+M

dx

. ‖h‖SM+1(Rn)

∞∑
j=0

2−jM+ja
∑
k∈Zn

infy∈Qjk(ϕ
∗
jf)a(y)

(1 + |k|)n+M−a

. ‖h‖SM+1(Rn)

∞∑
j=0

2−jM+ja
∑
k∈Zn

(1 + |k|)−(n+M−a)
‖(ϕ∗jf)a‖Lp(·)(Qjk)

‖χQjk‖Lp(·)(Qjk)

. ‖f‖
F
s(·),φ
p(·),q(·)(R

n)
‖h‖SM+1(Rn)

∞∑
j=0

2j(a−M−s−)
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×
∑
k∈Zn

(1 + |k|)(a−n−M) φ(Qjk)

‖χQjk‖Lp(·)(Qjk)

. ‖f‖
F
s(·),φ
p(·),q(·)(R

n)
‖h‖SM+1(Rn),

where a is chosen as in (3.12). This finishes the proof of Proposition 3.20. �

4. A trace theorem

In this section, we mainly establish a trace theorem for Triebel–Lizorkin-type
spaces with variable exponents by applying the atomic characterization of these
spaces obtained in Theorem 3.8.

To state our main result of this section, we first give some notation. For
measurable functions p, q, s and a set function φ being as in Definition 1.4, let

F
s(̃·,0),φ̃
p(̃·,0),q(̃·,0)(R

n−1) denote the Triebel–Lizorkin-type spaces with variable exponents

p(̃·, 0), q(̃·, 0) and s(̃·, 0) on Rn−1×{0}, where φ̃ is defined by setting, for all cubes

Q̃ of Rn−1, φ̃(Q̃) := φ(Q̃ × [0, `(Q̃)). In what follows, let Rn
+ := Rn−1 × [0,∞)

and Rn
− := Rn−1 × (−∞, 0].

Let f ∈ F
s(·),φ
p(·),q(·)(R

n). Then, by Theorem 3.8, we have f =
∑

Q∈Q∗ tQaQ in

S ′(Rn) and

‖{tQ}Q∈Q∗‖fs(·),φ
p(·),q(·)(R

n)
≤ C‖f‖

F
s(·),φ
p(·),q(·)(R

n)
,

where C is a positive constant independent of f and, for each Q ∈ Q∗, aQ is a

smooth atom of F
s(·),φ
p(·),q(·)(R

n). Define the trace of f by setting, for all x̃ ∈ Rn−1,

Tr(f)(x̃) :=
∑
Q∈Q∗

tQaQ(x̃, 0). (4.1)

This definition of Tr(f) is determined canonical for all f ∈ F s(·),φ
p(·),q(·)(R

n), since the

actual construction of aQ in the proof of Theorem 3.8 implies that tQaQ is obtained
canonically. Moreover, in Lemma 4.3 below, we show that the summation in (4.1)
converges in S ′(Rn−1). Thus, the trace operator is well defined.

The main result of this section is the following trace theorem.

Theorem 4.1. Let n ≥ 2, p, q ∈ P(Rn) satisfy

0 < p− ≤ p+ <∞, 0 < q− ≤ q+ <∞

and 1
p
, 1
q
∈ C log(Rn), s ∈ C log

loc (Rn) ∩ L∞(Rn) and φ be a set function satisfying

the conditions (S1) and (S2). If

s− −
1

p−
− (n− 1)

[
1

min{1, p−}
− 1

]
> 0, (4.2)

then

TrF
s(·),φ
p(·),q(·)(R

n) = F
s(̃·,0)− 1

p(̃·,0)
,φ̃

p(̃·,0),p(̃·,0) (Rn−1).

Remark 4.2. (i) When p, q, s and φ are as in Remark 1.5(ii), Theorem 4.1
goes back to [80, Theorem 6.8]. Moreover, Theorem 4.1 coincides with the trace
theorem for the classical Triebel–Lizorkin space F s

p,q(Rn) with constant exponents
(see [27, Theorem 11.1 and p. 134]) and, in this case, the condition (4.2) is optimal.
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(ii) In the case that φ is as in Remark 1.5(i), it was proved in [20, Theorem
3.13] (see also [56, Theorem 5.1(1)]) that the conclusion of Theorem 4.1 is true if
s and p satisfy that, for all x ∈ Rn,

s(x)− 1

p(x)
− (n− 1)

[
1

min{1, p(x)}
− 1

]
> δ (4.3)

for some δ ∈ (0,∞), which is a little weaker than (4.2). The reason that the
assumption (4.2), in this case, is a little stronger than that in [20, Theorem 3.13]
(see also (4.3)) comes from an application of Theorem 3.8, which, in this case,
can be further refined; see Remark 3.9(ii).

To prove Theorem 4.1, we first need to show that (4.1) converges in S ′(Rn−1).

Lemma 4.3. Let p, q, s and φ be as in Theorem 4.1 satisfying (4.2). Then, for

all f ∈ F s(·),φ
p(·),q(·)(R

n), Tr(f) ∈ S ′(Rn−1).

Proof. Let f ∈ F s(·),φ
p(·),q(·)(R

n). Then, by Theorem 3.8, we can write

f =
∑
Q∈Q∗

tQaQ

in S ′(Rn) and

‖{tQ}Q∈Q∗‖fs(·),φ
p(·),q(·)(R

n)
. ‖f‖

F
s(·),φ
p(·),q(·)(R

n)
,

where, for each Q ∈ Q∗, aQ is a (K, L)-smooth atom supported near Q of

F
s(·),φ
p(·),q(·)(R

n) with K ∈ (s+ + log2 c̃1,∞) and L is as in (3.1). Let

A :=
{
Q ∈ Q∗ : 3Q ∩ {(x̃, xn) ∈ Rn−1 × R : xn = 0} 6= ∅

}
,

where Q denotes the closure of Q in Rn. Since supp aQ ⊂ 3Q for all Q ∈ Q∗, it
follows that aQ(̃·, 0) = 0 if Q /∈ A. Observe that, if Qjk ∈ A with j ∈ Z+ and
k := (k1, . . . , kn) ∈ Zn, then |kn| ≤ 2. Therefore,

∞∑
j=0

∑
k∈Zn

tQjkaQjk (̃·, 0) =
∞∑
j=0

∑
k∈Zn, |kn|≤2

tQjkaQjk (̃·, 0).

Thus, to complete the proof of Lemma 4.3, it suffices to show that

lim
N→∞,Λ→∞

N∑
j=0

∑
k∈Zn, |kn|≤2
|k|≤Λ

tQjkaQjk (̃·, 0) (4.4)

exists in S ′(Rn−1). By (4.2), we see that

s− −
n

p−
+

min{1, p−}
p−

(n− 1)

= s− −
1

p−
− n− 1

p−
(1−min{1, p−})

≥ s− −
1

p−
− n− 1

min{1, p−}
(1−min{1, p−})
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= s− −
1

p−
− (n− 1)

[
1

min{1, p−}
− 1

]
> 0,

which implies that there exists r ∈ (0,min{1, p−}) such that

s− −
n

p−
+

r

p−
(n− 1) > 0.

Let p̃(·) and s̃(·) be as in the proof of Theorem 3.8. Then s̃− − r
p−

> 0. For all

j ∈ Z+ and k ∈ Zn, let

∆k,j := Rn−1 × [kn2−j, (kn + 1)2−j).

Then, by the smoothness condition (A3), we know that, for all h ∈ S(Rn−1) and
j ∈ Z+,

I :=

∣∣∣∣∣∣∣
〈 ∑

k∈Zn, |kn|≤2
|k|≤Λ

tQjkaQjk (̃·, 0), h(̃·)

〉∣∣∣∣∣∣∣
. 2jn/2

∑
k∈Zn, |kn|≤2
|k|≤Λ

|tQjk |
∫
Rn−1

(1 + |ỹ|)−δ

(1 + 2j|(ỹ, 0)− xQjk |)R
dỹ

∼ 2jn/2+j
∑

k∈Zn, |kn|≤2
|k|≤Λ

|tQjk |
∫

∆k,j

(1 + |ỹ|)−δ

(1 + 2j|(ỹ, 0)− xQjk |)R
dỹdyn

. 2jn/2+j
∑

k∈Zn, |kn|≤2
|k|≤Λ

|tQjk |
∫
Rn

(1 + |y|)−δχ∆k,j
(y)

(1 + 2j|y − xQjk |)R
dy,

where R ∈ (0,∞) is chosen large enough, and δ ∈ (0,∞) will be determined later.
By an argument similar to that used in the proof of Theorem 3.8, we find that

I . 2−j(s̃−−1)‖t‖
f
s(·),φ
p(·),q(·)(R

n)

∥∥∥∥ χ∆j

(1 + | · |)δ−δ0

∥∥∥∥
L(p̃(·))∗ (Rn)

, (4.5)

where ∆j := Rn−1 × [−2−j+1, 2−j+1]. On the other hand, by choosing δ large
enough, we see that∫

Rn

[
χ∆j

(y)/(1 + |y|)−δ+δ0
2−j/(p̃(·)∗)+

](p̃(y))∗

dy

. 2j
∫
Rn−1×[−2−j+1,2−j+1]

[
1

(1 + |ỹ|)δ−δ0

](p̃(·)∗)−
dỹdyn

.
∫
Rn−1

[
1

(1 + |ỹ|)δ−δ0

](p̃(·)∗)−
dỹ . 1,

which, together with Remark 1.1(ii), implies that∥∥∥∥ χ∆j

(1 + | · |)δ−δ0

∥∥∥∥
L(p̃(·))∗ (Rn)

. 2−j/(p̃(·)
∗)+ ∼ 2

−j(1− r
p−

)
.
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From this and (4.5), we deduce that I . 2
−j(s̃−− r

p−
)‖t‖

f
s(·),φ
p(·),q(·)(R

n)
, which, combined

with the fact that s̃− − r
p−

> 0, implies that (4.4) converges in S ′(Rn−1). This

finishes the proof of Lemma 4.3. �

Next we prove Theorem 4.1 by beginning with several technical lemmas.

Lemma 4.4. Let pi, qi, si and φ be as in Definition 1.4 with p, q, s replaced by
pi, qi, si, respectively, where i ∈ {1, 2}. If s1 ≤ s2, p1 ≤ p2, (p1)∞ = (p2)∞ and
q1 ≥ q2, then

F
s2(·),φ
p2(·),q2(·)(R

n) ↪→ F
s1(·),φ
p1(·),q1(·)(R

n).

Proof. By [20, Proposition 6.5], we find that

Lp2(·)(Rn) ↪→ Lp1(·)(Rn).

From this, s1 ≤ s2 and (2.6), we can easily deduce the desired conclusion, the
details being omitted. This finishes the proof of Lemma 4.4. �

Lemma 4.5. Let pi, qi, si and φ be as in Theorem 4.1 with p, q, s replaced by
pi, qi, si, where i ∈ {1, 2}. Assume that s1 = s2 and p1 = p2 on Rn

+ or Rn
−, and

that s1 ≤ s2 and p1 ≤ p2. If

(s2)− −
1

(p2)−
− (n− 1)

[
1

min{1, (p2)−} − 1

]
> 0, (4.6)

then
TrF

s1(·),φ
p1(·),q1(·)(R

n) = TrF
s2(·),φ
p2(·),q2(·)(R

n);

moreover, if q(·) is as in Theorem 4.1, then

TrF
s1(·),φ
p1(·),q1(·)(R

n) = TrF
s1(·),φ
p1(·),q(·)(R

n).

To prove Lemma 4.5, we need the following conclusion.

Proposition 4.6. Let p, q, s, φ be as in Definition 1.4 and δ ∈ (0, 1). Suppose
that, for each Q ∈ Q∗, EQ ⊂ 3Q is a measurable set with |EQ| ≥ δ|Q|. Then, for

all t := {tQ}Q∈Q∗ ⊂ C, t ∈ f s(·),φp(·),q(·)(R
n) if and only if ‖t‖ ˜

f
s(·),φ
p(·),q(·)(R

n)
<∞, where

‖t‖ ˜
f
s(·),φ
p(·),q(·)(R

n)

:= sup
P∈Q

1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

∑
`(Q)=2−j

[
2js(·)|tQ||Q|−

1
2χEQ

]q(·)
1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

.

Proof. We first suppose that ‖t‖ ˜
f
s(·),φ
p(·),q(·)(R

n)
< ∞ and show that t ∈ f s(·),φp(·),q(·)(R

n).

Notice that, for all m ∈ (n,∞), Q ∈ Q∗ and x ∈ Q,

χQ(x) . ηjQ,m+Clog(s) ∗ χEQ(x).

From this, Lemmas 2.9 and 2.10, we deduce that

‖t‖
f
s(·),φ
p(·),q(·)(R

n)
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= sup
P∈Q

1

φ(P )

∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

∑
`(Q)=2−j

[
2jrs(·)|tQ|r|Q|−

r
2χQ

] q(·)
r


1
q(·)
∥∥∥∥∥∥∥
Lp(·)(P )

. sup
P∈Q

1

φ(P )

∥∥∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

ηj,m ∗
2jrs(·)

∑
Q⊂P

`(Q)=2−j

|tQ|r
χEQ
|Q| r2



q(·)
r


1
q(·)
∥∥∥∥∥∥∥∥∥
Lp(·)(P )

. sup
P∈Q

1

φ(P )

∥∥∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

2js(·)
∑
Q⊂P

`(Q)=2−j

|tQ||Q|−
1
2χEQ


q(·)


1
q(·)
∥∥∥∥∥∥∥∥∥
Lp(·)(P )

∼ ‖t‖ ˜
f
s(·),φ
p(·),q(·)(R

n)
,

which implies that t ∈ f s(·),φp(·),q(·)(R
n).

Conversely, by an argument similar to the above and the fact that, for all
m ∈ (n,∞), Q ∈ Q∗ and x ∈ EQ, χEQ(x) . ηjQ,m+Clog(s)

∗ χQ(x), we conclude

that, for all t ∈ f s(·),φp(·),q(·)(R
n), ‖t‖ ˜

f
s(·),φ
p(·),q(·)(R

n)
. ‖t‖

f
s(·),φ
p(·),q(·)(R

n)
. This finishes the proof

of Proposition 4.6. �

Proof of Lemma 4.5. From Remark 1.2(i) and the condition that p1 = p2 on
Rn

+ or Rn
−, we deduce that (p1)∞ = (p2)∞. Let r0 := min{(q2)−, (q1)−} and

r1 := max{(q2)+, (q1)+}. Then, by Lemma 4.4 and (2.6), we see that

F
s2(·),φ
p2(·),r0(Rn) ↪→ F

s1(·),φ
p1(·),q1(·)(R

n) ↪→ F
s1(·),φ
p1(·),r1(Rn) (4.7)

and
F
s2(·),φ
p2(·),r0(Rn) ↪→ F

s2(·),φ
p2(·),q2(·)(R

n) ↪→ F
s1(·),φ
p1(·),r1(Rn). (4.8)

By Lemma 4.3 and an argument similar to that used in the proof of [20, Lemma
7.2], with [20, Theorem 3.8 and Lemma 7.1] replaced by Theorem 3.8 and Propo-

sition 4.6, we conclude that, for all f ∈ F s1(·),φ
p1(·),r1(Rn), Tr(f) exists in S ′(Rn−1) and

TrF
s1(·),φ
p1(·),r1(Rn) ⊂ TrF

s2(·),φ
p2(·),r0(Rn). From this, (4.7) and (4.8), we deduce that

TrF
s1(·),φ
p1(·),q1(·)(R

n) ⊂ TrF
s1(·),φ
p1(·),r1(Rn) ⊂ TrF

s2(·),φ
p2(·),r0(Rn) ⊂ TrF

s2(·),φ
p2(·),q2(·)(R

n)

⊂ TrF
s1(·),φ
p1(·),r1(Rn) ⊂ TrF

s2(·),φ
p2(·),r0(Rn) ⊂ TrF

s1(·),φ
p1(·),q1(·)(R

n),

which completes the proof of Lemma 4.5. �

Remark 4.7. By the proof of Lemma 4.5, we see that the condition (4.6) is only

used to ensure that TrF
s2(·),φ
p2(·),q2(·)(R

n) exists in S ′(Rn−1). Thus, by an argument

similar to that used in the proof of Lemma 4.5, we have the following conclusion,
the details being omitted. Under the same assumption as in Lemma 4.5, if, for

all f ∈ F s2(·),φ
p2(·),q2(·)(R

n), the trace of f defined as in (4.1) exists in S ′(Rn−1), then,
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for all g ∈ F s1(·),φ
p1(·),q1(·)(R

n), the trace of g defined as in (4.1) also exists in S ′(Rn−1);
moreover,

TrF
s1(·),φ
p1(·),q1(·)(R

n) = TrF
s2(·),φ
p2(·),q2(·)(R

n).

Lemma 4.8. Let pi, q, si be as in Theorem 4.1 with p and s replaced by pi and si,
i ∈ {1, 2}. Assume that s1(x) = s2(x) and p1(x) = p2(x) for all x ∈ Rn−1 × {0}.
If (4.2) is satisfied with (s, p) replaced, respectively, by (s1, p1) and (s2, p2), then

TrF
s1(·),φ
p1(·),q(·)(R

n) = TrF
s2(·),φ
p2(·),p2(·)(R

n).

Proof. For all x ∈ Rn and i ∈ {1, 2}, let s̃i(x) := si(x) if x ∈ Rn
− and s̃i(x) :=

min{s1(x), s2(x)} otherwise, and, for all x ∈ Rn, s̃(x) := min{s1(x), s2(x)}. Sim-
ilarly, for i ∈ {1, 2}, let p̃i(x) := pi(x) if x ∈ Rn

− and

p̃i(x) := min{p1(x), p2(x)}
otherwise, and, for all x ∈ Rn,

p̃(x) := min{p1(x), p2(x)}.
Then, by applying Lemma 4.5 and Remark 4.7, we conclude that

TrF
s1(·),φ
p1(·),q(·)(R

n) = TrF
s1(·),φ
p1(·),p1(·)(R

n) = TrF
s̃1(·),φ
p̃1(·),p̃1(·)(R

n)

= TrF
s̃(·),φ
p̃(·),p̃(·)(R

n) = TrF
s̃2(·),φ
p̃2(·),p̃2(·)(R

n) = TrF
s2(·),φ
p2(·),p2(·)(R

n),

which completes the proof of Lemma 4.8. �

In what follows, let Q(Rn) := Q and Q∗(Rn) := Q∗. Denote by Q(Rn−1) the

set of all dyadic cubes of Rn−1 and Q∗(Rn−1) the set of all dyadic cubes Q̃ of

Rn−1 with `(Q̃) ≤ 1.

Proof of Theorem 4.1. By Lemma 4.8, we may assume that q = p with p and
s independent of the n-th coordinate xn with |xn| ≤ 2. Indeed, let, for all
(x̃, xn) ∈ Rn−1 × [−2, 2], p̃0(x̃, xn) := p(x̃, 0). Then p̃0 ∈ C log(Rn−1 × [−2, 2]).
By [19, Proposition 4.1.7], we find that p̃0 has an extension p̃ ∈ C log(Rn) with
p̃− = (p̃0)− and p̃∞ = (p̃0)∞. Define s̃ by setting, for all (x̃, xn) ∈ Rn−1 × R,

s̃(x̃, xn) := s(x̃, 0). Then it is easy to see that s̃ ∈ C log
loc (Rn)∩L∞(Rn). Moreover,

p̃ and s̃ are independent of the n-th coordinate xn with |xn| ≤ 2, and satisfy

s̃− −
1

p̃−
− (n− 1)

[
1

min{1, p̃−}
− 1

]
> 0.

Then, by Lemma 4.8, we see that

TrF
s(·),φ
p(·),q(·)(R

n) = TrF
s̃(·),φ
p̃(·),p̃(·)(R

n).

For notational simplicity, let, for all x̃ ∈ Rn−1,

β(x̃, 0) := s(x̃, 0)− 1

p(x̃, 0)
,

F
β(̃·,0),φ̃
p(̃·,0) (Rn−1) := F

β(̃·,0),φ̃
p(̃·,0),p(̃·,0)(R

n−1)

and

f
β(̃·,0),φ̃
p(̃·,0) (Rn−1) := f

β(̃·,0),φ̃
p(̃·,0),p(̃·,0)(R

n−1).
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We finish the proof of Theorem 4.1 by two steps.

Step 1) We show that, for all f ∈ F s(·),φ
p(·),q(·)(R

n), Tr(f) ∈ S ′(Rn−1) and

‖Tr(f)‖
F
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

. ‖f‖
F
s(·),φ
p(·),p(·)(R

n)
. (4.9)

Without loss of generality, we may assume that ‖f‖
F
s(·),φ
p(·),p(·)(R

n)
= 1. By Theorem

3.8, we see that

f =
∑

Q∈Q∗(Rn)

tQaQ

in S ′(Rn), where, for all Q ∈ Q∗, aQ is a (K, L)-smooth atom supported near Q

of F
s(·),φ
p(·),p(·)(R

n) with

K ∈ (s+ + max{0, log2 c̃1},∞) and L ∈
(

n

min{1, p−}
− n− s−,∞

)
(4.10)

and t := {tQ}Q∈Q∗(Rn) ∈ f s(·),φp(·),p(·)(R
n), which can be chosen such that

‖t‖
f
s(·),φ
p(·),p(·)(R

n)
. ‖f‖

F
s(·),φ
p(·),p(·)(R

n)
. (4.11)

Since supp aQ ⊂ 3Q, it follows that, if i /∈ {0, 1, 2}, then

aQ̃×[(i−1)`(Q̃),i`(Q̃))(̃·, 0) = 0,

which implies that Tr(f) can be rewritten as

2∑
i=0

∑
Q̃∈Q∗(Rn−1)

tQ̃×[(i−1)`(Q̃),i`(Q̃))aQ̃×[(i−1)`(Q̃),i`(Q̃))(̃·, 0).

Therefore, to show (4.9), by Theorem 3.8 again, it can be reduced to prove that
each

b
(i)

Q̃
:= [`(Q̃)]

1
2aQ̃×[(i−1)`(Q̃),i`(Q̃))

is a (K̃, L̃)-smooth atom supported near Q̃ of F
β(̃·,0),φ̃
p(̃·,0) (Rn−1) with

K̃ ∈ ((s(̃·, 0))+ + max{0, log2 c̃1},∞) , (4.12)

L̃ ∈
(

n− 1

min{1, (p(̃·, 0))−}
− (n− 1)− (s(̃·, 0))−,∞

)
(4.13)

and ∥∥∥∥{λ(i)

Q̃

}
Q̃∈Q∗(Rn−1)

∥∥∥∥
f
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

<∞, (4.14)

where, for all Q̃ ∈ Q∗(Rn−1),

λ
(i)

Q̃
:= [`(Q̃)]−

1
2 tQ̃×[(i−1)`(Q̃),i`(Q̃)).

By (4.2), we see that

n− 1

min{1, (p(̃·, 0))−}
− (n− 1)− (s(̃·, 0))− < 0
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and then, by Remark 3.7(i), we know that the vanishing moment for (K̃, L̃)-

smooth atoms of F
β(̃·,0),φ̃
p(̃·,0) (Rn−1) is void. Since supp aQ ⊂ 3Q, K̃ ≤ K and, for all

α ∈ Zn+, with |α| ≤ K, and all x ∈ Rn, |DαaQ(x)| ≤ 2(|α|+n/2)j, it follows that,

for i ∈ {0, 1, 2}, α̃ ∈ Zn+, with |α̃| ≤ K̃, and all x ∈ Rn,

|Dα̃b
(i)
Q (x)| ≤ 2(|α̃|+n/2)j

and supp b
(i)
Q ⊂ 3Q̃. Thus, for i ∈ {0, 1, 2}, b(i)

Q̃
is a (K̃, L̃)-smooth atom sup-

ported near Q̃ of F
β(̃·,0),φ̃
p(̃·,0) (Rn−1) with (K̃, L̃) as in (4.12) and (4.13).

Let λ(i) := {λ(i)

Q̃
}Q̃∈Q∗(Rn−1), where i ∈ {0, 1, 2}. Next we show that, for any

given dyadic cube P̃ ⊂ Rn−1,

1

φ̃(P̃ )

∥∥∥∥∥∥∥∥∥


∞∑
j=(j

P̃
∨0)

∑
Q̃∈Q∗(Rn−1)

`(Q̃)=2−j

[
2j(β(̃·,0))|λ(i)

Q̃
||Q̃|−

1
2χQ̃

]p(̃·,0)


1

p(̃·,0)

∥∥∥∥∥∥∥∥∥
Lp(̃·,0)(P̃ )

is finite. By ‖f‖
F
s(·),φ
p(·),p(·)(R

n)
= 1 and (4.11), we see that there exists a positive

constant C0 such that, for all P ∈ Q(Rn),

1

φ(P )

∥∥∥∥∥∥∥∥


∞∑
j=(jP∨0)

∑
Q∈Q∗(Rn)

`(Q)=2−j

[
2js(·)|tQ||Q|−

1
2χQ

]p(·)
1
p(·)
∥∥∥∥∥∥∥∥
Lp(·)(P )

≤ C0,

which, together with Remark 1.1(ii), implies that, for all P ∈ Q(Rn),

∫
Rn


∞∑

j=(jP∨0)

∑
Q∈Q∗(Rn)

`(Q)=2−j

[
2js(·)|tQ||Q|−

1
2

χP
C0φ(P )

χQ

]p(·) dx ≤ 1. (4.15)

On the other hand, for all dyadic cube P̃ ∈ Q(Rn−1), we have

I(P̃ ) :=

∫
Rn−1

∞∑
j=(j

P̃
∨0)

∑
Q̃∈Q(Rn−1)

`(Q̃)=2−j

2jβ(x̃,0)
|λ(i)

Q̃
|

|Q̃| 12
χP̃ (x̃)χQ̃(x̃)

C0φ̃(P̃ )

p(x̃,0)

dx̃

=
∞∑

j=(j
P̃
∨0)

∑
Q̃∈Q(Rn−1)

`(Q̃)=2−j

2−j
∫
Q̃

[
2js(x̃,0)|λ(i)

Q̃
||Q̃|−

1
2
χP̃ (x̃)

C0φ̃(P̃ )

]p(x̃,0)

dx̃

∼
∞∑

j=(j
P̃
∨0)

∑
Q̃∈Q(Rn−1)

`(Q̃)=2−j

∫
̂̃
Qi

2js(x̃,0)
|λ(i)

Q̃
|

|Q̃| 12
χP̃ (x̃)

C0φ̃(P̃ )

p(x̃,0)

dx̃dxn
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.
∞∑

j=(j
P̃
∨0)

∫
2(P̃×[0,`(P̃ )))

∑
Q̃∈Q(Rn−1)

`(Q̃)=2−j

[
2js(x̃,0)|λ(i)

Q̃
||Q̃|−

1
2

×
[
C0φ̃(P̃ )

]−1

χ ̂̃
Qi

(x̃, xn)

]p(x̃,0)

dx̃dxn,

where ̂̃
Qi := Q̃×

[
(2i− 1)`(Q̃)

2
, i`(Q̃)

)
,

which, combined with the fact that { ̂̃Qi}Q̃∈Q∗(Rn−1) are disjoint each other, (4.15)

and the condition (S1) of φ, implies that, for all P̃ ∈ Q(Rn−1),

I(P̃ ).
∫

2(P̃×[0,`(P̃ ))


∞∑

j=(j
P̃
∨0)

 ∑
Q̃∈Q(Rn−1)

`(Q̃)=2−j

2js(x̃,0)|λ(i)

Q̃
||Q̃|−

1
2

× 1

C0φ̃(P̃ )
χ
Q̃×[

(2i−1)`(Q̃)
2

,i`(Q̃))

]p(x)


p(x̃,0)
p(x)

dx̃dxn

.
∫

2(P̃×[0,`(P̃ ))


∞∑

j=(j
P̃
∨0)

 ∑
Q̃∈Q(Rn−1)

`(Q̃)=2−j

2js(x)|tQ̃×[(i−1)`(Q̃),i`(Q̃))|

× |`(Q̃)|−n2
C0φ(P̃ × [0, `(P̃ )))

χ
Q̃×[

(2i−1)`(Q̃)
2

,i`(Q̃))

]p(x)
 dx . 1,

where we used the fact that p(x̃, 0) = p(x̃, xn) for all (x̃, xn) ∈ Rn with |xn| ≤ 2
in the last inequality. By this and Remark 1.1(ii), we conclude that, for all

P̃ ∈ Q(Rn−1),

1

φ̃(P̃ )

∥∥∥∥∥∥∥∥∥∥


∞∑

j=(j
P̃
∨0)

 ∑
Q̃∈Q∗(Rn−1)

`(Q̃)=2−j

2jβ(̃·,0)|λ(i)

Q̃
||Q̃|−

1
2χQ̃


p(̃·,0)


1

p(̃·,0)

∥∥∥∥∥∥∥∥∥∥
Lp(̃·,0)(P̃ )

is finite, which implies that ‖λ(i)‖
f
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

. 1, namely, (4.14) holds true.

Therefore,

‖Tr(f)‖
F
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

.
2∑
i=0

‖λ(i)‖
f
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

. ‖f‖
F
s(·),φ
p(·),p(·)(R

n)
.
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Step 2) We prove that the operator Tr is surjective. Let f ∈ F β(̃·,0),φ̃
p(̃·,0) (Rn−1).

Then, by Theorem 3.8, we find that there exist a sequence

λ := {λQ̃}Q̃∈Q∗(Rn−1) ⊂ C

and a sequence {aQ̃}Q̃∈Q∗(Rn−1) of (K, L)-smooth atoms of F
β(̃·,0),φ̃
p(̃·,0) (Rn−1) with K

and L satisfying (4.10) such that f =
∑

Q̃∈Q∗(Rn−1) λQ̃aQ̃ converges in S ′(Rn−1)
and

‖λ‖
f
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

. ‖f‖
F
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

; (4.16)

moreover, for all P̃ ∈ Q(Rn−1),

1

φ(P̃ )

∫
P̃

∞∑
j=(j

P̃
∨0)

∑
Q̃∈Q∗(Rn−1)

Q̃⊂P̃
`(Q̃)=2−j

 2jβ(x̃,0)|λQ̃|χQ̃(x̃)

|Q̃| 12‖λ‖
f
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)


p(x̃,0)

dx̃ . 1. (4.17)

Let η ∈ C∞c (R) satisfy supp η ⊂ (−1
2
, 1

2
) and η(0) = 1. For all Q̃ ∈ Q(Rn−1) and

ξ ∈ R, let ηQ̃(ξ) := η(2− log2 `(Q̃)ξ),

g :=
∑

Q̃∈Q∗(Rn−1)

λQ̃aQ̃ ⊗ ηQ̃ =:
∑

Q∈Q∗(Rn)

tQbQ,

where, for all Q ∈ Q∗(Rn) and x := (x̃, xn) ∈ Rn,

bQ(x) := [`(Q̃)]−
1
2aQ̃ ⊗ ηQ̃(x) := [`(Q̃)]−

1
2aQ̃(x̃)ηQ̃(xn),

tQ := [`(Q̃)]1/2λQ̃ if Q = Q̃× [0, `(Q̃)) and tQ := 0 otherwise.

Next we show that g converges in S ′(Rn) and

‖g‖
F
s(·),φ
p(·),p(·)(R

n)
. ‖f‖

F
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

.

It is easy to show that each bQ is a (K, L)-smooth atom supported near Q of

F
s(·),φ
p(·),p(·)(R

n) with K and L as in (4.10). By Proposition 4.6 and the fact that

{Q̃× [1
2
`(Q̃), `(Q̃))}Q̃∈Q∗(Rn−1) are disjoint each other, we find that

‖{tQ}Q∈Q∗(Rn)‖fs(·),φ
p(·),p(·)(R

n)

= sup
P∈Q(Rn)

1

φ(P )

∥∥∥∥∥∥


∞∑
j=(jP∨0)

∑
Q̃∈Θj

2js(·)|λQ̃|[`(Q̃)]1/2

× |Q̃× [0, `(Q̃))|−1/2χQ̃×[0,`(Q̃))

]p(·)
1/p(·)

∥∥∥∥∥∥∥
Lp(·)(P )

∼ sup
P∈Q(Rn)

1

φ(P )

∥∥∥∥∥∥
∞∑

j=(jP∨0)

∑
Q̃∈Θj

2js(·)|λQ̃||Q̃|
− 1

2χQ̃×[ 1
2
`(Q̃),`(Q̃))

∥∥∥∥∥∥
Lp(·)(P )
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∼ sup
P̃∈Q(Rn−1)

1

φ̃(P̃ )

∥∥∥∥∥∥∥∥
∑

Q̃∈Q∗(Rn−1)

Q̃⊂P̃

|Q̃|−
s(·)
n−1 |λQ̃|

×|Q̃|−1/2χQ̃×[ 1
2
`(Q̃),`(Q̃))

∥∥∥∥∥
Lp(·)(P̃×[0,`(P̃ )))

, (4.18)

where Θj := {Q̃ ∈ Q∗(Rn−1) : Q̃ × [0, `(Q̃)) ⊂ P, `(Q̃) = 2−j}. On the other

hand, let Γ := ‖λ‖
f
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

. Then, for all P̃ ∈ Q(Rn−1), by (4.17), we find

that

1

φ̃(P̃ )

∫
P̃×[0,`(P̃ ))


∑

Q̃∈Q∗(Rn−1)

Q̃⊂P̃

|λQ̃||Q̃|
− 1

2 Γ−1|Q̃|−
s(x)
n−1χQ̃×[ 1

2
`(Q̃),`(Q̃))


p(x)

dx

∼ 1

φ̃(P̃ )

∑
Q̃∈Q∗(Rn−1)

Q̃⊂P̃

∫
Q̃×[ 1

2
`(Q̃),`(Q̃))

[
|Q̃|−

s(x)
n−1
− 1

2 |λQ̃|Γ
−1
]p(x)

dx

∼ 1

φ̃(P̃ )

∞∑
j=(j

P̃
∨0)

∑
Q̃∈Q∗(Rn−1)

Q̃⊂P̃
`(Q̃)=2−j

∫
Q̃

[
2jβ(x̃,0)|λQ̃||Q̃|

− 1
2 Γ−1

]p(x̃,0)

dx̃ . 1,

which, together with Remark 1.1(ii), implies that

1

φ̃(P̃ )

∥∥∥∥∥∥∥∥
∑

Q̃∈Q∗(Rn−1)

Q̃⊂P̃

|Q̃|−
s(·)
n−1 |λQ̃||Q̃|

− 1
2χQ̃×[ 1

2
`(Q̃),`(Q̃))

∥∥∥∥∥∥∥∥
Lp(·)(P̃×[0,`(P̃ )))

. ‖λ‖
f
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

.

From this and (4.18), we further deduce that∥∥∥{tQ}Q∈Q∗(Rn)

∥∥∥
f
s(·),φ
p(·),p(·)(R

n)
. ‖λ‖

f
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

.

Therefore, by Theorem 3.8(i) and (4.16), we conclude that g =
∑

Q∈Q∗(Rn) tQbQ

converges in S ′(Rn), g ∈ F s(·),φ
p(·),p(·)(R

n) and

‖g‖
F
s(·),φ
p(·),p(·)(R

n)
. ‖f‖

F
β(̃·,0),φ̃

p(̃·,0)
(Rn−1)

;

furthermore, Tr(g) = f in S ′(Rn−1), which implies that

Tr : F
s(·),φ
p(·),p(·)(R

n)→ F
s(̃·,0),φ̃
p(̃·,0),p(̃·,0)(R

n−1)

is surjective and hence completes the proof of Theorem 4.1. �
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60. M. Růžička, Modeling, mathematical and numerical analysis of electrorheological fluids,
Appl. Math. 49 (2004), 565–609.

61. Y. Sawano, Wavelet characterization of Besov-Morrey and Triebel–Lizorkin-Morrey spaces,
Funct. Approx. Comment. Math. 38 (2008), 93–107.

62. Y. Sawano and H. Tanaka, Decompositions of Besov-Morrey spaces and Triebel–Lizorkin-
Morrey spaces, Math. Z. 257 (2007), 871–905.

63. W. Sickel, Smoothness spaces related to Morrey spaces-a survey. I, Eurasian Math. J. 3
(2012), 110–149.

64. W. Sickel, Smoothness spaces related to Morrey spaces-a survey. II, Eurasian Math. J. 4
(2013), 82–124.

65. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals, Princeton Univ. Press, Princeton, N.J., 1993.

66. H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983.
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