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Abstract. We study the noncommutative Orlicz modular spaces associated
with growth functions. Some basic properties of such spaces, such as complete-
ness and dominated convergence theorem, are present. Moreover, Young and
Clarkson–McCarthy inequalities on these spaces proved.

1. Introduction

LetM be a semi-finite von Neumann algebra equipped with a normal faithful
semi-finite trace τ . Given 0 < p ≤ ∞ we denote by Lp(M) the usual noncom-
mutative Lp-spaces associated with (M, τ). For the theory of noncommutative
Lp-spaces, we refer the readers to [3, 4, 10, 12]. We denote the set of all τ -measure
operators by L0(M, τ), or simply L0(M). We consider the noncommutative Or-
licz modular spaces LΦ(M) associated with a growth functions Φ (see preliminar-
ies for the definition). About the modular theory we refer the interested readers
to [6, 9, 11, 13]. It is well-known that Orlicz spaces for convex functions are
the generalization of Lp spaces for p ≥ 1. Many authors discuss Orlicz spaces
for convex functions( see [6, 9, 11, 13] ). In this work we study noncommuta-
tive Orlicz spaces for the more general case of growth functions. These kinds of
noncommutative Orlicz spaces are a generalization of noncommutative Lp spaces
for p > 0. In section 1, we show some results about the growth functions such
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as, mainly, characterizations of ∆2 and ∆ 1
2

conditions, and relationship between

general growth functions and concave or convex growth functions.
T. Fack and H. Kosaki in [4] proved the dominated convergence theorems of

τ -measurable operators for noncommutative Lp-spaces. G. Sadeghi proved this
theorem for noncommutative Orlicz spaces associated with convex functions in
[13]. We extend this result to the noncommutative Orlicz spaces associated with
growth functions. This will present in section 2. In section 3, we prove Young
and Clarkson–McCarthy inequalities for noncommutative Orlicz spaces associated
with growth functions.

2. Relationships of growth functions

Definition 2.1. We say a function Φ is a growth function, if Φ is a continuous
and nondecreasing function from [0,∞) onto itself.

In this paper we always assume that for a growth function Φ, tΦ
′
(t) is also a

growth function. There are many simple examples of growth functions Φ such
that tΦ

′
(t) are also growth functions. For example Φ(t) = tp, for every p > 0.

There are also some growth functions Φ such that tΦ
′
(t) are not growth functions,

such as Φ(t) = ln(1 + t).
For a growth function Φ, set a = sup{t : Φ(t) = 0}. Then a < ∞ and

Φ(t) = 0 for all t ∈ [0, a]. Hence we may assume that Φ(t) > 0 for all t > 0
(otherwise replace Φ by Φ(a+ ·)). For a growth function Φ, we have the following
quantitative indices:

pΦ = inf
t>0

tΦ
′
(t)

Φ(t)
, qΦ = sup

t>0

tΦ
′
(t)

Φ(t)
.

Definition 2.2. (i) A growth function Φ obeys ∆2-condition for all t > 0, often
written as Φ ∈ ∆2, if there is a constant K > 1 such that Φ(2t) ≤ KΦ(t) .

(ii) A growth function Φ said to satisfy the ∆ 1
2
-condition for all t > 0 , denoted

symbolically as Φ ∈ ∆ 1
2
, if there is a constant 0 < K < 1 such that Φ( t

2
) ≤

KΦ(t).

By Proposition 1.4 in [1], we have that

Φ ∈ ∆2 ⇔ qΦ <∞, Φ ∈ ∆ 1
2
⇔ pΦ > 0. (2.1)

If Φ satisfies the ∆2 and ∆ 1
2

conditions for all t > 0 , we denote symbolically as

Φ ∈ ∆2 ∩∆ 1
2
.

Definition 2.3. Growth functions Φ1, Φ2 are said to be equivalent, denoted by
Φ1 ∼ Φ1, if there exist positive constants C1, C2, C3, C4 such that

C1Φ1(C2t) ≤ Φ2(t) ≤ C3Φ1(C4t), ∀ t > 0.

In [1], we proved that if Φ1 ∼ Φ1, then Φ1 ∈ ∆2 ⇔ Φ2 ∈ ∆2 and Φ1 ∈ ∆ 1
2
⇔

Φ2 ∈ ∆ 1
2

(see Proposition 1.4).

Proposition 2.4. Let Φ be a growth function. Then the followings hold.
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(i) For every p ∈ [0, pΦ], t−pΦ(t) is non-decreasing function and for every q ∈
[qΦ,∞), t−qΦ(t) is non-increasing function.

(ii) Φ ∈ ∆2 is equivalent to that for a constant C > 1 there is a constant K > 1
such that Φ(Ct) ≤ KΦ(t) for all t > 0.

(iii) Φ ∈ ∆ 1
2
is equivalent to that for a constant 0 < C < 1 there is a constant

0 < K < 1 such that Φ(Ct) ≤ KΦ(t) for all t > 0.

Proof. (i) For every p ∈ (0, pΦ], t−pΦ(t) is non-decreasing function. Indeed,

(t−pΦ(t))
′
= t−p−1(tΦ

′
(t)− pΦ(t)) ≥ t−p−1(pΦΦ(t)− pΦ(t)) ≥ 0.

Similarly, we get t−qΦ(t) is non-increasing for every q ∈ [qΦ,∞).
(ii) Let Φ ∈ ∆2. If C > 1, then by (2.1) and (i),

Φ(Ct) ≤ CqΦΦ(t), ∀ t > 0,

i.e., the desired result holds. Conversely, if there are constants C > 1 and K > 1
such that Φ(Ct) ≤ KΦ(t) for all t > 0, then there is an integer n ≥ 0 such that
Cn < 2 ≤ Cn+1. It follows that Φ(2t) ≤ Φ(Cn+1t) ≤ Kn+1Φ(t) and Kn+1 > 1,
i.e., Φ ∈ ∆2.

(iii) Let Φ ∈ ∆ 1
2
. If 0 < C < 1, then by (2.1) and (i), we get

Φ(Ct) ≤ CpΦΦ(t), ∀t > 0.

This implies the desired result. Conversely, let 0 < C < 1 and 0 < K < 1 such
that Φ(Ct) ≤ KΦ(t) for all t > 0. Then

1− C
C

tΦ′(t) ≥
∫ t

ct

sΦ
′
(s)

s
ds = Φ(t)− Φ(ct) ≥ (1−K)Φ(t).

So pΦ ≥ C
1−C (1−K) > 0. By (2.1), Φ ∈ ∆ 1

2
. �

We let Φ(α)(t) = Φ(tα), where α is a positive real number. Then it is easy to
see that pΦ(α) = αpΦ, qΦ(α) = αqΦ.

Theorem 2.5. Let Φ be a growth function and Φ ∈ ∆ 1
2
∩∆2. Set Φ0(t) = tΦ

′
(t).

(i) If qΦ0α ≤ 1, then Φ(α) is a concave growth function.
(ii) If pΦ0α ≥ 1, then Φ(α) is a convex growth function.

Proof. (i) Set a = sup{t : Φ′(t) = 0}. Then a <∞ and Φ(t) = 0 for all t ∈ (0, a].
Hence we may assume that Φ′(t) > for all t > 0 (otherwise replace Φ by Φ(a+ ·)).

Since Φ0(t) is nondecreasing function on [0,∞), Φ
′′
(t) exists for all t > 0 except

a countable set of points in which we take Φ
′′
(t) as the derivative from the right.

Computing we get that
(Φ(α)(t))

′
= αtα−1Φ

′
(tα)

and

(Φ(α)(t))
′′

= α(α− 1)tα−2Φ
′
(tα) + α2t2(α−1)Φ

′′
(tα)

= α2tα−2
(
tαΦ

′′
(tα) + (1− 1

α
)Φ

′
(tα)

)
= α2tα−2Φ

′
(tα)

(tαΦ
′′
(tα)

Φ′(tα)
+ 1− 1

α

)
.
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Since pΦΦ(t) ≤ tΦ
′
(t) ≤ qΦΦ(t), we get Φ ∼ Φ0. By Proposition 1.4 of [1],

0 < pΦ0 ≤ qΦ0 <∞. Hence

pΦ0 ≤
t(Φ0(t))

′

Φ0(t)
=
t(tΦ

′
(t))

′

tΦ′(t)
≤ qΦ0 , ∀ t > 0,

so

pΦ0 − 1 ≤ tΦ
′′
(t)

Φ′(t)
≤ qΦ0 − 1, ∀ t > 0.

It follows that

pΦ0 − 1 ≤ tαΦ
′′
(tα)

Φ′(tα)
≤ qΦ0 − 1, ∀ t > 0. (2.2)

Since qΦ0α ≤ 1, by (2.2) we have that

(Φ(α)(t))
′′ ≤ α2tαΦ

′
(tα)(qΦ −

1

α
) ≤ 0, ∀ t > 0,

which implies that Φ(α) is a concave growth function.
(ii) It is proved in [1]. �

3. noncommutative Orlicz spaces

LetM be a semi-finite von Neumann algebra equipped with a normal faithful
semi-finite trace τ . Let L0(M) denote the topological ∗-algebra of measurable
operators with respect to (M, τ). The topology of L0(M) is determined by the
convergence in measure.

Definition 3.1. Let Φ be a growth function. We define the corresponding non-
commutative Orlicz space on (M, τ) by

LΦ(M) = {x ∈ L0(M) : τ(Φ(|λx|)) <∞ for some λ > 0}.

Let a growth function Φ satisfies the ∆2-condition. By Proposition 2.4, we
know that τ(Φ(|λx|)) < ∞ for some λ > 0 are equivalent to τ(Φ(|x|)) < ∞. So
LΦ(M) = {x ∈ L0(M) : τ(Φ(|x|)) <∞} for Φ ∈ ∆2.

Definition 3.2. Let X be an arbitrary vector space. A functional ρ : X → [0,∞]
is called a modular, if for arbitrary x, y ∈ X,

(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scalar α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for α, β ≥ 0 such that α + β = 1.

We now define a functional ρΦ on L0(M) by

ρΦ(x) = τ(Φ(|x|)), ∀ x ∈ L0(M).

It follows from corollary 2.8 of [4] that ρΦ(x) = τ(Φ(|x|)) =
∫∞

0
Φ(µt(x))dt.

Theorem 3.3. Let Φ be a growth function and Φ ∈ ∆ 1
2
∩ ∆2. Then ρΦ is a

modular on L0(M).
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Proof. It is clear that ρΦ satisfies the (i) and (ii) of Definition 3.2. Let x, y be
τ -measurable operators, α, β ≥ 0 such that α+β = 1. By Lemma 4.3 of [4]( also
see [7]), there exist partial isometries u, v ∈M such that

|αx+ βy| ≤ αu|x|u∗ + βv|y|v∗.

Using Theorem 2.5 we find a natural number n such that Φ( 1
n

) is concave growth
function. By Proposition 4.6 of [4],

ρΦ(αx+ βy) = τ(Φ(|αx+ βy|)) =

∫ ∞
0

Φ(µt(αx+ βy))dt

≤
∫ ∞

0

Φ(µt(αu|x|u∗ + βv|y|v∗))dt

=

∫ ∞
0

Φ( 1
n

)((µt(αu|x|u∗ + βv|y|v∗))n)dt

=

∫ ∞
0

Φ( 1
n

)(µt((αu|x|u∗ + βv|y|v∗)n))dt

≤
∫ ∞

0

Φ( 1
n

)(µt(α(u|x|u∗)n + β(v|y|v∗)n))dt

≤
∫ ∞

0

Φ( 1
n

)(µt(α(u|x|u∗)n))dt+

∫ ∞
0

Φ( 1
n

)(µt(β(v|y|v∗)n))dt

≤
∫ ∞

0

Φ( 1
n

)(αµt(|x|n))dt+

∫ ∞
0

Φ( 1
n

)(βµt(|y|n))dt

=

∫ ∞
0

Φ(α
1
nµt(x))dt+

∫ ∞
0

Φ(β
1
nµt(y))dt

≤
∫ ∞

0

Φ(µt(x))dt+

∫ ∞
0

Φ(µt(y))dt

= τ(Φ(|x|)) + τ(Φ(|y|))
= ρΦ(x) + ρΦ(y).

Thus ρΦ is a modular on L0(M). �

Theorem 3.4. Let Φ be a growth function and Φ ∈ ∆ 1
2
∩∆2. Then noncommu-

tative Orlicz space LΦ(M) is ρΦ-complete.

Proof. Let {xn} be a ρΦ-Cauchy sequence in LΦ(M). Then

ρΦ(xn − xm)→ 0 (n,m→∞)

From this we get that for all t > 0,

µt(xn − xm)→ 0 (n,m→∞). (3.1)

Indeed, if µt(xn − xm) 9 0 (n,m → ∞), then there are ε0 > 0, t0 > 0 and for
any k ∈ N there exit nk,mk > k such that

µt0(xnk − xmk) ≥ ε0.



120 A. ABDUREXIT, T.N. BEKJAN

By the right continuity of µt, there exists δ > 0 such that

µt(xnk − xm+k) ≥
ε0

2
, ∀ t ∈ (t0, t0 + δ).

By the definition of a growth function Φ, we have

ρΦ(xnk − xmk) = τ(Φ(xnk − xmk))

=

∫ ∞
0

Φ(µt(xnk − xmk))dt

≥
∫ t0+δ

t0

Φ(µt(xnk − xmk))dt

≥ Φ(
ε0

2
)δ > 0.

That is contraction. Thus (3.1) holds.
By Lemma 3.1 of [4], {xn} is a cauchy sequence in L0(M). Since L0(M) is
a complete, there exist a τ -measurable operator x ∈ L0(M) such that {xn}
convergence to x in measure topology. By the Lemma 3.4 of [4] and continuity
of Φ, we obtain

ρΦ(x) = τ(Φ(x)) =

∫ ∞
0

Φ(µt(x))dt

≤
∫ ∞

0

lim
n→∞

inf Φ(µt(xn))dt

≤ lim
n→∞

inf

∫ ∞
0

Φ(µt(xn))dt

= lim
n→∞

inf ρΦ(xn).

Similarly,

ρΦ(x− xn) ≤ lim
m→∞

inf ρΦ(xm − xn), ∀ n ∈ N. (3.2)

On the other hand, since Φ ∈ ∆2,

ρΦ(x) = ρΦ(x− xn + xn) ≤ ρΦ(2(x− xn)) + ρΦ(2xn))

≤ K(ρΦ(x− xn) + ρΦ(xn)).

This implies ρΦ(x) <∞, i.e. x ∈ LΦ(M). By (3.2), it follows that the sequence
{xn} is ρΦ-convergent to x. �

Next, we prove the dominated convergence theorems for τ -measurable opera-
tors with respect to the modular ρΦ.

Theorem 3.5. Let Φ be a growth function and Φ ∈ ∆ 1
2
∩ ∆2. Let {xn} be

a sequence of τ -measurable operators converging to x in the measure topology.
Assume that there exist τ -measurable operators yn, n = 1, 2, · · · and y in LΦ(M),
satisfying the following conditions:

(i) |xn| ≤ |yn|,
(ii) ρΦ(y) = limn→∞ ρΦ(yn),

(iii) the sequence {yn} converges to y in the measure topology.
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Then xn and x are in LΦ(M) and

lim
n→∞

ρΦ(xn − x) = 0.

Proof. We use the method in the proof of Theorem 3.11 of [13]. Since Φ ∈ ∆2,

LΦ(M) = {x ∈ L0(M) : τ(Φ(|x|)) <∞}.

From the condition (i) and Lemma 2.5 of [4] we know that µt(xn) ≤ µt(yn).
Therefore for the growth function Φ,∫ ∞

0

Φ(µt(xn))dt ≤
∫ ∞

0

Φ(µt(yn))dt.

Whence

ρΦ(xn) ≤ ρΦ(yn).

This implies that xn ∈ LΦ(M), since yn ∈ LΦ(M). From the proof of Theorem
3.4, we know that

ρΦ(x) ≤ lim
n→∞

inf ρΦ(xn) ≤ lim
n→∞

inf ρΦ(yn) ≤ ρΦ(y).

This inequality ensures that x ∈ LΦ(M).
Since Φ is a growth function and satisfies the ∆2-condition, by the Theorem

2.5, there is a natural number n0 such that Φ
( 1
n0

)
concave growth function. Hence

Φ(α + β) = Φ
( 1
n0

)
((α + β)n0) ≤ Φ

( 1
n0

)
(2n0−1αn0 + 2n0−1βn0)

≤ Φ
( 1
n0

)
(2n0−1αn0) + Φ

( 1
n0

)
(2n0−1βn0)

≤ Φ(2α) + Φ(2β)

≤ K(Φ(α) + Φ(β)), ∀ α, β ≥ 0.

Applying this we obtain that

Φ(µt(xn − x)) ≤ Φ(µ t
2
(xn) + µ t

2
(x))

≤ Φ(µ t
2
(yn) + µ t

2
(x))

≤ K(Φ(µ t
2
(yn)) + Φ(µ t

2
(x))).

On the other hand, it follows from Lemma 3.1 and 3.4 of [4] that

lim
n→∞

µt(xn − x) = 0 and µ t
2
(y) ≤ lim

n→∞
inf µ t

2
(yn).

Hence

lim
n→∞

inf{K[Φ(µ t
2
(yn)) + Φ(µ t

2
(x))]− Φ(µt(xn − x))}

≥ K[Φ(µ t
2
(y)) + Φ(µ t

2
(x))].
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By usual Fatou Lemma, we have that∫ ∞
0

K[Φ(µ t
2
(y)) + Φ(µ t

2
(x))]dt

≤
∫ ∞

0

lim
n→∞

inf{K[Φ(µ t
2
(yn)) + Φ(µ t

2
(x))]− Φ(µt(xn − x))}dt

≤ lim
n→∞

inf

∫ ∞
0

{K[Φ(µ t
2
(yn)) + Φ(µ t

2
(x))]− Φ(µt(xn − x))}dt.

From the assumption (ii) and x, y ∈ LΦ(M), we get

− lim
n→∞

sup

∫ ∞
0

Φ(µt(xn − x))dt ≥ 0.

That is limn→∞ ρΦ(xn − x) = 0. �

Corollary 3.6. Let Φ be a growth function and Φ ∈ ∆ 1
2
∩ ∆2. Let {xn} be a

sequence of τ -measurable operators converging to x in the measure topology. If
there exists an operator y ∈ LΦ(M) such that |xn| ≤ y for n = 1, 2, · · · , then

lim
n→∞

ρΦ(xn) = ρΦ(x).

4. The Clarkson–McCarthy inequalities

In this section we extend Young and Clarkson–McCarthy inequalities on non-
commutative Orlicz modular space associated with growth functions.

The classical Young inequality for two nonnegative real numbers a, b, is

ab ≤ ap

p
+
bq

q
,

where p, q > 1 are such that p−1 + q−1 = 1. We have the following result.

Theorem 4.1. Let Φ be a growth function and Φ ∈ ∆ 1
2
∩∆2. Let p, q ≥ 1 such

that p−1 + q−1 = 1. If x ∈ LΦ(p)
(M) and y ∈ LΦ(q)

(M), then

ρΦ(xy) ≤ 1

p
ρΦ(p)(x) +

1

q
ρΦ(q)(y).

Consequently, xy ∈ LΦ(M).

Proof. By the classical Young inequality,

µt(a)µt(b) ≤
µt(a)p

p
+
µt(b)

q

q
, ∀a, b ∈ L0(M). (4.1)

By Theorem 2.5, there is a n ∈ N such that Φ(n) is a convex growth function.
Hence Φ(et) = Φ(n)(e

t
n ) is also convex function. Then, by (iii) of Theorem 4.2 in
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[4] and (4.1), we get

ρΦ(xy) =

∫ ∞
0

Φ(µt(xy))dt

≤
∫ ∞

0

Φ(µt(x)µt(y))dt

=

∫ ∞
0

Φ(n)(µt(|x|
1
n )µt(|y|

1
n ))dt

≤
∫ ∞

0

Φ(n)(
µt(|x|

1
n )p

p
+
µt(|y|

1
n )q

q
)dt

≤ 1

p

∫ ∞
0

Φ(n)(µt(x)
p
n )dt+

1

q

∫ ∞
0

Φ(n)(µt(y)
q
n )dt

=
1

p
τ(Φ(p)(|x|)) +

1

q
τ(Φ(q)(|y|))

=
1

p
ρΦ(p)(x) +

1

q
ρΦ(q)(y).

This is the desired result. �

The following is a generalization of Clarkson–McCarthy inequalities (see [2, 5,
8]).

Theorem 4.2. Let Φ be a growth function and Φ ∈ ∆ 1
2
∩∆2. Set Φ0(t) = tΦ

′
(t).

(i) If pΦ0 ≥ 2, then for x, y ∈ LΦ(M), we have

ρΦ(x+ y) + ρΦ(x− y) ≥ 2(ρΦ(x) + ρΦ(y)).

Consequently,

ρΦ(x+ y) + ρΦ(x− y) ≤ 2−1(ρΦ(2x) + ρΦ(2y)).

(ii) If qΦ0 ≤ 2, then for x, y ∈ LΦ(M), we have

ρΦ(x+ y) + ρΦ(x− y) ≥ 2−1(ρΦ(2x) + ρΦ(2y)).

Consequently,

ρΦ(x+ y) + ρΦ(x− y) ≤ 2(ρΦ(x) + ρΦ(y)).

Proof. (i) By the proof of Theorem 2.5, we know that Φ( 1
2

) is a convex growth
function. We know that for a convex function,

Φ( 1
2

)(α) + Φ( 1
2

)(β) ≥ 2Φ( 1
2

)(
α + β

2
). (4.2)
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Using (4.2), (iii) of Theorem 4.4 and (ii) of Proposition 4.6 in [4] we obtain that

ρΦ(x+ y) + ρΦ(x− y) =

∫ ∞
0

Φ(µt(x+ y))dt+

∫ ∞
0

Φ(µt(x− y))dt

=

∫ ∞
0

Φ( 1
2

)(µt(x+ y)2)dt+

∫ ∞
0

Φ( 1
2

)(µt(x− y)2)dt

≥ 2

∫ ∞
0

Φ( 1
2

)(
µt(x+ y)2 + µt(x− y)2

2
)dt

≥ 2

∫ ∞
0

Φ( 1
2

)(µt(
|x+ y|2 + |x− y|2

2
))dt

= 2

∫ ∞
0

Φ( 1
2

)(µt(
(x+ y)∗(x+ y) + (x− y)∗(x− y)

2
))dt

= 2

∫ ∞
0

Φ( 1
2

)(µt(|x|2 + |y|2))dt

= 2τ(Φ( 1
2

)(|x|2 + |y|2))

≥ 2(τ(Φ( 1
2

)(|x|2)) + 2τ(Φ( 1
2

)(|y|2)))

= 2(ρΦ(x) + ρΦ(y)).

Replaced x and y by x+ y and x− y, then we obtain

ρΦ(x+ y) + ρΦ(x− y) ≤ 2−1(ρΦ(2x) + ρΦ(2y)).

(ii) By Theorem 2.5, we know that Φ( 1
2

) is a concave growth function. Using (i)
of Theorem 4.6 in [4] we get

ρΦ(x+ y) + ρΦ(x− y) =

∫ ∞
0

Φ(µt(x+ y))dt+

∫ ∞
0

Φ(µt(x− y))dt

=

∫ ∞
0

Φ( 1
2

)(µt(x+ y)2)dt+

∫ ∞
0

Φ( 1
2

)(µt(x− y)2)dt

≥
∫ ∞

0

Φ( 1
2

)(µt(|x+ y|2 + |x− y|2))dt

=

∫ ∞
0

Φ( 1
2

)(µt(2|x|2 + 2|y|2))dt

=

∫ ∞
0

Φ( 1
2

)(µt(
|2x|2 + |2y|2

2
))dt

≥ 2−1[τ(Φ( 1
2

)(|2x|2)) + τ(Φ( 1
2

)(|2y|2))]

= 2−1(ρΦ(2x) + ρΦ(2y)).

Replace x and y by x+y
2

and x−y
2

, we get that

τ(Φ(|x+ y|)) + τ(Φ(|x− y|)) ≤ 2(τ(Φ(|x|)) + τ(Φ(|y|))).
�
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