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Abstract. Let H be a compact subgroup of a locally compact group G. We
consider the homogeneous space G/H equipped with a strongly quasi-invariant
Radon measure µ. For 1 ≤ p ≤ +∞, we introduce a norm decreasing linear
map from Lp(G) onto Lp(G/H, µ) and show that Lp(G/H, µ) may be identified
with a quotient space of Lp(G). Also, we prove that Lp(G/H, µ) is isometrically
isomorphic to a closed subspace of Lp(G). These help us study the structure
of the classical Banach spaces constructed on a homogeneous space via those
created on topological groups.

1. Introduction

The function spaces on a locally compact Hausdorff topological group may
possess special structures and properties which may fail to hold on the function
spaces related to a locally compact Hausdorff space. For instance, L1(G) is known
as an involutive Banach algebra, where G is a locally compact topological group,
whereas L1(X) is known just as a Banach space, where X is a locally compact
Hausdorff space. When G is a locally compact Hausdorff topological group, for
every closed subgroup H of G, the space G/H consisting of all left cosets of H in
G is a locally compact Hausdorff topological space on which G acts transitively
from the left. The term homogeneous space means a transitive G-space which is
topologically isomorphic to G/H, for some closed subgroup H of G. It has been
shown that if G is σ-compact, then every transitive G-space is homeomorphic
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to the quotient space G/H for some closed subgroup H (cf. [4, Subsection 2.6]).
Among all locally compact Hausdorff spaces, it seems valuable to consider
homogeneous spaces and investigate the structures and the properties of their
function spaces. Some results have been obtained by figuring out some relations
between the function spaces on a homogeneous space and the function spaces on
the corresponding topological group.

In [5], [6], [9], and [11] it has been introduced and investigated Fourier algebra
A(G/H) and Fourier–Stieltjes algebra B(G/H), where H is compact. In [7], it
has been tried to find a relation between frames and Bessel sequences of L2(G)
and those of L2(G/H), where H is compact and G/H has been attached to an
invariant Radon measure. Also, in [8] by assuming that H is a closed subgroup of
G and G/H has been attached to a relatively invariant Radon measure, a class of
continuous wavelet transform is introduced deriving from the generalized quasi–
regular representations which obtained by the tensor product of a character of G
and the induced representation of G on L2(G/H). In [3], a connection between
the existence of admissible wavelets for G and those of G/H, where H is compact,
has been illustrated. Moreover, one may refer to [2] and [10] to find some results
on the space of the right cosets of H in G.

In this paper, by taking a compact subgroupH of G, we equip the homogeneous
space G/H with a strongly quasi-invariant Radon measure and we demonstrate
some structural connections between two function spaces Lp(G) and Lp(G/H),
where 1 ≤ p ≤ +∞. In section 3, by introducing a bounded surjective linear map
Tp : Lp(G) → Lp(G/H), we show that Lp(G/H) may be identified as a quotient
space of Lp(G), where 1 ≤ p ≤ +∞. Therefore, every left module structure of
Lp(G) obviously induces a left module structure on Lp(G/H), provided that kerTp

is an invariant subspace of Lp(G) under the module action. Next, in section 4,
by restricting the domain of Tp to a special closed subspace Lp(G : H) of Lp(G),
we show that Lp(G/H) is isometrically isomorphic to Lp(G : H). By using these
facts, we can study the structure of the Lp-spaces constructing on a homogeneous
space via those created on topological groups. For an example, we show that the
mapping T2 is the orthogonal projection of L2(G) on L2(G/H), by considering
L2(G/H) as a closed subspace of L2(G). Hence, T2 maps every frame of L2(G)
onto a frame of L2(G/H). Accordingly, when H is compact, it would be clear
how to define a left module action of L1(G) on Lp(G/H) and also a convolution
on L1(G/H) to construct a Banach algebra.

2. Preliminaries and notations

In this section, for the reader’s convenience, we provide a summary of the
mathematical notations and definitions which will be used in the sequel. For
details, we refer the reader to the general reference [4], or any other standard
book of harmonic analysis.

Throughout this paper, we suppose that G is a locally compact Hausdorff
topological group with the left Haar measure dx, H is a compact subgroup of
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G with the normalized Haar measure dξ, and q : G → G/H is the canonical
quotient map. Also, for a function f on G and x ∈ G we mean by Lxf and Rxf
the left translation and the right translation of f by x, respectively, which are
defined by Lxf(y) = f(x−1y) and Rxf(y) = f(yx), y ∈ G.

When X is a locally compact Hausdorff space, the space of all continuous
complex-valued functions on X with compact support is denoted by Cc(X) and
if µ is a positive measure on X, the Banach space of all equivalence classes of
µ-measurable complex-valued functions on X whose pth power are integrable, is
denoted by Lp(X,µ), where 1 ≤ p < +∞. If p = +∞, by L∞(X) we mean the
Banach spaces of all equivalence classes of locally measurable functions which are
locally essentially bounded.

For a closed subgroup H of G, a Radon measure µ on G/H is called strongly
quasi-invariant if there is a continuous function λ : G × (G/H) → (0,+∞)
such that dµx(yH) = λ(x, yH)dµ(yH) for all x ∈ G, where µx is defined by
µx(E) = µ(xE) for all Borel subsets E of G/H.

Let ∆G and ∆H be the modular functions of G and H respectively. A rho-
function for the pair (G,H) is a continuous function ρ : G→ (0,+∞) for which
ρ(xξ) =

(
∆H(ξ)/∆G(ξ)

)
ρ(x) for all x ∈ G and ξ ∈ H. By [4, Proposition 2.54],

the pair (G,H) always admits a rho-function. If µ is a strongly quasi-invariant
Radon measure on G/H, then there exists a rho-function ρ for the pair (G,H)
such that the Weil formula holds for all f ∈ Cc(G); i.e.,∫

G/H

∫
H

f(xξ) dξ dµ(xH) =

∫
G

f(x)ρ(x) dx,

(cf. [4, Subection 2.6]). Moreover, the Mackey–Bruhat formula∫
G/H

∫
H

f(xξ)

ρ(xξ)
dξ dµ(xH) =

∫
G

f(x) dx,

also holds for all f ∈ L1(G) (cf. [12, Subection 8.2]).
Following [12, Subsection 8.2], the mapping TH,ρ : L1(G) → L1(G/H, µ) defined

by TH,ρf(xH) =
∫

H
f(xξ)/ρ(xξ)dξ is a well-defined norm decreasing surjective

linear map and

‖ϕ‖1 = inf{‖f‖1 : f ∈ L1(G), TH,ρf = ϕ},

for all ϕ ∈ L1(G/H, µ). This yields that L1(G/H, µ) and the quotient space
L1(G)/J 1(G,H) are isometrically isomorphic as two Banach spaces, where
L1(G)/J 1(G,H) is considered with the usual quotient norm and J 1(G,H) is
the closure of {f ∈ Cc(G) : TH,ρf = 0} in L1(G).

One of the main tool in the proof of the results above is Fubini’s theorem, which
allows the order of integration to be changed in an iterated integral. Accordingly,
for a closed subgroup H of G, we have∫

G/H

|
∫

H

f(xξ)| dξ ≤
∫

G/H

∫
H

|f(xξ)| dξ (f ∈ Cc(G)).
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For 1 < p ≤ +∞, when H is compact, by using Minkowski’s inequality for
integrals we show that∫

G/H

|
∫

H

f(xξ)|p dξ ≤
∫

G/H

∫
H

|f(xξ)|p dξ (f ∈ Cc(G)).

Moreover, the compactness of H makes {ϕ ◦ q : ϕ ∈ Cc(G/H)} a subalgebra
of Cc(G). These help us prove the results of [12, Subsection 8.2] for all
1 < p ≤ +∞, where H is compact. In addition, using the obtained
subalgebra of Cc(G) we conclude that Lp(G/H) may be also considered as a
closed subspace of Lp(G), where 1 ≤ p ≤ +∞.

3. Lp(G/H) as a quotient space of Lp(G)

In this section, when H is a compact subgroup of G with the normalized Haar
measure dξ and 1 ≤ p ≤ +∞, we introduce a bounded linear map Tp of Lp(G)
onto Lp(G/H, µ) and show that Lp(G/H, µ) may be considered as a quotient
space of Lp(G).

Suppose that H is a closed subgroup of G. By [4, Subection 2.6], there is a
surjective linear map P : Cc(G) → Cc(G/H) such that

Pf(xH) =

∫
H

f(xξ) dξ, (f ∈ Cc(G), x ∈ G).

If 1 ≤ p < +∞, f ∈ Cc(G), and H is compact, then |Pf(xH)|p ≤
∫

H
|f(xξ)|pdξ

for all x ∈ G. According to Weil’s formula, we get

‖Pf‖p =
( ∫

G/H

|Pf(xH)|p dµ(xH)
)1/p

≤
( ∫

G/H

∫
H

|f(xξ)|p dξ dµ(xH)
)1/p

=
( ∫

G

|f(x)|p ρ(x) dx
)1/p

≤ ‖f ρ1/p‖p.

Therefore, the surjective linear map Tp : Cc(G) → Cc(G/H) defined by

Tpf(xH) =

∫
H

f(xξ)

ρ(xξ)1/p
dξ (x ∈ G)

is norm decreasing with respect to ‖ ‖p.

Proposition 3.1. Let H be a compact subgroup of G and 1 ≤ p < +∞. Then

‖ϕ‖p = inf{‖f‖p : f ∈ Cc(G), ϕ = Tpf},

for all ϕ ∈ Cc(G/H).

Proof. Let ϕ ∈ Cc(G/H). Since, Tp is norm decreasing,

‖ϕ‖p ≤ inf{‖f‖p : f ∈ Cc(G), ϕ = Tpf}.



198 N. TAVALLAEI, M. RAMEZANPOUR, B. OLFATIAN GILLAN

By taking f = ρ1/p (ϕ ◦ q), we have f ∈ Cc(G), Tpf = ϕ, and by Weil’s formula,

‖f‖p
p =

∫
G

ρ(x) |(ϕ ◦ q)(x)|p dx

=

∫
G/H

P
(
|ϕ|p ◦ q

)
(xH) dµ(xH)

=

∫
G/H

|ϕ(xH)|p dµ(xH)

= ‖ϕ‖p
p.

This implies that

‖ϕ‖p = inf{‖f‖p : f ∈ Cc(G), ϕ = Tpf}.

�

It is easy to check that if X and Y are dense subspaces of Banach spaces X̄
and Ȳ , respectively, then every linear map T : X → Y with

‖T (x)‖ = inf{‖z‖ : z ∈ X,T (z) = T (x)} (x ∈ X)

has a unique extension T̄ : X̄ → Ȳ such that kerT = ker T̄ and

‖T̄ (x)‖ = inf{‖z‖ : z ∈ X̄, T̄ (z) = T̄ (x)} (x ∈ X̄).

So, by Proposition 3.1, there is a surjective norm decreasing linear map
Tp : Lp(G) → Lp(G/H) such that for all ϕ ∈ Lp(G/H)

‖ϕ‖p = inf{‖f‖p : f ∈ Lp(G), ϕ = Tpf}.

It is worthwhile to mention that Tp induces an isometry isomorphism between
Lp(G)/ kerTp and Lp(G/H), where Lp(G)/ kerTp is equipped with the usual
quotient norm. At following, we show that for all f ∈ Lp(G),

Tpf(xH) =

∫
H

f(xξ)

ρ(xξ)1/p
dξ (µ-almost every xH ∈ G/H).

Theorem 3.2. Let H be a compact subgroup of G and 1 ≤ p < +∞. Then for
all f ∈ Lp(G) and µ-almost all xH ∈ G/H, Tpf(xH) =

∫
H
f(xξ)/ρ(xξ)1/pdξ.

Proof. Let f ∈ Lp(G). We choose {fn}n∈N ⊆ Cc(G), such that ‖fn − f‖p
p < 2−n

and Tpfn(xH) → Tpf(xH) for µ-almost all xH ∈ G/H. Since |f |p ∈ L1(G), the
function defined µ-almost everywhere on G/H by xH 7→

∫
H
|f(xξ)|p/ρ(xξ) dξ

belongs to L1(G/H). Considering the normalized Haar measure on H, we have
Lp(H) ⊆ L1(H) with ‖ ‖1 ≤ ‖‖p, for all 1 ≤ p ≤ +∞, and hence we get

|
∫

H

f(xξ)

ρ(xξ)1/p
dξ|p ≤

∫
H

|f(xξ)|p

ρ(xξ)
dξ,

for µ-almost all xH ∈ G/H. Therefore, by the Mackey–Bruhat formula, we get∫
G/H

|
∫

H

f(xξ)

ρ(xξ)1/p
dξ|pdµ(xH) ≤ ‖f‖p

p
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and so
+∞∑
n=1

∫
G/H

|
∫

H

f(xξ)− fn(xξ)

ρ(xξ)1/p
dξ|p dµ(xH) ≤

+∞∑
n=1

‖f − fn‖p
p <

+∞∑
n=1

2−n = 1.

This implies that, for µ-almost all xH ∈ G/H, integral
∫

H
f(xξ)/ρ(xξ)1/pdξ must

be exist and moreover

|
∫

H

f(xξ)

ρ(xξ)1/p
dξ −

∫
H

fn(xξ)

ρ(xξ)1/p
dξ| → 0

as n tends to infinity, i.e.; limn→+∞ Tpfn(xH) =
∫

H
f(xξ)/ρ(xξ)1/p dξ. Therefore,

Tpf(xH) =

∫
H

f(xξ)

ρ(xξ)1/p
dξ (µ-almost every xH ∈ G/H).

�

We should mention that Theorem 3.2 also holds for p = +∞, by assuming
1/+∞ = 0. To show that we need the following lemma.

Lemma 3.3. Let H be a compact subgroup of G, 1 ≤ p < +∞, and f ∈ Lp(G).
Then ρ1/p(Tpf ◦ q) ∈ Lp(G) and ‖ρ1/p(Tpf ◦ q)‖p = ‖Tpf‖p.

Proof. One may easily check that, when H is compact, a subset E of G/H is null
if and only if q−1(E) is a null subset of G. Now, for all f ∈ Lp(G), according to
Theorem 3.2, Tpf(xH) =

∫
H

(f/ρ1/p)(xξ)dξ for µ-almost all xH ∈ G/H and so
for almost all x ∈ G. Moreover, by Minkowski’s inequality for integrals, we can
write

(

∫
G

|ρ(x)1/p(Tpf ◦ q)(x)|p dx)1/p = (

∫
G

ρ(x)|
∫

H

f(xξ)

ρ(xξ)1/p
dξ|p dx)1/p

≤
∫

H

(

∫
G

|f(xξ)|p dx)1/p dξ

= ‖f‖p.

Therefore, ρ1/p(Tpf ◦ q) ∈ Lp(G) and

‖ρ1/p(Tpf ◦ q)‖p
p =

∫
G

|ρ(x)1/p(Tpf ◦ q)(x)|p dx

=

∫
G/H

∫
H

ρ(xξ)|(Tpf ◦ q)(xξ)|p

ρ(xξ)
dξ dµ(xH)

= ‖Tpf‖p
p.

�

Theorem 3.4. Let H be a compact subgroup of G. Then there is a surjective
norm decreasing linear map T∞ : L∞(G) → L∞(G/H) such that for all
f ∈ L∞(G),

T∞f(xH) =

∫
H

f(xξ) dξ (µ-locally almost every xH ∈ G/H)
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and for all ϕ ∈ L∞(G/H),

‖ϕ‖∞ = inf{‖f‖∞ : f ∈ L∞(G), ϕ = T∞f}.

Proof. Let f ∈ L∞(G). Then, by the duality between L∞(G/H) and L1(G/H)
and using Lemma 3.3, there is an element ψf ∈ L∞(G/H) such that∫

G/H

ϕ(xH)ψf (xH) dµ(xH) =

∫
G

ϕρ(x)f(x) dx,

for all ϕ ∈ L1(G/H), where ϕρ = ρ (ϕ ◦ q). Hence, we can write∫
G/H

ϕ(xH)ψf (xH) dµ(xH) =

∫
G

ϕρ(x)f(x) dx

=

∫
G/H

∫
H

ϕρ(xξ)f(xξ)

ρ(xξ)
dξ dµ(xH)

=

∫
G/H

ϕ(xH)

∫
H

f(xξ) dξ dµ(xH),

for all ϕ ∈ L1(G/H). So, ψf (xH) =
∫

H
f(xξ)dξ for µ-locally almost every

xH ∈ G/H. Now, we can define a linear map T∞ : L∞(G) → L∞(G/H) by

T∞f(xH) =

∫
H

f(xξ)dξ (µ-locally almost every xH ∈ G/H).

Moreover, for all f ∈ L∞(G),

‖f‖∞ = sup{|〈f, g〉| : g ∈ L1(G), ‖g‖1 ≤ 1}
≥ sup{|〈f, ϕρ〉| : ϕ ∈ L1(G/H), ‖ϕ‖1 ≤ 1}
= sup{|〈T∞f, ϕ〉| : ϕ ∈ L1(G/H), ‖ϕ‖1 ≤ 1}
= ‖T∞f‖∞.

Also, if ϕ ∈ L∞(G/H), then ϕ◦q ∈ L∞(G), T∞(ϕ◦q) = ϕ, and ‖ϕ◦q‖∞ = ‖ϕ‖∞.
Hence T∞ is onto and ‖ϕ‖∞ = inf{‖f‖∞ : f ∈ L∞(G), ϕ = T∞f}. �

The theorem above asserts that when L∞(G)/ kerT∞ has been attached to the
usual quotient norm, it is isometrically isomorphic to L∞(G/H). Accordingly,
for all 1 ≤ p ≤ +∞, every left module structure of Lp(G) obviously induces a
left module structure on Lp(G/H), by identifying Lp(G/H) with the quotient
space Lp(G)/ kerTp, provided that kerTp is an invariant subspace of Lp(G) under
the module action. Specially, Lp(G) is known as a Banach left L1(G)-module,
1 ≤ p ≤ +∞, using the convolution of function as the left action. Also, if
f ∈ L1(G) and g ∈ kerTp, then ρ1/p(Tpg ◦ q) = 0 in Lp(G). So, for almost all
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x ∈ G and hence for µ-almost all xH ∈ G/H we have

Tp(f ∗ g)(xH) =

∫
H

∫
G

f(y) g(y−1xξ)

ρ(x)1/p
dy dξ

=
1

ρ(x)1/p

∫
G

f(y)
(
ρ1/p(Tpg ◦ q)

)
(y−1x) dy

=
1

ρ(x)1/p

(
f ∗ ρ1/p(Tpg ◦ q)

)
(x)

= 0,

which shows that kerTp is invariant under the module action of L1(G) on Lp(G).
This makes Lp(G/H) into a Banach left L1(G)-module, where the action is defined
by {

L1(G)× Lp(G/H) → Lp(G/H)
(f, ψ) 7→ Tp(f ∗ g)

in which g ∈ Lp(G) and ψ = Tpg.

4. Lp(G/H) as a closed subspace of Lp(G)

In this section, for all 1 ≤ p ≤ +∞, we show that Lp(G/H) is isometrically
isomorphic to a closed subspace of Lp(G). Also, if 1 ≤ p < +∞, we show that Tp

∗,
the adjoint operator of Tp, is given by T ∗p (ψ) = ρ1/p′ (ψ ◦q), for all ψ ∈ Lp′(G/H),
where p′ is the conjugate exponent of p and 1/+∞ = 0.

For a closed subgroup H of G we define

Cc(G : H) = {f ∈ Cc(G) : Rξf = f, ξ ∈ H}

which is a subalgebra of Cc(G). For all 1 ≤ p < +∞, we denote by Lp(G : H)
the closure of Cc(G : H) in Lp(G) and we set

L∞(G : H) = {f ∈ L∞(G) : Rξf = f, ξ ∈ H}.

If H is compact and 1 ≤ p < +∞, then Tpf ∈ Cc(G/H) and

ρ(x)1/p(Tpf ◦ q)(x) =

∫
H

f(xξ) dξ = f(x),

for all f ∈ Cc(G : H). Therefore,

Cc(G : H) = {ρ1/p(ψ ◦ q) : ψ ∈ Cc(G/H)}.

Proposition 4.1. If H is compact and 1 ≤ p ≤ +∞, then

Lp(G : H) = {ρ1/p(ψ ◦ q) : ψ ∈ Lp(G/H)}.

In particular, f = ρ1/p(Tpf ◦ q) for all f ∈ Lp(G : H).
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Proof. For p = +∞, the conclusion follows from the compactness of H. Now, let
1 ≤ p < +∞ and f ∈ Lp(G : H). Choose a sequence {fn} ⊆ Cc(G : H) such that
‖fn − f‖p → 0. Then, by Lemma 3.3, we can write

‖f − ρ1/p(Tpf ◦ q)‖p ≤ ‖f − fn‖p + ‖ρ1/pTp(fn − f) ◦ q‖p

= ‖f − fn‖p + ‖Tp(fn − f)‖p

≤ 2‖f − fn‖p.

So, we have f = ρ1/p(Tpf ◦ q) in Lp(G). The density of Cc(G/H) in Lp(G/H)
complete the proof. �

Theorem 4.2. Let H be a compact subgroup of G and 1 ≤ p ≤ +∞. Then
Lp(G/H) is isometrically isomorphic to Lp(G : H). More precisely, the restriction
of Tp on Lp(G : H) is an isometry isomorphism.

Proof. Let 1 ≤ p < +∞. By the definition of Lp(G : H) and the density of
Cc(G/H) in Lp(G/H) it is enough to show that the mapping
Tp : Cc(G : H) → Cc(G/H) is an isometry isomorphism, where Cc(G : H) and
Cc(G/H) are equipped with ‖ ‖p. To show this, first note that if ψ ∈ Cc(G/H),
then ρ1/p(ψ ◦ q) ∈ Cc(G : H) and Tp(ρ

1/p(ψ ◦ q)) = ψ. Now, if f ∈ Cc(G : H),
then

‖Tpf‖p
p =

∫
G/H

|Tpf(xH)|p dµ(xH)

=

∫
G/H

|f(x)|p

ρ(x)
dµ(xH)

=

∫
G/H

∫
H

|f(xξ)|p

ρ(xξ)
dξ dµ(xH)

=

∫
G

|f(x)|p dx

= ‖f‖p
p.

The conclusion for the case p = +∞ follows from Proposition 4.1
�

We note that, for each 1 ≤ p < +∞ with conjugate exponent p′, by using
the well-known transform Lp′(G/H) → Lp(G/H)∗ which indicates the duality
between Lp′(G/H) and Lp(G/H) we may find an isometry isomorphism
Lp′(G : H) → Lp(G : H)∗ by creating the commutative diagram below:

Lp′(G : H) −−−→ Lp(G : H)∗

Tp′

y xT ∗
p

Lp′(G/H) −−−→ Lp(G/H)∗

In other words, this duality between Lp(G : H) and Lp′(G : H) is such that for
all f ∈ Lp(G : H) and g ∈ Lp′(G : H) we have

〈f, g〉 = 〈Tpf, Tp′g〉.
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Specially, T2 : L2(G : H) → L2(G/H) is a unitary operator by the following
proposition.

Proposition 4.3. Let H be a compact subgroup of G and p′ be the conjugate
exponent of 1 ≤ p < +∞. If T ∗p : Lp′(G/H) → Lp′(G) is the adjoint operator of

Tp, then T ∗p (ψ) = ρ1/p′(ψ ◦ q), for all ψ ∈ Lp′(G/H).

Proof. Let ψ ∈ Lp′(G/H). Then, by Lemma 3.3, for all f ∈ Lp(G) we have

〈T ∗p (ψ), f〉 =

∫
G/H

ψ(xH)Tpf(xH) dµ(xH)

=

∫
G/H

∫
H

(ψ ◦ q)(xξ) f(xξ)

ρ(xξ)1/p
dξ dµ(xH)

=

∫
G/H

∫
H

ρ(x)1/p′(ψ ◦ q)(xξ) f(xξ)

ρ(xξ)
dξ dµ(xH)

=

∫
G

ρ1/p′(x) (ψ ◦ q)(x) f(x) dx

= 〈ρ1/p′(ψ ◦ q), f〉.

Hence T ∗p (ψ) = ρ1/p′(ψ ◦ q).
�

For a given Hilbert space, it is often useful to find a basis, a Riesz basis, or a
frame as generalization of a basis, to get a sequence {gn}n∈N such that any vector
f can be written as f = Σ+∞

n=1cngn for some scalers cn, n ∈ N (cf. [1]). To construct
a frame of Hilbert space L2(G/H), it is instrumental to assert that the mapping
T2 : L2(G) → L2(G/H) is the orthogonal projection of L2(G) on L2(G/H), by
considering L2(G/H) as a closed subspace of L2(G). In fact, Proposition 4.1
shows that for all 1 ≤ p ≤ +∞, the mapping f 7→ ρ1/p(Tpf ◦ q) is a projection on
Lp(G). Particularly, one may easily check that{

L2(G) → L2(G : H) ⊆ L2(G)
f 7→ ρ1/2(T2f ◦ q)

is the orthogonal projection of L2(G) on L2(G : H). This helps us study
the structure of the Lp-spaces constructing on a homogeneous space via those
created on topological groups. For instance, T2 maps every frame of L2(G) onto
a frame of L2(G/H), and if {ψn}n∈N is a frame for L2(G/H), then {ρ1/2(ψn◦q)}n∈N
is a frame sequence in L2(G).

Following we give another characterization of Lp(G : H).

Proposition 4.4. Let H be a compact subgroup of G. Then for all 1 ≤ p ≤ +∞
we have

Lp(G : H) = {f ∈ Lp(G) : Rξf = f inLp(G), ξ ∈ H}.
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Proof. First, suppose that f ∈ Lp(G : H). Then, by using Proposition 4.1, we
can write

Rξf(x) = Rξ

(
ρ1/p (Tpf ◦ q)

)
(x)

= ρ1/p(xξ) (Tpf ◦ q)(xξ)
= ρ1/p(x) (Tpf ◦ q)(x)
= f(x),

for µ-almost all xH ∈ G/H and so for almost all x ∈ G. So, Rξf = f as elements
of Lp(G). Now, assume that f ∈ Lp(G) and Rξf = f for all ξ ∈ H. According
to the duality of Lp(G/H) and Lp′(G/H), for all g ∈ Lp′(G) we have

〈ρ1/p (Tpf ◦ q), g〉 =

∫
G

ρ(x)1/p Tpf(xH) g(x) dx

=

∫
G

∫
H

f(xξ) dξ g(x) dx

=

∫
H

∫
G

Rξf(x) g(x) dx dξ

=

∫
H

〈Rξf, g〉 dξ

=

∫
H

〈f, g〉 dξ

= 〈f, g〉,

where p and p′ are conjugate exponents. So, f = ρ1/p (Tpf ◦ q) ∈ Lp(G : H). �

By using Proposition 4.4, one may easily show that L1(G : H) is a closed
left ideal and hence a closed subalgebra of L1(G). So, by using the isometry
isomorphism of Banach spaces T1 : L1(G : H) → L1(G/H), we can transfer the
multiplication of L1(G : H) to L1(G/H). In other words, L1(G/H) is a Banach
algebra with respect to the multiplication{

L1(G/H)× L1(G/H) → L1(G/H)
(ϕ, ψ) 7→ ϕ ∗ ψ = T1

(
ρ(ϕ ◦ q) ∗ ρ(ψ ◦ q)

)
Moreover, the Banach algebra L1(G/H) is isometrically isomorphic to a
subalgebra of L1(G). Hence, every L1(G)-module may be considered as an
L1(G/H)-module.
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