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Abstract. Let A and B be Banach algebras and let T : B → A be a continu-
ous homomorphism. Recently, we introduced a product M := A×T B, which
is a strongly splitting Banach algebra extension of B by A. In the present pa-
per, we characterize biprojectivity, approximate biprojectivity and biflatness
of A ×T B in terms of A and B. We also study some notions of amenability
such as approximate amenability and pseudo-amenability of A×T B.

1. Introduction and preliminaries

Let A and B be Banach algebras and let T : B → A be a continuous homomor-
phism with ‖T‖ ≤ 1. The T -Lau product A ×T B is defined as the Cartesian
product A× B with the algebra product

(a, b)(a′, b′) = (aa′ + T (b)a′ + aT (b′), bb′),

and the norm ‖(a, b)‖ = ‖a‖+ ‖b‖. This type of product was first introduced by
Bhatt and Dabhi [5] for the case where A is commutative and was extended by
the authors for the general case [12].

Here it should be noted that, our motivation of the study presented in this paper
and previous paper [12] comes from some resent developments of the splitting of
Banach algebra extensions which have been studied by many authors such as
Bade et al. [1, 2, 3, 4], Feldman [7], Helemskii [11], Johnson [13, 14], Lau [16] and
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Monfared [17, 18]. Moreover, splitting of Banach algebra extensions has been a
major tool in the study of Banach algebras. For example, module extensions as
generalizations of Banach algebra extensions were introduced and first studied by
Gourdeau [10] were used to show that amenability of A∗∗, the second dual space
of A, implies amenability of A and Zhang [22] used module extensions to answer
an open problem regarding weak amenability, raised by Dales, Ghahramani and
Grønbæk [6]. On the other hand, A×T B is a strongly splitting Banach algebra
extension of B byA that exhibits many properties that are not shared by arbitrary
strongly splitting extensions. For example, commutativity is not preserved by a
general strongly splitting extension whereas A×T B is commutative if and only if
the commutativity assumption are satisfied by A and B. In addition to all these,
the T -Lau product would provide not only new examples of Banach algebras
by themselves, but also it provide a wealth of (counter) examples in different
branches of functional analysis. These facts suggest that T -Lau products are
worth to study.

In [12], apart from the study of many basic properties of A×T B such as charac-
terization of bounded approximate identity, ideal structure, n-weak amenability
and Arens regularity, useful characterizations of derivations from A ×T B into
(A ×T B)(n), the nth dual space of A ×T B, were given. In continuation of our
study on the T -Lau product of Banach algebras, in the present paper, we char-
acterize some homological notions of A×T B in terms of A and B. Finally, some
notions of amenability such as pseudo-amenability and approximate amenability,
are investigated in detail for the T -Lau product of Banach algebras.

2. Biprojectivity and biflatness of A×T B

In what follows, A and B are Banach algebras and T : B → A is a ho-
momorphism with ‖T‖ ≤ 1. The notation M is used to denote the T -Lau
product of the Banach algebras A and B, rA denotes the mapping defined by
rA((a, b)) = a + T (b) from M into A, and sB : B →M denotes the map defined
by the equality sB(b) = (−T (b), b) for all b ∈ B. Moreover, ιA denotes the usual
injection map from A into M and qB denotes the usual projection map from M
into B. Let also, for each Banach algebra A, πA denote the product morphism
from the projective tensor product A⊗̂A into A. A routine computations show
that A⊗̂A becomes a Banach A-bimodule with the following actions:

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca

for all a, b, c ∈ A. With the above actions πA becomes an A-bimodule homomor-
phism. In what follows the notation B(A,A⊗̂A) is used into denote the space of
all bounded linear operators from A into A⊗̂A.

Recall that a Banach algebra A is said to be biprojective if there is a bounded
A-bimodule homomorphism ρA : A → A⊗̂A, such that πA ◦ρA = idA. Also, A is
called biflat if there is a bounded A-bimodule homomorphism θA : (A⊗̂A)∗ → A∗

such that θA ◦ (πA)∗ = idA∗ . We also recall from [21] that A is approximately
biprojective if there is a net (ρAα ) of bounded A-bimodule homomorphisms from
A into A⊗̂A such that πA ◦ ρAα (a) → a for all a ∈ A. Following Pirkovskii [19]
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for two Banach A-bimodules X and Y , a net (ρα) of bounded linear maps from
X into Y , satisfying

ρα(a · x)− a · ρα(x) → 0, ρα(x · a)− ρα(x) · a → 0

for all a ∈ A, will be called an approximate A-bimodule morphism from X into
Y . Recently, a new notion of approximate biprojectivity introduced and studied
by Pourmahmoud-Aghababa [20], which is based on approximate A-bimodule
morphisms. Precisely, in the sense of [20], a Banach algebra A is called approx-
imately biprojective if there exists an approximate A-bimodule morphism (ρAα )
from A into A⊗̂A such that πA ◦ ρAα (a) −→ a for all a ∈ A.

Lemma 2.1. With the above notations, the following statements hold.
(i) rA ◦ πM = πA ◦ (rA ⊗ rA),
(ii) ιA ◦ πA = πM ◦ (ιA ⊗ ιA),
(iii) sB ◦ πB = πM ◦ (sB ⊗ sB),
(iv) qB ◦ πM = πB ◦ (qB ⊗ qB).

Moreover, for all a, a′, a′′ ∈ A and b, b′, b′′ ∈ B we have
(v) (a, b) · (sB ⊗ sB)(b

′ ⊗ b′′) = (sB ⊗ sB)(bb
′ ⊗ b′′),

(vi) (sB ⊗ sB)(b
′ ⊗ b′′) · (a, b) = (sB ⊗ sB)(b

′ ⊗ b′′b),
(vii) (a, b) · (ιA ⊗ ιA)(a′ ⊗ a′′) = (ιA ⊗ ιA)([a + T (b)]a′ ⊗ a′′),
(viii) (ιA ⊗ ιA)(a′ ⊗ a′′) · (a, b) = (ιA ⊗ ιA)(a′ ⊗ a′′[a + T (b)]).

Proof. We prove the assertions (i), (v) and (vii). The proof of the other assertions
are similar.

(i). Let (a, b) and (a′, b′) are arbitrary elements of M. On the one hand,
observe that

rA ◦ πM
(
(a, b)⊗ (a′, b′)

)
= rA

(
aa′ + T (b)a′ + aT (b′), bb′

)
= aa′ + T (b)a′ + aT (b′) + T (bb′),

and, on the other hand

πA ◦ (rA ⊗ rA)
(
(a, b)⊗ (a′, b′)

)
= πA

(
[a + T (b)]⊗ [a′ + T (b′)]

)
= aa′ + T (b)a′ + aT (b′) + T (bb′).

This completes the proof of (i).
(v). This is because of

(a, b) · [(−T (b′), b′)⊗ (−T (b′′), b′′)] = (−T (bb′), bb′)⊗ (−T (b′′), b′′),

for all a ∈ A and b, b′, b′′ ∈ B.
(vi). This is because of

(a, b) · [(a′, 0)⊗ (a′′, 0)] = (a, b)(a′, 0)⊗ (a′′, 0)

= (a + T (b)a′, 0)⊗ (a′′, 0),

for all a, a′, a′′ ∈ A and b ∈ B. �

In the following result we give the proof for the approximate biprojectivity in
the sense of [20]. The proof for the other cases are similar.

Theorem 2.2. Let M be biprojective/approximately biprojective. Then A and B
are biprojective/approximately biprojective.
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Proof. Denote the approximate right inverse maps given in the hypothesis by
(ρMα ). Now, for each α set

ρBα := (qB ⊗ qB) ◦ ρMα ◦ ιB and ρAα := (rA ⊗ rA) ◦ ρMα ◦ ιA.

Using Lemma 2.1 (i) and (iv) we can see that

πA ◦ ρAα (a) −→ a (2.1)

and

πB ◦ ρBα(b) −→ b. (2.2)

On the other hand, a direct computation shows that

lim
α

[ρAα (aa′)− a · ρAα (a′)] = (rA ⊗ rA)
(
lim

α
ρMα ((a, 0)(a′, 0))− (a, 0) · ρAα ((a′, 0))

)
(2.3)

lim
α

[ρAα (aa′)− ρAα (a) · a′] = (rA ⊗ rA)
(
lim

α
ρMα ((a, 0)(a′, 0))− ρAα ((a, 0)) · (a′, 0)

)
,

(2.4)

lim
α

[ρBα(bb′)− b · ρBα(b′)] = (qB ⊗ qB)
(
lim

α
ρMα ((0, b)(0, b′))− (0, b) · ρBα((0, b′))

)
,

(2.5)

lim
α

[ρBα(bb′)− ρBα(b) · b′] = (qB ⊗ qB)
(
lim

α
ρMα ((0, b)(0, b′))− ρBα((0, b)) · (0, b′)

)
.

(2.6)

Now, invoke (2.1), (2.3) and (2.4) to conclude that A is approximately biprojec-
tive. Also (2.2), (2.5) and (2.6) imply that B is approximately biprojective. �

Now we give sufficient conditions for the biprojectivity/approximate biprojec-
tivity of T -Lau product of Banach algebras.

Theorem 2.3. Let A and B be biprojective/approximately biprojective Banach
algebras. Then M is biprojective/approximately biprojective.

Proof. Let (ρAα )α∈I ⊆ B(A,A⊗̂A) and (ρBβ )β∈J ⊆ B(B,B⊗̂B) respectively be
approximate A-bimodule and approximate B-bimodule morphisms such that

πA ◦ ρAα (a) −→ a, πB ◦ ρBβ (b) −→ b

for all a ∈ A and b ∈ B. Now, consider the directed set

Γ := {γ = (α, β) : α ∈ I, β ∈ J},

with the order

(α, β) � (α′, β′) ⇐⇒ α ≤ α′, β ≤ β′.

Then the net (ρMγ ) ⊆ B(M,M⊗̂M) defined by

ρMγ ((a, b)) =
(
(ιA ⊗ ιA) ◦ ρAα ◦ rA + (sB ⊗ sB) ◦ ρBβ ◦ qB

)
((a, b)), ((a, b) ∈M)
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is as required for the approximate biprojectivity of M. Indeed, for each (a, b) ∈
M we have

πM ◦ ρMγ ((a, b))

=
(
πM ◦ (ιA ⊗ ιA) ◦ ρAα ◦ rA + πM ◦ (sB ⊗ sB) ◦ ρBβ ◦ qB

)
((a, b))

=
(
ιA ◦ πA ◦ ρAα ◦ rA + sB ◦ πB ◦ ρBβ ◦ qB

)
((a, b))

−→ (ιA ◦ rA + sB ◦ qB) ((a, b))

= (a + T (b), 0) + (−T (b), b) = (a, b),

where the second equality follows from the Lemma 2.1 (ii) and (iii). Thus, for
each (a, b) ∈M we have

πM ◦ ρMγ ((a, b)) −→ (a, b).

Moreover, using Lemma 2.1 (v) and (vii) we have

ρMγ ((a, b)(a′, b′))− (a, b) · ρM(α,β)((a
′, b′)) −→ 0.

By a same argument as above we have

ρMγ ((a, b)(a′, b′))− ρMγ ((a, b)) · (a′, b′) −→ 0,

and this completes the proof. �

Remark 2.4. All of our results in Theorems 2.2 and 2.3 can be proved, by slight
modifications of the arguments, with “approximate biprojectivity in the sense of
[20]” replaced by “approximate biprojectivity in the sense of [21]”.

In the following our aim is to study the biflatness of T -Lau product of Banach
algebras. In fact, we will show that A and B are biflat if and only if M is biflat.

Theorem 2.5. Let M be biflat. Then A and B are biflat.

Proof. Let θM be a bounded left inverse for (πM)∗ which is a M-bimodule ho-
momorphism. Define θB : (B⊗̂B)∗ → B∗ and θA : (A⊗̂A)∗ → A∗ by θB =
(ιB)∗ ◦θM ◦ (qB⊗qB)

∗ and θA = (ιA)∗ ◦θM ◦ (rA⊗rA)∗, respectively. Obviously θB
and θA are bounded B-bimodule and A-bimodule homomorphisms, respectively.
Moreover,

θA ◦ (πA)∗ =
(
(ιA)∗ ◦ θM ◦ (rA ⊗ rA)∗

)
◦ (πA)∗

= (ιA)∗ ◦ θM ◦
(
(rA ⊗ rA)∗ ◦ (πA)∗

)
= (ιA)∗ ◦ θM ◦

(
(πM)∗ ◦ (rA)∗

)
= (ιA)∗ ◦

(
θM ◦ (πM)∗

)
◦ (rA)∗

= (ιA)∗ ◦
(
θM ◦ (πM)∗

)
◦ (rA)∗

= (ιA)∗ ◦ idM∗ ◦ (rA)∗

= (rA ◦ ιA)∗

= idA∗ ,

where the third equality follows from Lemma 2.1. Using the same proof as above,
we can show that θB ◦ (πB)

∗ = idB∗ , as required. �
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Now we consider the converse of Theorem 2.5. Before proceeding further, let
us mention that (A×T B)∗, the first dual space of A×T B, can be identified with
A∗ × B∗ with the following definition

〈(f, g), (a, b)〉 = 〈f, a〉+ 〈g, b〉,

for all a ∈ A, b ∈ B, f ∈ A∗ and g ∈ B∗. Moreover, we can find that the
(A×T B)-bimodule actions on (A×T B)∗ are formulated as follows

(a, b) · (f, g) =
(
[a + T (b)] · f, T ∗(a · f) + b · g

)
and

(f, g) · (a, b) =
(
f · [a + T (b)], T ∗(f · a) + g · b

)
for all (a, b) ∈ A ×T B and (f, g) ∈ A∗ × B∗, where T ∗ is the adjoint of the
operator T .

Theorem 2.6. Let A and B be biflat. Then M is biflat.

Proof. Let θA : (A⊗̂A)∗ → A∗ be a bounded A-bimodule homomorphism and
let θB : (B⊗̂B)∗ → B∗ be a bounded B-bimodule homomorphism such that θA ◦
(πA)∗ = idA∗ and θB ◦ (πB)

∗ = idB∗ . Define the map θM : (M⊗̂M)∗ →M∗ by

θM(Φ) =
(
θA ◦ (ιA ⊗ ιA)∗(Φ), θB ◦ (sB ⊗ sB)

∗(Φ)

+ T ∗(θA ◦ (ιA ⊗ ιA)∗(Φ))
)

for all Φ ∈ (M⊗̂M)∗. Then for each (f, g) ∈ A∗ × B∗ we have

〈θM ◦ (πM)∗, (f, g)〉
=

(
θA ◦ (ιA ⊗ ιA)∗ ◦ (πM)∗((f, g)), θB ◦ (sB ⊗ sB)

∗ ◦ (πM)∗((f, g))

+ T ∗(θA ◦ (ιA ⊗ ιA)∗ ◦ (πM)∗((f, g)))
)

=
(
θA ◦ (πA)∗ ◦ (ιA)∗((f, g)), θB ◦ (πB)

∗ ◦ (sB)
∗((f, g))

+ T ∗(θA ◦ (πA)∗ ◦ (ιA)∗((f, g)))
)

=
(
idA∗ ◦ (ιA)∗(Φ), idB∗ ◦ (sB)

∗((f, g))

+ T ∗(idA∗ ◦ (ιA)∗((f, g)))
)

=
(
f, (−T ∗(f) + g) + T ∗(f)

)
= (f, g),

where the second equality follows from Lemma 2.1. Thus θM ◦ (πM)∗ = idM∗ .
Now, we show that θM is a M-bimodule homomorphism. To see this, first note
that it is easy to check that the following equalities hold.

(ιA ⊗ ιA)∗(Φ · (a, b)) = (ιA ⊗ ιA)∗(Φ) · [a + T (b)],

(ιA ⊗ ιA)∗((a, b) · Φ) = [a + T (b)] · (ιA ⊗ ιA)∗(Φ),

(sB ⊗ sB)
∗(Φ · (a, b)) = (sB ⊗ sB)

∗(Φ) · b,
(sB ⊗ sB)

∗((a, b) · Φ) = b · (sB ⊗ sB)
∗(Φ).
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for all Φ ∈ (M⊗̂M)∗ and (a, b) ∈ M. Thus, if we set f := θA ◦ (ιA ⊗ ιA)∗(Φ)
and g := θB ◦ (sB ⊗ sB)

∗(Φ), then we have

θM(Φ · (a, b)) =
(
θA ◦ (ιA ⊗ ιA)∗(Φ · (a, b)), θB ◦ (sB ⊗ sB)

∗(Φ · (a, b))

+ T ∗(θA ◦ (ιA ⊗ ιA)∗(Φ · (a, b)))
)

=
(
f · [a + T (b)], g · b + T ∗(f · [a + T (b)])

)
=

(
f · [a + T (b)], [g + T ∗(f)] · b + T ∗(f · a)

)
=

(
f, g + T ∗(f)

)
· (a, b)

= θM(Φ) · (a, b).

Using the same proof as above, we can show that θM((a, b) · Φ) = (a, b) · θM(Φ).
Thus M is biflat. �

3. Some notions of amenability on A×T B

Let A be a Banach algebra and let X be a Banach A-bimodule. A derivation
from A into X is a linear map D : A → X such that

D(ab) = a ·D(b) + D(a) · b,
for all a, b ∈ A. For example, the map adx : A → X defined by adx(a) = a·x−x·a
is a derivation for all a ∈ A and x ∈ X. Such derivations are called inner
derivations. Here, let us mention that X∗, the first dual space of X, becomes
a Banach A-bimodule in the natural way. The algebra A is called amenable if
every continuous derivation D : A → X∗ is inner for each Banach A-bimodule
X, and is called contractible if every continuous derivation D : A → X is inner
for each Banach A-bimodule X. A derivation D : A → X is called approximately
inner if there exists a net (xα) ⊆ X such that D(a) = limα adxα(a) for all a ∈ A.
A Banach algebra A is approximately amenable if every continuous derivation
D : A → X∗ is approximately inner. A Banach algebra A is pseudo-amenable if
there is a net (uα) ⊆ A⊗̂A, called an approximate diagonal, such that

a · uα − uα · a −→ 0, πA(uα)a −→ a

for all a ∈ A, and is pseudo-contractible if it has a central approximate diagonal,
i.e. an approximate diagonal (uα) satisfying a · uα = uα · a for all a ∈ A; see [9]
for more details.

Remark 3.1. Let A be a Banach algebra with an idempotent element e and let
θ ∈ ∆(B), the character space of the Banach algebra B. Then it is easy to check
that the map Tθ : B → A defined by Tθ(b) = θ(b)e is a continuous homomorphism.
In this case if e is an identity for A, then A×Tθ

B coincides with the θ-Lau product
A ×θ B; see [17] for more details. In [15] the authors investigate biflatness and
biprojectivity of A ×θ B in the case where A is unital. Thus, in the previous
section we generalized these results to that of T -Lau product of Banach algebras.

As a result of Theorems 2.2, 2.3 and Remark 2.4 we have the following corollary
for the approximate biprojectivity of A×θ B and its relation with A and B in the
sense of [21].



190 M. NEMATI, H. JAVANSHIRI

Corollary 3.2. Let A and B be two Banach algebras with θ ∈ ∆(B). Then the
following statements are equivalent.

(i) A is unital and A×θ B is approximately biprojective.
(ii) A is contractible and B is approximately biprojective.

Proof. (i)⇒(ii). Suppose that e is the identity element of A. Then A ×Tθ
B

coincides withA×θB as shown in above remark. Thus, approximate biprojectivity
of A×θ B implies that both A and B are approximately biprojective by Theorem
2.2 and Remark 2.4. Since A is unital it follows that it is contractible by [9,
Theorem 2.4 and Proposition 3.8]. The implication (ii)⇒(i) follows from Theorem
2.3 and Remark 2.4 with the fact that any contractible Banach algebra is unital
and biprojective. �

Proposition 3.3. M is pseudo-amenable/pseudo-contractible if and only if A
and B are pseudo-amenable/pseudo-contractible.

Proof. We give the proof for the pseudo-amenable case. The proof for the other
case is similar. Let M be pseudo-amenable. Then pseudo-amenability of B
follows from [9, Proposition 2.2] together with the fact that the projection map qB
fromM onto B is a continuous epimorphism. Now, we show thatA is also pseudo-
amenable. By assumption, M has an approximate diagonal, say (uα) ⊆M⊗̂M.
Now, consider the net rA ⊗ rA(uα). Observe that

a · (rA ⊗ rA)(uα)− (rA ⊗ rA)(uα) · a = (rA ⊗ rA) ((a, 0) · uα − uα · (a, 0)) ,

and

πA ◦ (rA ⊗ rA)(uα) = rA ◦ πM(uα)

for all a ∈ A and α, where the second equality follows from Lemma 2.1. These
results imply that A is pseudo-amenable.

Conversely, suppose that both A and B are pseudo-amenable. Let (uα)α∈I ⊆
A⊗̂A and (uβ)β∈J ⊆ B⊗̂B be approximate diagonal for A and B, respectively.
Given the directed set

Γ := {γ = (α, β) : α ∈ I, β ∈ J},

with the order

(α, β) � (α′, β′) ⇐⇒ α ≤ α′, β ≤ β′.

Then the net (uγ) ⊆M⊗̂M defined by

uγ := (ιA ⊗ ιA)(uα) + (sB ⊗ sB)(uβ)

is an approximate diagonal for M. In fact, by Lemma 2.1 we have

(a, b) · uγ − uγ · (a, b) = (ιA ⊗ ιA) ([a + T (b)] · uα − uα · [a + T (b)])

+ (sB ⊗ sB)(b · uβ − uβ · b),
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and again Lemma 2.1 implies that

πM(uγ)(a, b) = πM ((ιA ⊗ ιA)(uα) + (sB ⊗ sB)(uβ)) (a, b)

= [ιA ◦ πA(uα) + sB ◦ πB(uβ)](a, b)

= [(πA(uα), 0) + (−T (πB(uβ)), πB(uβ))](a, b)

= (πA(uα)a + πA(uα)T (b), 0)

+ (−T (πB(uβ))T (b), πB(uβ)b)

−→ (a + T (b), 0) + (−T (b), b) = (a, b),

for all (a, b) ∈M. Hence, M is pseudo-amenable. �

Proposition 3.4. Let M be approximately amenable. Then A and B are ap-
proximately amenable.

Proof. Since M/A is isometrically isomorphic to B, approximate amenability of
M implies that B is also approximately amenable by [8, Corollary 2.1]. Now, we
show that A is also approximately amenable. Let X be a Banach A-bimodule
and D : A −→ X∗ be a continuous derivation. Then it is easy to show that X is
an (A×T B)-bimodule with the module actions

(a, b) · x = [a + T (b)] · x, x · (a, b) = x · [a + T (b)],

for all a ∈ A, b ∈ B and x ∈ X. We prove that the map

D̃ : M−→ X∗

defined by D̃ = D ◦ rA is a derivation. In fact, for every (a, b) and (a′, b′) in M
we have

D̃((a, b)(a′, b′)) = D̃
(
(aa′ + T (b)a′ + aT (b′), bb′)

)
(3.1)

= D(aa′) + D(T (b)a′) + D(aT (b′)) + D(T (b)T (b′)) (3.2)

= a ·D(a′) + D(a) · a′ + T (b)D(a′) + D(T (b))a′ + D(a)T (b′)(3.3)

+ a ·D(T (b′)) + T (b) ·D(T (b′)) + D(T (b)) · T (b′). (3.4)

On the other hand,

(a, b) · D̃((a′, b′)) = (a, b) ·D(a′ + T (b′)) (3.5)

= [a + T (b)] · [D(a′) + D(T (b′))] (3.6)

and

D̃((a, b)) · (a′, b′) = D(a + T (b)) · (a′, b′) (3.7)

= [D(a) + D(T (b))] · [a′ + T (b′)] (3.8)

for each a, a′ ∈ A and b, b′ ∈ B. Adding (3.5) to (3.7) and comparing with (3.1),

we conclude that D̃ is a derivation. From the approximate amenability of A×T B,

it follows that there is a net (ξα) ⊆ X∗ such that D̃((a, b)) = limα adξα((a, b)) for
all (a, b) ∈M. We claim that D(a) = limα adξα(a) for all a ∈ A; indeed,

D(a) = D̃((a, 0)) = lim
α

[(a, 0) · ξα − ξα · (a, 0)]

= lim
α

[a · ξα − ξα · a]
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for all a ∈ A, as required. �

We do not know if the converse of the Proposition 3.4 is valid, however following
results are a partial converse for the Proposition 3.4. Before we give the next
result, recall that a Banach A-bimodule X is called neo-unital if

X = A ·X · A = {a · x · a : a, b ∈ A, x ∈ X}.

Proposition 3.5. Let A and B be approximately amenable Banach algebras.
Then, for any neo-unital Banach M-bimodule X, continuous derivations from
M into X∗ are weak∗ approximately inner.

Proof. Let X be a neo-unital Banach M-bimodule and let D : M → X∗ be a
continuous derivation. Then it is easy to check that X∗ is both A-bimodule and
B-bimodule with the module actions

a · ξ = (a, 0) · ξ, ξ · a = ξ · (a, 0), b · ξ = (−T (b), b) · ξ, ξ · b = ξ · (−T (b), b)

for all a ∈ A, b ∈ B and ξ ∈ X∗. Now, consider the linear maps DA : A → X∗

and DB : B → X∗ defined by DA(a) = D((a, 0)) and DB(b) = D((−T (b), b)).
Trivially DA and DB are continuous derivations. Thus by assumption there are
nets (ξγ) and (ηγ) in X∗ such that

DA(a) = D((a, 0)) = lim
γ

[(a, 0) · ξγ − ξγ · (a, 0)],

DB(b) = D((−T (b), b)) = lim
γ

[(−T (b), b) · ηγ − ηγ · (−T (b), b)],

for all a ∈ A and b ∈ B. Since A is approximately amenable by [8, Lemma
2.2] there are right and left approximate identities say (rAβ ) and (`Aβ ) respectively

for A. Similarly, let (rBβ ) and (`Bβ ) respectively be left and right approximate
identities for B. Therefore,

(a + T (b), 0) = lim
β

(a, b)(rAβ , 0) = lim
β

(`Aβ , 0)(a, b),

(−T (b), b) = lim
β

(a, b)(0, rBβ ) = lim
β

(0, `Bβ )(a, b),

for all a ∈ A and b ∈ B. Above equalities imply that there are nets (ζα) and (ςα)
in X∗ such that

D((a, b)) = DA(a + T (b)) + DB(b) = lim
α

[(a, b) · ζα − ςα · (a, b)]

for all a ∈ A and b ∈ B. Since D is a derivation we conclude that

lim
α

(a, b) · (ζα − ςα) · (a′, b′) = 0

for all a, a′ ∈ A and b, b′ ∈ B. Hence,

D((a, b)) · (a′, b′) = lim
α

[(a, b) · ςα − ςα · (a, b)] · (a′, b′)

for all a, a′ ∈ A and b, b′ ∈ B. Since X is neo-unital it follows that

D((a, b)) = weak∗– lim
α

adςα((a, b))

for all a ∈ A and b ∈ B as desired. �
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Proposition 3.6. Let A and B be approximately amenable Banach algebras.
Suppose that one of the following statements holds. Then M is approximately
amenable.

(i) A is amenable.
(ii) A and B have a central approximate identity.
(iii) B has a bounded approximate identity.

Proof. (i). Since A is amenable and M/A ∼= B is approximately amenable, the
result follows from [8, Corollary 2.1] together with the fact that A is a closed
two-sided ideal in M.

(ii). It follows from [20, Proposition 3.4] and Theorem 2.3 that M is approxi-
mately biprojective in the sense of [20]. Moreover, in this case M has a central
approximate identity. This is because of, if nets (aα) and (bβ) are central approx-
imate identities for A and B, respectively. Then the net ((aα − T (bβ), bβ)) is a
central approximate identity for M. Indeed, for each (a, b) ∈M we have

(aα − T (bβ), bβ)(a, b) = (aα[a + T (b)]− T (bβb), bβb) .

Hence [20, Corollary 3.7] implies that M is approximately amenable.
(iii). Let X be a Banach M-bimodule, and let D : M→ X∗ be a continuous

derivation. Suppose that (bα) is a bounded approximate identity for B. Without
loss of generality we assume that there are E ∈ B∗∗, F ∈ A∗∗ and ξ, η ∈ X∗∗∗

such that

bα
w∗
−→ E, T (bα)

w∗
−→ F, D(bα)

w∗
−→ ξ, D(T (bα))

w∗
−→ η.

It is known by [6] that X∗∗∗ is a Banach A∗∗ ×T ∗∗ B∗∗-bimodule. We can extend
T to a homomorphism from B into A], the unitization of A, denoted still by T .
Moreover, it is easy to show that X∗∗∗ is an A] ×T B-bimodule with the module
actions

eA ·G = G + F ·G− E ·G, G · eA = G + G · F −G · E
for all G ∈ X∗∗∗, where eA is the identity element of A]. We can consider D as a

derivation from M into X∗∗∗ and extend it to a derivation D̃ from A] ×T B into
X∗∗∗ defined by D̃(eA) = η − ξ. For example, for each a ∈ A we have

a · D̃(eA) + D̃(a) · eA = a · η − a · ξ + D(a) + D(a) · F −D(a) · E
= D(a) + weak∗– lim

α
D((aT (bα), 0)− (a, 0)(0, bα))

= D(a) = D̃(aeA).

Since both A] and B are pseudo-amenable by [9, Theorem 3.1 and Proposition
3.2], A] ×T B is pseudo-amenable by Proposition 3.3 and consequently again by
[9, Proposition 3.2] it is approximately amenable. Thus, there is a net (Gγ) in
X∗∗∗ such that

D((a, b)) = lim
γ

adGγ ((a, b))

for all (a, b) ∈M. Applying Goldstine’s theorem we can obtain (Gγ) in X∗, and
replace norm convergence in above equation by weak convergence. This implies,
via Mazur’s theorem, that M is approximately amenable. �
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It is known that every approximately amenable Banach algebra have right and
left approximate identities. However, it has been an open question whether ap-
proximately amenable Banach algebras must also have two-sided approximate
identities. In the following result we show that if the T -Lau product A×T A of
Banach algebra A is approximately amenable, then A has a two-sided approxi-
mate identity.

Proposition 3.7. Let A be a Banach algebra and let T : A → A be a continuous
homomorphism with ‖T‖ ≤ 1. Then A has a two-sided approximate identity if
A×T A is approximately amenable.

Proof. First note that X = A is an A ×T A-bimodule by the following module
actions.

(a, b) · x = [a + T (b)]x and x · (a, b) = xb

for all a, b ∈ A and x ∈ X. Now, consider the linear map D : A ×T A → X
defined by D((a, b)) = a+T (b)− b. It is not hard to check that D is a continuous
derivation. Applying [9, Theorem 3.1(iii)], we obtain that there is a net (xα) in
X such that D((a, b)) = limα adxα((a, b)). It follows that

a−b = D((a−T (b), b)) = lim
α

[(a−T (b), b) ·xα−xα ·(a−T (b), b)] = lim
α

[axα−xαb]

for all a, b ∈ A. Trivially (xα) is a two-sided approximate identity for A. �
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