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Abstract. We present some spectral radius inequalities for nonnegative ma-
trices. Using the ideas of Audenaert, we then prove the inequality which may
be regarded as a Cauchy–Schwarz inequality for spectral radius of nonnegative
matrices

ρ(A ◦B) ≤ [ρ(A ◦A)]
1
2 [ρ(B ◦B)]

1
2 .

In addition, new proofs of some related results due to Horn and Zhang, Huang
are also given. Finally, we interpolate Huang’s inequality by proving

ρ(A1 ◦A2 ◦ · · · ◦Ak) ≤ [ρ(A1A2 · · ·Ak)]1−
2
k [ρ((A1 ◦A1) · · · (Ak ◦Ak)]

1
k

≤ ρ(A1A2 · · ·Ak).

.

1. Introduction and preliminaries

Let Mn denote the set of complex matrices of order n. For matrices A =
(aij), B = (bij) ∈ Mn, we denote by ρ(A) the spectral radius of A, by A ◦ B =
(aijbij) the Hadamard product of A and B. The notation A ≤ B means that
B − A is entrywise nonnegative.

Zhan [10] conjectured that ρ(A ◦B) ≤ ρ(AB) for nonnegative matrices A, B ∈
Mn. This conjecture was confirmed by Audenaert in [1] by proving

ρ(A ◦B) ≤ ρ
1
2 ((A ◦ A)(B ◦B)) ≤ ρ(AB). (1.1)
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These inequalities were established via a trace description of the spectral radius.
Using the fact that the Hadamard product of two matrices is a principal submatrix
of the Kronecker product, Horn and Zhang proved [5] the inequalities

ρ(A ◦B) ≤ ρ
1
2 (AB ◦BA) ≤ ρ(AB). (1.2)

Huang [6] generalized the inequality ρ(A ◦ B) ≤ ρ(AB) to an arbitrary number
of nonnegative matrices:

ρ(A1 ◦ A2 ◦ · · · ◦ Ak) ≤ ρ(A1A2 · · ·Ak). (1.3)

Recently, Peperko [8] proved the inequalities for nonnegative matrices A, B,

ρ(A ◦B) ≤ ρ
1
2 (AB ◦BA) ≤ ρ

1
4 (AB ◦ AB)ρ

1
4 (BA ◦BA) ≤ ρ(AB). (1.4)

The paper is organized as follows. Using the similar idea due to Peperko,
we first give a new proof for (1.3). We then prove the inequality which may
be regarded as a Cauchy–Schwarz inequality for spectral radius of nonnegative
matrices

ρ(A ◦B) ≤ [ρ(A ◦ A)]
1
2 [ρ(B ◦B)]

1
2 . (1.5)

In addition, new proofs of some related results due to Horn and Zhang, Huang
are also given. Finally, we interpolate Huang’s inequality by proving

ρ(A1 ◦ A2 ◦ · · · ◦ Ak) ≤ [ρ(A1A2 · · ·Ak)]
1− 2

k [ρ((A1 ◦ A1)(A2 ◦ A2) · · · (Ak ◦ Ak)]
1
k

≤ ρ(A1A2 · · ·Ak).

Note that the inequality (1.1) corresponds to the case k = 2 of the above inequal-
ities.

2. Main results

The two inequalities in the following lemma are classical and can be found in
[4, 11].

Lemma 2.1. Let A, B ∈ Mn be nonnegative matrices.
(1) If A ≤ B, then ρ(A) ≤ ρ(B).
(2) ρ(A ◦B) ≤ ρ(A)ρ(B).

The following result appeared in [2, 7, 8]. A new and straightforward proof is
presented. The similar manner can be found in [9].

Lemma 2.2. Let {A1m}t
m=1, {A2m}t

m=1, . . . , {Asm}t
m=1 be nonnegative matrices

of order n. Then

(A11 ◦ A21 ◦ · · · ◦ As1)(A12 ◦ A22 ◦ · · · ◦ As2) · · · (A1t ◦ A2t ◦ · · · ◦ Ast)

≤ (A11A12 · · ·A1t) ◦ (A21A22 · · ·A2t) ◦ · · · ◦ (As1As2 · · ·Ast).

Proof. For p = 1, . . . , s, q = 1, . . . , t, we denote by a
(pq)
ij the entry of the matrix

Apq in the position (i, j). The (i, j)-th entry of

(A11 ◦ A21 ◦ · · · ◦ As1)(A12 ◦ A22 ◦ · · · ◦ As2) · · · (A1t ◦ A2t ◦ · · · ◦ Ast)
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equals ∑
j1,j2,...,jt−1

(a
(11)
ij1

a
(21)
ij1

· · · a(s1)
ij1

)(a
(12)
j1j2

a
(22)
j1j2

· · · a(s2)
j1j2

) · · · (a(1t)
jt−1ja

(2t)
jt−1j · · · a

(st)
j1j ).

Denote

L =
∑

j1,j2,...,jt−1

(a
(11)
ij1

a
(21)
ij1

· · · a(s1)
ij1

)(a
(12)
j1j2

a
(22)
j1j2

· · · a(s2)
j1j2

) · · · (a(1t)
jt−1ja

(2t)
jt−1j · · · a

(st)
j1j ).

Then

L =
∑

j1,j2,...,jt−1

(a
(11)
ij1

a
(12)
j1j2

· · · a(1t)
jt−1j)(a

(21)
ij1

a
(22)
j1j2

· · · a(2t)
jt−1j) · · · (a

(s1)
ij1

a
(s2)
j1j2

· · · a(st)
jt−1j)

≤
∑

j1,j2,...,jt−1

(a
(11)
ij1

a
(12)
j1j2

· · · a(1t)
jt−1j) · · ·

∑
j1,j2,...,jt−1

(a
(s1)
ij1

a
(s2)
j1j2

· · · a(st)
jt−1j).

Note that for p = 1, . . . , s, each term∑
j1,j2,...,jt−1

(a
(p1)
ij1

a
(p2)
j1j2

· · · a(pt)
jt−1j)

is the entry in the (i, j)-th position of Ap1Ap2 · · ·Apt. This completes the proof. �

It should be noted that its proof of (1.3) is included for the sake of completeness,
since some of the proofs below can be proved by using similar ideas. The same
proofs were given in [8, Th.3.16] in greater generality for sets of matrices. In the
present paper only the special case for usual spectral radius is presented with the
same proof.

Proof of Huang’s Inequality (1.3). Since the Hadamard product is com-
mutative, we have

(A1 ◦A2 ◦ · · · ◦Ak)
k = (A1 ◦A2 ◦ · · · ◦Ak)(A2 ◦ · · ·Ak ◦A1) · · · (Ak ◦A1 ◦ · · · ◦Ak−1)

≤ (A1A2 · · ·Ak) ◦ (A2 · · ·AkA1) ◦ · · · ◦ (AkA1 · · ·Ak−1),

where the inequality follows from Lemma 2.2. By Lemma 2.1, we have

ρk(A1 ◦ A2 ◦ · · · ◦ Ak) = ρ((A1 ◦ A2 ◦ · · · ◦ Ak)
k)

≤ ρ((A1A2 · · ·Ak) ◦ (A2 · · ·AkA1) ◦ · · · ◦ (AkA1 · · ·Ak−1))

≤ ρ(A1A2 · · ·Ak)ρ(A2 · · ·AkA1) · · · ρ(AkA1 · · ·Ak−1)

= ρk(A1A2 · · ·Ak).

In the last equality above we use the fact that

ρ(A2 · · ·AkA1) = ρ(A3A4 · · ·A2) = · · · = ρ(AkA1 · · ·Ak−1) = ρ(A1A2 · · ·Ak).

This completes the proof. �
Denote by ‖A‖ the spectral norm of A ∈ Mn, which equals to the largest

singular value. The following interesting inequality is also due to Huang [6,
Corollary 6]. We give a new proof.

Corollary 2.3. [6] Let A, B ∈ Mn be nonnegative. Then

‖A ◦B‖ ≤ ρ(AT B). (2.1)
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Proof. Note that ρ(CT C) = ‖C‖2. Then

‖A ◦B‖ = ρ
1
2 ((AT ◦BT )(A ◦B)) = ρ

1
2 ((AT ◦BT )(B ◦ A)).

By Lemma 2.1, we have

ρ((AT ◦BT )(B ◦ A)) ≤ ρ((AT B) ◦ (BT A)) ≤ ρ(AT B)ρ(BT A) = ρ2(AT B).

This completes the proof. �

The next inequality refines the inequality due to Huang [6]:

‖A1 ◦ A2 ◦ · · · ◦ Ak‖ ≤ ρ
1
2 (A1A

T
1 A2A

T
2 · · ·AkA

T
k ).

Proposition 2.4. Let A1, A2, . . . , Ak ∈ Mn be nonnegative matrices. Then

‖A1 ◦ A2 ◦ · · · ◦ Ak‖ ≤ ρ
1
2 ((A1A

T
1 ) ◦ (A2A

T
2 ) ◦ · · · ◦ (AkA

T
k )).

Proof. Note that for any nonnegative square matrix C, ρ(CT C) = ‖C‖2. Then

‖A1 ◦ A2 ◦ · · · ◦ Ak‖ = ρ
1
2 ((A1 ◦ A2 ◦ · · · ◦ Ak)(A1 ◦ A2 ◦ · · · ◦ Ak)

T ).

Since

(A1 ◦A2 ◦ · · · ◦Ak)(A1 ◦A2 ◦ · · · ◦Ak)
T = (A1 ◦A2 ◦ · · · ◦Ak)(A

T
1 ◦AT

2 ◦ · · · ◦AT
k ),

by Lemma 2.2, we have

(A1 ◦ A2 ◦ · · · ◦ Ak)(A
T
1 ◦ AT

2 ◦ · · · ◦ AT
k ) ≤ (A1A

T
1 ) ◦ (A2A

T
2 ) ◦ · · · ◦ (AkA

T
k ).

Therefore

‖A1 ◦ A2 ◦ · · · ◦ Ak‖ = ρ
1
2 ((A1 ◦ A2 ◦ · · · ◦ Ak)(A

T
1 ◦ AT

2 ◦ · · · ◦ AT
k ))

≤ ρ
1
2 ((A1A

T
1 ) ◦ (A2A

T
2 ) ◦ · · · ◦ (AkA

T
k )).

This completes the proof. �

We need the following lemma whose proof can be found in [1, Lemma 1].

Lemma 2.5. [1] Let A ∈ Mn be a positive matrix. Then ρ(A) = lim
m→∞

(TrAm)
1
m .

Next, using Lemma 2.5 we prove the inequality which may be regarded as
a Cauchy–Schwarz inequality for spectral radius of nonnegative matrices. This
inequality is a consequence of a well known result for nonnegative matrices due
to Elsner, Johnson and Silva [3], i.e.,

ρ(A( 1
2
) ◦B( 1

2
)) ≤ ρ(A)

1
2 ρ(B)

1
2 ,

where A(t) denotes the Hadamard–Schur power. It should be noted that a new
proof is included for the sake of completeness.

Proposition 2.6. Let A, B ∈ Mn be nonnegative matrices. Then

ρ(A ◦B) ≤ [ρ(A ◦ A)]
1
2 [ρ(B ◦B)]

1
2 . (2.2)
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Proof. Without loss of generality we may assume that A, B ∈ Mn are positive,
since the spectral radius is continuous in matrices. Let A = (aij), B = (bij) ∈ Mn.
For any positive integer k, we have

Tr((A ◦B)2k) =
∑

i1,i2,...,i2k

(ai1i2bi1i2)(ai2i3bi2i3) · · · (ai2ki1bi2ki1)

=
∑

i1,i2,...,i2k

(ai1i2ai2i3 · · · ai2ki1)(bi1i2bi2ki1bi2i3 · · · bi2ki1)

≤

( ∑
i1,i2,...,i2k

(ai1i2ai2i3 · · · ai2ki1)
2

) 1
2
( ∑

i1,i2,...,i2k

(bi1i2bi2i3 · · · bi2ki1)
2

) 1
2

=

( ∑
i1,i2,...,i2k

a2
i1i2

a2
i2i3

· · · a2
i2ki1

) 1
2
( ∑

i1,i2,...,i2k

b2
i1i2

b2
i2i3

· · · b2
i2ki1

) 1
2

= [Tr(A ◦ A)2k]
1
2 [Tr(B ◦B)2k]

1
2 .

The above inequality follows from the Cauchy–Schwarz inequality. Taking the
2k-th root, we have

[Tr((A ◦B)2k)]
1
2k ≤ [Tr(A ◦ A)2k]

1
4k [Tr(B ◦B)2k]

1
4k .

Taking the limit k →∞, and invoking Lemma 2.5 we obtain the inequality (2.2).
This completes the proof. �

Remark 2.7. Recall that Audenaert [1] proved

ρ(A ◦B) ≤ ρ
1
2 ((A ◦ A)(B ◦B)).

We remark that the above inequality and the inequality (2.2) are not comparable
in general. Here are two examples. Consider

A =

[ √
2
√

2√
2
√

2

]
, B =

[
0 1
0 0

]
.

Then

ρ
1
2 ((A ◦ A)(B ◦B)) =

√
2 > 0 = [ρ(A ◦ A)]

1
2 [ρ(B ◦B)]

1
2 .

But for

A =

[
0 0

0
√

2

]
, B =

[
1 0
0 0

]
,

then

ρ
1
2 ((A ◦ A)(B ◦B)) = 0 <

√
2 = [ρ(A ◦ A)]

1
2 [ρ(B ◦B)]

1
2 .

Combining Lemma 2.2 and Proposition 2.6, we obtain the inequality due to
Peperko [8].

Corollary 2.8. [8] Let A, B ∈ Mn be nonnegative matrices. Then

ρ(A ◦B) ≤ ρ
1
2 (AB ◦BA) ≤ ρ

1
4 (AB ◦ AB)ρ

1
4 (BA ◦BA) ≤ ρ(AB).

Finally, we interpolate Huang’s inequality (1.3) by proving
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Theorem 2.9. Let A1, A2, . . . , Ak ∈ Mn be nonnegative matrices. Then

ρ(A1 ◦ A2 ◦ · · · ◦ Ak) ≤ [ρ(A1A2 · · ·Ak)]
1− 2

k [ρ((A1 ◦ A1)(A2 ◦ A2) · · · (Ak ◦ Ak)]
1
k

≤ ρ(A1A2 · · ·Ak).

Proof. It suffices to prove this theorem for the case of positive matrices. Because
of the continuity of the spectral radius, the theorem follows for the case of non-
negative matrices as well. Next, we assume that all the matrices A1, . . . , Ak are
positive.

Denote by a
(t)
ij the entry of the matrix At in the position (i, j), for t = 1, . . . , k.

Then
Tr((A1◦A2◦· · ·◦Ak)

mk) = Tr[((A1◦· · ·Ak)(A2◦· · ·◦A1) · · · (Ak ◦· · ·◦Ak−1))
m]

≤
∑

i1,i2,...,imk

(a
(1)
i1i2

a
(2)
i1i2

· · · a(k)
i1i2

)(a
(2)
i2i3

· · · a(k)
i2i3

a
(1)
i2i3

) · · · (a(k)
imki1

a
(1)
imki1

· · · a(k−1)
imki1

)

=
∑

i1,i2,...,imk

[(a
(1)
i1i2

a
(2)
i2i3

· · · a(k)
imki1

)(a
(2)
i1i2

a
(3)
i2i3

· · · a(1)
imki1

)

(a
(3)
i1i2

a
(4)
i2i3

· · · a(2)
imki1

) · · · (a(k)
i1i2

a
(1)
i2i3

· · · a(k−1)
imki1

)]

≤
∑

i1,i2,...,imk

(a
(1)
i1i2

a
(2)
i2i3

· · · a(k)
imki1

)(a
(2)
i1i2

a
(3)
i2i3

· · · a(1)
imki1

)∑
i1,i2,...,imk

(a
(3)
i1i2

a
(4)
i2i3

· · · a(2)
imki1

) · · ·
∑

i1,i2,...,imk

(a
(k)
i1i2

a
(1)
i2i3

· · · a(k−1)
imki1

).

Note that ∑
i1,i2,...,imk

(a
(3)
i1i2

a
(4)
i2i3

· · · a(2)
imki1

) · · ·
∑

i1,i2,...,imk

(a
(k)
i1i2

a
(1)
i2i3

· · · a(k−1)
imki1

)

= Tr((A3A4 · · ·A2)
m)Tr((A4A5 · · ·A3)

m) · · ·Tr((AkA1 · · ·Ak−1)
m).

The expression
∑

i1,i2,...,imk

(a
(1)
i1i2

a
(2)
i2i3

· · · a(k)
imki1

)(a
(2)
i1i2

a
(3)
i2i3

· · · a(1)
imki1

) is the standard Eu-

clidean inner product of two nonnegative vectors in Rnmk
, one with components

a
(1)
i1i2

a
(2)
i2i3

· · · a(k)
imki1

and the other with components a
(2)
i1i2

a
(3)
i2i3

· · · a(1)
imki1

. One sees that
these two vectors have the same sets of components (which can be seen by per-
forming a cyclic permutation on the indices i1, i2, . . . , imk). Thus both vectors
have the same Euclidean norm. Applying the Cauchy–Schwarz inequality then

gives
∑

i1,i2,...,imk

(a
(1)
i1i2

a
(2)
i2i3

· · · a(k)
imki1

)(a
(2)
i1i2

a
(3)
i2i3

· · · a(1)
imki1

)

≤
∑

i1,i2,...,imk

((a
(1)
i1i2

)2(a
(2)
i2i3

)2 · · · (a(k)
imki1

)2) = Tr[((A1◦A1)(A2◦A2) · · · (Ak ◦Ak))
m].

This proves that the following inequality holds for any positive integer m:
Tr((A1 ◦ A2 ◦ · · · ◦ Ak)

mk)
≤ Tr((A3A4 · · ·A2)

m)Tr((A4A5 · · ·A3)
m) · · ·Tr((AkA1 · · ·Ak−1)

m)
×Tr[((A1 ◦ A1)(A2 ◦ A2) · · · (Ak ◦ Ak))

m].
Taking the mk-th root on the above inequality, taking the limit m →∞, we have

ρ(A1 ◦ A2 ◦ · · · ◦ Ak) ≤ ρ
1
k (A3A4 · · ·A2)ρ

1
k (A4A5 · · ·A3) · · · ρ

1
k (AkA1 · · ·Ak−1)

×[ρ((A1 ◦ A1)(A2 ◦ A2) · · · (Ak ◦ Ak)]
1
k .
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Using the fact

ρ(A3A4 · · ·A2) = ρ(A4A5 · · ·A3) = · · · = ρ(AkA1 · · ·Ak−1) = ρ(A1A2 · · ·Ak),

we obtain the first inequality.
On the other hand, by Lemma 2.2,

(A1 ◦ A1)(A2 ◦ A2) · · · (Ak ◦ Ak) ≤ (A1A2 · · ·Ak) ◦ (A1A2 · · ·Ak).

Applying Lemma 2.1 we have

[ρ ((A1 ◦ A1)(A2 ◦ A2) · · · (Ak ◦ Ak))]
1
k ≤ ρ

2
k ((A1A2 · · ·Ak)) .

This completes the proof. �

Remark 2.10. The inequality (1.1) corresponds to the case k = 2 of Theorem 2.9.
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