

Banach J. Math. Anal. 9 (2015), no. 1, 243–252 http://doi.org/10.15352/bjma/09-1-18 ISSN: 1735-8787 (electronic) http://projecteuclid.org/bjma

POINTS OF OPENNESS AND CLOSEDNESS OF SOME MAPPINGS

ĽUBICA HOLÁ^{1*}, ALIREZA KAMEL MIRMOSTAFAEE² AND ZBIGNIEW PIOTROWSKI³

Communicated by W. B. Moors

ABSTRACT. Let X and Y be topological spaces and $f: X \to Y$ be a continuous function. We are interested in finding points of Y at which f is open or closed. We will show that under certain conditions, the set of points of openness or closedness of f in Y, i. e. points of Y at which f is open (resp. closed) is a G_{δ} subset of Y. We will extend some results of S. Levi, R. Engelking and I. A. Vaĭnšteĭn.

1. INTRODUCTION

Let X and Y be topological spaces. Following I.A. Vaĭnšteĭn [21], a continuous mapping $f : X \to Y$ is called *closed at* $y \in Y$ if for every open subset $W \subseteq X$ containing $f^{-1}(y)$, there is a neighborhood V of y such that $f^{-1}(V) \subseteq W$. We denote by CL(f) the set of all points of Y at which f is closed. Then f is closed if and only if CL(f) = Y.

Let us recall that $f: X \to Y$ is open at $x \in X$ if it maps neighborhoods of x into neighborhoods of f(x) and f is open at $y \in Y$ if for each open A in X, $y \in f(A)$ implies $y \in Intf(A)$. It follows from the definition that $f: X \to Y$ is open at $y \in f(X)$ if and only if it is open at each point of $f^{-1}(y)$.

Date: Received: Feb. 26, 2014; Revised: Mar. 20, 2014; Accepted: May 2, 2014. * Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46T20, Secondary 47H04.

Key words and phrases. Open functions, closed functions, spaces with a base of countable order, topological games.

The investigation of the set of points of Y at which f is open for a continuous closed mapping $f : X \to Y$ has been studied by S. Levi in [16]. In fact, S. Levi [16] proved the following theorem.

Theorem 1.1. If $f : X \to Y$ is a continuous closed mapping on a metrizable space X, the set of points of Y at which f is open is a G_{δ} set in Y.

The study of the points of closedness of a continuous function and its variants has been already considered (see e.g. [18, 20]). In particular, R. Engelking [10] proved the following.

Theorem 1.2. If f is a continuous mapping from a completely metrizable space X into a first countable Hausdorff space Y, the set of points of Y at which f is closed is a G_{δ} set in Y.

The following result is due to I.A. Vaĭnšteĭn [21].

Theorem 1.3. Let $f : X \to Y$ be a continuous mapping of a completely metrizable space X to a first countable Hausdorff space Y. Then for every set $A \subseteq X$ such that $f|A : A \to f(A)$ is closed, there exists a G_{δ} set $B \subset X$ such that $A \subseteq B$ and the restriction $f|B : B \to f(B)$ is closed.

In this paper, we will generalize Theorem 1.1 for topological spaces with a base of countable order. We shall also improve Theorems 1.2 and 1.3. More precisely, we will show that Theorems 1.2 and 1.3 are true when X is completely metrizable and Y is a w-space.

Let us recall that G. Gruenhage (1976) introduced a class of topological spaces, called *W*-spaces. It is known that every first countable space is a *W*-space but the converse is not true in general [12, 17].

2. OPENNESS OF MAPPINGS FROM SPACES WITH A BASE OF COUNTABLE ORDER

We begin this section by recalling some concepts:

Definition 2.1. Let $f : X \to Y$ be a function. The function f is called *open* (resp. *feebly open*) at $x \in X$ if $f(x) \in Int(f(U))$ (resp. f(U) has a nonempty interior) for each neighborhood U of x. f is called open (resp. feebly open) if it is open (feebly open) at each point of X.

Definition 2.2. A topological space X is said to have a *base of countable order* if there is a sequence $\{\mathcal{B}_n\}$ of bases for X such that if $x \in B_n \in \mathcal{B}_n$ and $B_{n+1} \subset B_n$ for each $n \ge 1$, then $\{B_n\}_n$ is a base at x.

Spaces having bases of countable order have been studied in depth by H. Wicke and J. Worell [22]. It is known that every metrizable space has a base of countable order.

In the following definition we will use the notion of a tree. A tree is a partially ordered set (T, \leq) in which, for every $t \in T$ the set $t^* = \{s \in T : s < t\}$ of predecessors is well-ordered. The α th level of T is the set of t for which t^* has order type α . A branch in a tree is a maximal chain. A tree of the height \aleph_0 is a tree all of whose levels have cardinality less than \aleph_0 . **Definition 2.3.** A sieve for a topological space (X, τ) is a pair (G, T), where (T, \leq) is an indexing tree of the height \aleph_0 and $G: T \to \tau$ is a decreasing function (i.e. $t \leq t'$ implies $G(t) \supseteq G(t')$) such that

- (i) $G(T_0) = \{G(t) : t \in T_0\}$ covers X, where T_0 is the least level of T,
- (ii) for each $t \in T$, $G(t) = \bigcup \{G(t') : t' \text{ is an immediate successor of } t \}$.

We need the following result.

Theorem 2.4. The following are equivalent:

- (i) X has a base of countable order.
- (ii) X has a sieve (G,T) such that if b is a branch of T and $x \in \bigcap_{t \in b} G(t)$, then $\{G(t) : t \in b\}$ is a base at x.

Proof. See [13, Theorem 6. 3].

Let X be a topological space with a base of countable order and Y be a topological space. Let $f: X \to Y$ be a function and (G, T) be a sieve for X from Theorem 2.4. Let (T, \leq) be an indexing tree and for $n \in \omega$, let T_n be the *n*th level of T. Define

$$A_1 = \{ x \in X : \exists t_{1,x} \in T_1, x \in G(t_{1,x}), f(x) \in Int f(G(t_{1,x})) \}.$$

Suppose that the sets A_1, \ldots, A_{n-1} have been defined. Define

 $A_n = \{x \in A_{n-1} : \exists t_{n,x} \ge t_{n-1,x}, t_{n,x} \in T_n, x \in G(t_{n,x}), f(x) \in Int \ f(G(t_{n,x}))\}.$ Now, we define a function $\mathcal{O}_f : X \to [0,\infty]$ by

$$\mathcal{O}_f(x) = \begin{cases} \inf\{\frac{1}{n} : x \in A_n\} & x \in A_n \text{ for some } n \ge 1, \\ +\infty & \text{otherwise.} \end{cases}$$

Lemma 2.5. Let X be a topological space with a base of countable order and Y be a topological space. A function $f : X \to Y$ is open at $x \in X$ if and only if $\mathcal{O}_f(x) = 0$.

Proof. If $f: X \to Y$ is open at $x \in X$, then $x \in A_n$ for every $n \ge 1$. Thus $\mathcal{O}_f(x) = 0$.

Suppose now $\mathcal{O}_f(x) = 0$. We want to prove that f is open at x. Note that for each $n \geq 1$, $x \in A_n$. Also, $x \in \bigcap_{n\geq 1} G(t_{n,x})$. Since $\{t_{n,x} : n \geq 1\}$ is a branch of T, the family $\{G(t_{n,x}) : n \geq 1\}$ is a base of neighborhoods of x. Let U be an open set in X such that $x \in U$. There is $n \in \omega$ such that $G(t_{n,x}) \subseteq U$. Since $x \in A_n$, $f(G(t_{n,x}))$ is a neighborhood of f(x). Thus f(U) is also a neighborhood of f(x).

Lemma 2.6. Let $f : X \to Y$ be a continuous function, where X is a topological space with a base of countable order and Y is a topological space. Then $\mathcal{O}_f : X \to [0, \infty]$ is upper semicontinuous.

Proof. For each $n \in \omega$, define $f_n : X \to [0, \infty]$ by $f_n(x) = 1/n$, if $x \in A_n$ and $f_n(x) = \infty$, if $x \notin A_n$. Since A_n is open, f_n is upper semicontinuous. Therefore, as $\mathcal{O}_f(x) = inf_{n \in \omega}f_n(x)$ for every $x \in X$, \mathcal{O}_f is upper semicontinuous. \Box

Corollary 2.7. Let X be a topological space with a base of countable order, Y be a topological space and $f: X \to Y$ be a continuous function. The set of all points of X at which f is open is a G_{δ} set in X.

Proof. In view of Lemma 2.5, the set of all $x \in X$ at which f is open equals to the set $\{x \in X : \mathcal{O}_f(x) = 0\}$. Since

$$\{x \in X : \mathcal{O}_f(x) = 0\} = \bigcap_{n=1}^{\infty} \{x \in X : \mathcal{O}_f(x) < \frac{1}{n}\},\$$

so that the result follows from Lemma 2.6.

Recall that a function f from a topological space X into a topological space Y is quasicontinuous at $x \in X$ [15] if for every open set V in Y with $f(x) \in V$ and for every open set U in X with $x \in U$ there is a nonempty open set $U' \subset U$ such that $f(U') \subset V$. f is quasicontinuous if it is quasicontinuous at every $x \in X$.

Theorem 2.8. Let X be a Baire space with a base of countable order and Y be a topological space. Let $f : X \to Y$ be a feebly open quasicontinuous function. Then the set of points of X at which f is open is a residual set in X (i.e. it contains a dense G_{δ} set in X).

Proof. Let $n \in \omega$. Put $H_n = \{x \in X : \mathcal{O}_f(x) < 1/n\}$. To prove the density of H_n , let U be an open nonempty subset of X. There must exist $k \in \omega, k > n$ and $t_k \in T_k$ with $G(t_k) \subset U$. Since f is feebly open, $Intf(G(t_k)) \neq \emptyset$. Put $W = Intf(G(t_k))$. The quasicontinuity of f implies that there is a nonempty open set $L \subset f^{-1}(W) \cap G(t_k)$ such that $L \subset A_k \subset \{x \in X : \mathcal{O}_f(x) \le 1/k\} \subset H_n$. Also, it is easy to verify that $H_n \subset \overline{IntH_n}$ for every $n \in \omega$. Thus for every $n \in \omega$, $IntH_n$ is dense too.

Theorem 2.9. Let X be a Baire space with a base of countable order and Y be a topological space. Let $f : X \to Y$ be a feebly open continuous function. Then the set of points of X at which f is open is a dense G_{δ} set in X.

Proof. By Theorem 2.8, we know that the set of points of X at which f is open is dense (it is residual). Corollary 2.7 implies that it is a G_{δ} set.

The following example shows that the condition of the feebly openness of f in Theorem 2.9 is essential.

Example 2.10. Put $X = \{(x, 0) : x \in \mathbb{Q}\} \cup \{(p/q, 1/q) : p, q \text{ are relatively prime,} p/q \in \mathbb{Q}\}$, where \mathbb{Q} is the set of rational numbers. Consider X with the topology inherited from the usual topology of the plane [1]. Let f be the natural projection onto $\{(x, 0) : x \in \mathbb{Q}\}$. Of course, f is continuous, X is a Baire metrizable space, but f is not feebly open. It is easy to verify that the set of points of X at which f is open, is not dense in X.

Definition 2.11. A function $f : X \to Y$ is called *irreducible* if f(X) = Y but for each proper closed subset F of X, $f(F) \neq Y$.

Theorem 2.12. Let $f : X \to Y$ be continuous irreducible and closed. If X is a Baire space with a base of countable order, then the set of points of X at which f is open is a dense G_{δ} set in X.

Proof. By Theorem 4.10 (i) in [14], an irreducible closed function is feebly open. Thus we can use Theorem 2.9. \Box

Example 2.10 shows that the irreducibility of f in the previous Theorem is essential.

Definition 2.13. Let X be a topological space with a base of countable order and $f: X \to Y$ be a function. Define $\mathcal{O}_f: X \to [0, \infty]$ by

$$\mathfrak{O}_f(y) = \begin{cases} \sup\{\mathcal{O}_f(x) : x \in f^{-1}(y)\} & y \in f(X), \\ 0 & \text{otherwise} \end{cases}$$

The following lemma follows immediately from the definition.

Lemma 2.14. Let X be a topological space with a base of countable order and Y be a topological space. Then a continuous function $f : X \to Y$ is open at $y \in Y$ if and only if $\mathfrak{O}_f(y) = 0$.

Proposition 2.15. Let X be a topological space with a base of countable order, Y be a topological space and $f: X \to Y$ be a continuous function and closed in $y \in Y$. Then \mathfrak{O}_f is upper semicontinuous at y.

Proof. If $y \notin f(X)$, then $y \notin \overline{f(X)}$ since f is not closed at each point of $\overline{f(X)} \setminus f(X)$. Hence $Y \setminus \overline{f(X)}$ is a neighborhood of y and $\mathfrak{D}_f(z) = 0$ for each $z \in Y \setminus \overline{f(X)}$. If $y \in f(X)$ and $\mathfrak{D}_f(y) = \infty$, then there is nothing to prove. Suppose that $\mathfrak{D}_f(y) < \varepsilon$ and choose $\varepsilon' > 0$ such that $\mathfrak{D}_f(y) < \varepsilon' < \varepsilon$. Then for each $x \in f^{-1}(y)$, we have $\mathcal{O}_f(x) < \varepsilon'$. Since \mathcal{O}_f is upper semicontinuous, for each $x \in f^{-1}(y)$, we can find a neighborhood V_x of x such that $\mathcal{O}_f(t) < \varepsilon'$ for each $t \in V_x$. Let $V = \bigcup_{x \in f^{-1}(y)} V_x$. Then V is an open set which contains $f^{-1}(y)$. Since f is closed in y, there is a neighborhood W of y such that $f^{-1}(W) \subseteq V$. If $z \in W \cap f(X)$, then

$$\mathfrak{O}_f(z) = \sup \{ \mathcal{O}_f(t) : t \in f^{-1}(z) \} \le \varepsilon' < \varepsilon.$$

If $z \in W \cap (Y \setminus f(X))$, then $\mathfrak{O}_f(z) = 0 < \varepsilon$. Hence \mathfrak{O}_f is upper semicontinuous.

The following theorem generalizes S. Levi's result proved for a metrizable space X, see [16].

Theorem 2.16. Let X be a topological space with a base of countable order and Y be a topological space. If a continuous function $f : X \to Y$ is closed, then the set of points of Y at which f is open is a G_{δ} set.

Proof. Let E denote the set of points of Y at which f is open. Thanks to Lemma 2.14

$$E = \{y \in Y : \mathfrak{O}_f(y) = 0\} = \bigcap_{n \in \omega} \{y \in Y : \mathfrak{O}_f(y) < \frac{1}{n}\}.$$

According to Proposition 2.15, the latter set is a G_{δ} subset of Y.

3. Closedness of continuous mappings

In this section, we will study the set of points of closedness of a continuous function. This study is related to the much studied problem of the existence of Choquet kernels for set-valued mappings.

Let $\Phi : X \to 2^Y$ be a set-valued mapping acting between topological spaces X and Y. We say that Φ is *upper semicontinuous at* $x \in X$ if for each open subset V of Y with $\Phi(x) \subseteq V$ there exists an open neighbourhood U of x such that $\Phi(U) \subseteq V$. The function Φ is called *upper semicontinuous* if it is upper semicontinuous at each point of X. Accordingly, a function f maps closed sets into closed sets, if and only if the mapping $f^{-1}: Y \to X$ is upper semicontinuous everywhere.

We also define the *active boundary of* Φ *at* x by

$$\operatorname{Frac}(\Phi)(x) = \bigcap_{U \in \mathcal{U}(x)} \overline{\Phi(U) \setminus \Phi(x)},$$

where $\mathcal{U}(x)$ denotes the set of all neighbourhoods of x and we define $\Phi_x : X \to 2^Y$ by

$$\Phi_x(y) = \begin{cases} \operatorname{Frac}(\Phi)(x) & \text{if } y = x, \\ \Phi(y) \setminus \Phi(x) & \text{if } y \neq x. \end{cases}$$

There has been a considerable effort put into the question of when $\operatorname{Frac}(\Phi)(x)$ is a compact kernel for Φ at x, that is, when $\operatorname{Frac}(\Phi)(x)$ is compact and the mapping Φ_x is upper semicontinuous at x, see [4, 5, 7, 8].

In the case when the mapping Φ is strongly injective, i.e., $\Phi(x) \cap \Phi(y) = \emptyset$ for any distinct x and y, see [3], we get the following general result.

Theorem 3.1. Let (X, τ) be a T_1 topological space and Y be a Čech-complete space. If $\Phi: X \to 2^Y$ is a strongly injective mapping, then

$$G = \{x \in X : \operatorname{Frac}(\Phi)(x) \text{ is compact and } \Phi_x \text{ is upper semicontinuous at } x\}$$

is a G_{δ} subset of X.

Proof. Let $\beta(Y)$ be the Čech-Stone compactification of Y. Since Y is Čechcomplete, there exists a sequence of open subsets $\{G_n\}_{n\in\omega}$ of $\beta(Y)$ such that $Y = \bigcap_{n\in\omega} G_n$. For each $n \in \omega$, let

$$O_n = \bigcup \{ U \in \tau : \overline{\Phi(U \setminus \{x\})}^{\beta(Y)} \subseteq G_n \text{ for some } x \in U \}.$$

Since Φ is strongly injective, for every $x \in X$ we have $\Phi_x(y) = \Phi(y)$ if $y \neq x$. Clearly, each O_n is open. Let $x \in G$ and $n \in \omega$ and $\operatorname{Frac}(\Phi)(x) \subseteq G_n$. There is an open set V_n in $\beta(Y)$ such that $\operatorname{Frac}(\Phi)(x) \subseteq V_n \subseteq \overline{V_n}^{\beta(Y)} \subseteq G_n$. The upper semicontinuity of Φ_x at x implies that there is $U \in \tau$ such that $x \in U$ and $\Phi_x(U) \subseteq V_n$. Thus $\overline{\Phi(U \setminus \{x\})}^{\beta(Y)} \subseteq G_n$. Hence $G \subseteq \bigcap_{n \in \omega} O_n$. On the other hand if $y \in \bigcap_{n \in \omega} O_n$ and Φ is strongly injective, so that

$$\operatorname{Frac}(\Phi)(y) = \bigcap_{U \in \mathcal{U}(y)} \overline{\Phi(U \setminus \{y\})},$$

then $y \in G$. Thus, $G = \bigcap_{n \in \omega} O_n$; which is a G_{δ} set.

We can now prove the following result.

Proposition 3.2. Suppose that $f : Y \to X$ is a continuous mapping from a *Čech-complete space* Y into a Hausdorff space X. If

 $CL(f) \subseteq \{x \in X : \operatorname{Frac}(f^{-1})(x) \text{ is compact and } f_x^{-1} \text{ is upper semicontinuous at } x\},\$

then CL(f) is a G_{δ} subset of X.

Proof. Since f is continuous and X is Hausdorff, the graph of f is closed and so $\operatorname{Frac}(f^{-1})(x) \subseteq f^{-1}(x)$ for all $x \in X$. Therefore,

 $\{x\in X: {\rm Frac}(f^{-1})(x) \, \text{ is compact and } f_x^{-1} \, \text{ is upper semicontinuous at } x\}\subseteq CL(f)$ and so

 $\{x \in X : \operatorname{Frac}(f^{-1})(x) \text{ is compact and } f_x^{-1} \text{ is upper semicontinuous at } x\} = CL(f).$

The result now follows from the previous theorem since the mapping f^{-1} is strongly injective.

Corollary 3.3. Suppose that $f: Y \to X$ is a continuous mapping from a Čechcomplete space Y into a Hausdorff first countable space X. If Y has the property that every relatively countably compact subset of Y has a compact closure then CL(f) is a G_{δ} subset of X.

Proof. This follows directly from Theorem 2.3 in [4] and the previous proposition. \Box

Many spaces satisfy the property that every relatively countably compact subset has a compact closure. For example, by the Eberlien-Šmulian Theorem, for any Banach space $(X, \| . \|)$, (X, weak) has this property as does every Diedonné complete space, see [4] and [8].

Let us recall that G. Gruenhage [12] introduced a class of topological spaces called W-spaces.

Let X be a topological space and $x_0 \in X$. The topological game $\mathcal{G}(X, x_0)$ is played by two players \mathcal{O} and \mathcal{P} as follows.

In the step $n \ge 1$, the player \mathcal{O} selects a neighborhood H_n of x_0 and then \mathcal{P} answers by choosing a point $x_n \in H_n$. If

$$p_1 = (H_1, x_1), \dots, p_n = (H_1, x_1, \dots, H_n, x_n)$$

are the first "n" moves of some play (of the game), we call p_n the nth (partial play) of the game. We say that \mathcal{O} wins the game $p = (H_n, x_n)_{n\geq 1}$ if $x_n \to x_0$. We say that \mathcal{P} wins the game $p = (H_n, x_n)_{n\geq 1}$ if $(x_n)_n$ does not converge to x_0 .

A strategy for the player \mathcal{P} is a sequence of functions $s = \{s_n\}$, such that s_n is a function from (H_1, \ldots, H_n) to H_n for each $n \ge 1$. When $s = \{s_n\}$ is a strategy for the player \mathcal{P} , a s-play for the player \mathcal{P} is a play $p = (H_n, x_n)_n$ such that $x_n = s_n(H_1, \ldots, H_n)$ for each $n \ge 1$. That is a play in which the player \mathcal{P}

select his (or her) choices according to the strategy s. Similarly, a strategy for the player \mathcal{O} can be defined. We refer the reader to [2] for further information about other kinds of topological games and their applications in analysis.

A point $x \in X$ is called a *W*-point (respectively a *w*-point) in X if \mathcal{O} has (respectively \mathcal{P} fails to have) a winning strategy in the game $\mathcal{G}(X, x)$. A space X in which each point of X is a *W*-point (respectively a *w*-point) is called a *W*-space (respectively a *w*-space.) It is known that every first countable space is a *W*-space [12, Theorem 3. 3]. However, the converse is not true in general [17, Example 2. 7].

There are w-spaces which are not W-spaces. For example [11] if X is the one point compactification $T \cup \{\infty\}$ of an Aronszajn tree T with the interval topology, then neither \mathcal{P} nor \mathcal{O} has a winning strategy in $G(X, \infty)$.

In order to prove the main result of this section, we need the following auxiliary results.

Lemma 3.4. Let Y be a metrizable space and X be a Hausdorff w-space. Let $f: Y \to X$ be continuous. If $x \in CL(f)$, then $\partial f^{-1}(x)$ is compact.

Proof. Let d be a compatible metric on Y. If $x \in CL(f)$ is an isolated point, then $\partial f^{-1}(x) = \emptyset$. If $x \in CL(f)$ is not an isolated point, we will show that $\partial f^{-1}(x)$ is countably compact. To prove this let $\{y_n\}$ be a sequence in $\partial f^{-1}(x)$. Without loss of generality, we may assume that $\{y_n\}$ is infinite. Let U_1 be a neighborhood of x and the first choice of player \mathcal{O} . Then we choose some $y'_1 \in f^{-1}(U_1) \setminus f^{-1}(x)$ such that $d(y_1, y'_1) < 1$. Define $x_1 = f(y'_1)$ as the answer of \mathcal{P} to this movement.

In general, in the step n, when the partial play (U_1, x_1, \ldots, U_n) is specified, we choose a point $y'_n \in f^{-1}(U_n) \setminus f^{-1}(x)$ such that $d(y_n, y'_n) < \frac{1}{n}$. Define $x_n = f(y'_n)$ as the next move of player \mathcal{P} . In this way, by the induction on n a strategy for the player \mathcal{P} is defined. Since X is a w-space, there is a play $p = (U_n, x_n)_n$ which is won by \mathcal{O} . Hence $x_n \to x$.

Let $A = \{y'_1, y'_2, ...\}$ and $W = Y \setminus A$. We claim that W is not open. On the contrary, suppose that W is open. Since $f^{-1}(x) \subset W$ and f is closed in x, there is a neighborhood U of x such that $f^{-1}(U) \subset W$. But then $x_n \in U$ for infinitely many n. Therefore $y'_n \in W$ for infinitely many n. This contradiction proves our claim. Let $y \in \overline{A} \setminus A$. Since $d(y_n, y'_n) < \frac{1}{n}$ for each n, y is a cluster point of $\{y_n : n \geq 1\} \subset \partial f^{-1}(x)$. Therefore $y \in \partial f^{-1}(x)$. This proves our result. \Box

Lemma 3.5. Let X be a Hausdorff w-space and Y be a topological space. Let $f: Y \to X$ be a continuous mapping. Then

 $CL(f) \subseteq \{x \in X : f_x^{-1} \text{ is upper semicontinuous at } x\}.$

Proof. Let $x \in CL(f)$. We will prove that f_x^{-1} is upper semicontinuous at x. Suppose that f_x^{-1} is not upper semicontinuous at x. There is an open set V in Y such that $\operatorname{Frac}(f^{-1})(x) \subseteq V$ and for every open neighbourhood U of x there is $x_U \in U, x_U \neq x$ and $y_u \in f_x^{-1}(x_u) \setminus V$.

Let U_1 be a neighbourhood of x and the first choice of player \mathcal{O} . There is $x_1 \in U_1, x_1 \neq x$ and $y_1 \in f_x^{-1}(x_1) \setminus V$. Define x_1 as the answer of \mathcal{P} to this movement.

In general, in the step n, when the partial play $(U_1, x_1, ..., U_n)$ is specified, there is a point $x_n \in U_n, x_n \neq x$ and a point $y_n \in f_x^{-1}(x_n) \setminus V$. Define x_n as the next move of player \mathcal{P} . In this way, by the induction on n a strategy for the player \mathcal{P} is defined. Since X is a w-space, there is a play $p = (U_n, x_n)_{n \in \omega}$, which is won by \mathcal{O} . Hence $x_n \to x$.

We claim that the sequence $\{y_n\}_{n\in\omega}$ has a cluster point. Suppose there is no cluster point of the sequence $\{y_n\}_{n\in\mathbb{N}}$. Thus the set $L = \{y_n : n \in \omega\}$ is a closed set in Y and $f^{-1}(x) \subseteq Y \setminus L$. Since $x \in CL(f)$, there is an open neighbourhood G of x such that $f^{-1}(G) \subseteq Y \setminus L$, a contradiction.

Let $y \in Y$ be a cluster point of $\{y_n\}_{n \in \omega}$. Then $y \in Y \setminus V$. It is easy to verify that $y \in \operatorname{Frac}(f^{-1})(x)$, a contradiction.

Theorem 3.6. Let Y be a completely metrizable space and X be a Hausdorff w-space. Let $f: Y \to X$ be a continuous mapping. Then the set of all points of X at which f is closed is a G_{δ} subset of X.

Proof. Follows from Proposition 3.2, Lemmas 3.4 and 3.5 and the fact that $\operatorname{Frac}(f^{-1})(x) = \partial f^{-1}(x)$.

Corollary 3.7. [10, Theorem 1] For every mapping $f : Y \to X$ from a completely metrizable space Y to a first countable Hausdorff space X, the set of all points of X at which f is closed is a G_{δ} set.

I.A. Vaĭnštein [21] proved that if f is a continuous mapping of a completely metrizable space Y to a first-countable Hausdorff space X, then for every set $A \subset Y$ such that the restriction $f|A : A \to f(A)$ is closed, there exists a G_{δ} set $B \subset Y$ such that $A \subset B$ and the restriction $f|B : B \to f(B)$ is closed. Theorem 3.6 enables us to give the following generalization of this result.

Corollary 3.8. Let f be a continuous mapping from a completely metrizable space Y to a Hausdorff w-space X. Then for every set $A \subset Y$ such that the restriction $f|A : A \to f(A)$ is closed, there exists a G_{δ} set $B \subset Y$ such that $A \subset B$ and the restriction $f|B : B \to f(B)$ is closed.

Proof. Let $A \subset Y$ be such that the restriction $f|A : A \to f(A)$ is closed. The set \overline{A} is a completely metrizable space. According to Theorem 3.6, there is a G_{δ} subset D of X such that $f : \overline{A} \to X$ is closed at each point of D. Observe that $CL(f|A) \subset CL(f|\overline{A})$ ([9], 4.5.13 (a)). Let $D = \bigcap_{n \ge 1} G_n$, where each G_n is open in X. By our assumption, $f(A) \subset D$. Since f is continuous, $f^{-1}(G_n)$ is open. There is a sequence $\{V_n\}_{n\ge 1}$ of open sets in Y such that $\overline{A} = \bigcap_{n\ge 1} V_n$. Thus $B = \bigcap_{n \ge 1} f^{-1}(G_n) \cap V_m$ has the required properties. \Box

Acknowledgement

The authors would like to thank the referee for his(her) useful comments which led to a great improvement of this paper. The second author would like to thank the Tusi Mathematical Research Group (TMRG), Mashhad, Iran. L. Holá would like to thank to grants APVV-0269-11 and Vega 2/0018/13. A. K. Mirmostafaee

is supported by a grant from Ferdowsi University of Mashhad, No. MP92300MIM. Z. Piotrowski thanks for 2012 YSU Research Professorship Grant

References

- J.M. Aarts and D.J. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974), 1–48.
- J. Cao and W.B. Moors, A survey on topological games and their applications in analysis, RACSAM Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. 100 (2006), no. 12, 39-49.
- J. Cao and W. Moors, Quasicontinuous selections of upper continuous set-valued mappings, Real Anal. Exchange 31 (2005/2006), 63–72.
- J. Cao, W. Moors and I. Reilly, On the Choquet–Dolecki Theoem, J. Math. Anal. Appl. 234 (1999), 1–5.
- J. Cao, W. Moors and I. Reilly, Topological properties defined by games and their applications, Topology Appl. 123 (2002), 47–55.
- J.J. Charatonik and K. Omiljanowski, On the set of interiority of a mapping, Glasnik Math. Vol. 17(37) (1982), 341–361.
- S. Dolecki, Constraints, stability and moduli of upper semicontinuity, The 2nd IFAC Symposium, Warwick, 1977.
- S. Dolecki and A. Lechicki, On the structure of upper semicontinuity, J. Math. Anal. Appl. 88 (1982), 547–554.
- 9. R. Engelking, General Topology, Berlin, Heldermann, 1989.
- 10. R. Engelking, Closed mappings on complete metric spaces, Fund. Math. 70 (1971), 103-107.
- 11. J. Gerlits and Zs. Nagy, Some properties of C(K), I, Topology Appl. 14 (1982), 152–161.
- G. Gruenhage, Infinite games and generalizations of first-countable spaces, Topology Appl. 6 (1976), 339–352.
- G. Gruenhage, *Generalized metric spaces*, Handbook of Set-theoretic Topology, Edited by K. Kunen and J. E. Vaughan, Chapter 10, Elsevier Science Publishers B. V., 1984.
- R.C. Haworth and R.A. McCoy, *Baire spaces*, Dissertationes Math. (Rozprawy Mat.) 141 (1977), 73 pp.
- 15. S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 189-197.
- 16. S. Levi, Closed mappings are open at a G_{δ} set, Portugal. Math. 38 (1979), 7–9.
- P. Lin and W.B. Moors, Rich families, W-spaces and the product of Baire spaces, Math. Balkanica (N.S.) 22 (2008), no. 1-2, 175-187.
- 18. E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173–176.
- V. Mishkin, Closed mappings and the Baire category theorem, Polon. Sci. Sr. Sci. Math. Astronom. Phys. 23 (1975), no. 4, 425–429.
- 20. K. Morita, On closed mappings, Proc. Japan Acad. 32 (1956), no. 8, 539–543.
- 21. I.A. Vaĭnšteĭn, On closed mappings, Moskov. Gos. Univ. Uč. Zap. 155 (1952), no. 5, 3–53.
- H. Wicke and J. Worrell, Characterizations of developable topological spaces, Canad. J. Math. 17 (1965), 820–830.

¹ MATHEMATICAL INSTITUTE, SLOVAK ACADEMY OF SCIENCES, ŠTEFÁNIKOVA 49, 814 73 BRATISLAVA, SLOVAKIA.

E-mail address: hola@mat.savba.sk

 2 Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.

 $E\text{-}mail\ address: \texttt{mirmostafaei@ferdowsi.um.ac.ir}$

³ DEPARTMENT OF MATHEMATICS, YOUNGSTOWN STATE UNIVERSITY, YOUNGSTOWN, OHIO, 44555-0001, U.S.A.

E-mail address: zpiotrowski@ysu.edu