
Banach J. Math. Anal. 9 (2015), no. 1, 243–252
http://doi.org/10.15352/bjma/09-1-18
ISSN: 1735-8787 (electronic)
http://projecteuclid.org/bjma

POINTS OF OPENNESS AND CLOSEDNESS OF SOME
MAPPINGS
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Abstract. Let X and Y be topological spaces and f : X → Y be a continuous
function. We are interested in finding points of Y at which f is open or closed.
We will show that under certain conditions, the set of points of openness or
closedness of f in Y , i. e. points of Y at which f is open (resp. closed) is a
Gδ subset of Y . We will extend some results of S. Levi, R. Engelking and I. A.
Văınštĕın.

1. Introduction

Let X and Y be topological spaces. Following I.A. Văınštĕın [21], a continuous
mapping f : X → Y is called closed at y ∈ Y if for every open subset W ⊆ X
containing f−1(y), there is a neighborhood V of y such that f−1(V ) ⊆ W . We
denote by CL(f) the set of all points of Y at which f is closed. Then f is closed
if and only if CL(f) = Y .

Let us recall that f : X → Y is open at x ∈ X if it maps neighborhoods of
x into neighborhoods of f(x) and f is open at y ∈ Y if for each open A in X,
y ∈ f(A) implies y ∈ Intf(A). It follows from the definition that f : X → Y is
open at y ∈ f(X) if and only if it is open at each point of f−1(y).
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The investigation of the set of points of Y at which f is open for a continuous
closed mapping f : X → Y has been studied by S. Levi in [16]. In fact, S. Levi
[16] proved the following theorem.

Theorem 1.1. If f : X → Y is a continuous closed mapping on a metrizable
space X, the set of points of Y at which f is open is a Gδ set in Y .

The study of the points of closedness of a continuous function and its variants
has been already considered (see e.g. [18, 20]). In particular, R. Engelking [10]
proved the following.

Theorem 1.2. If f is a continuous mapping from a completely metrizable space
X into a first countable Hausdorff space Y , the set of points of Y at which f is
closed is a Gδ set in Y .

The following result is due to I.A. Văınštĕın [21].

Theorem 1.3. Let f : X → Y be a continuous mapping of a completely metriz-
able space X to a first countable Hausdorff space Y . Then for every set A ⊆ X
such that f |A : A → f(A) is closed, there exists a Gδ set B ⊂ X such that A ⊆ B
and the restriction f |B : B → f(B) is closed.

In this paper, we will generalize Theorem 1.1 for topological spaces with a base
of countable order. We shall also improve Theorems 1.2 and 1.3. More precisely,
we will show that Theorems 1.2 and 1.3 are true when X is completely metrizable
and Y is a w-space.

Let us recall that G. Gruenhage (1976) introduced a class of topological spaces,
called W -spaces. It is known that every first countable space is a W -space but
the converse is not true in general [12, 17].

2. openness of mappings from spaces with a base of countable
order

We begin this section by recalling some concepts:

Definition 2.1. Let f : X → Y be a function. The function f is called open
(resp. feebly open) at x ∈ X if f(x) ∈ Int(f(U)) (resp. f(U) has a nonempty
interior) for each neighborhood U of x. f is called open (resp. feebly open) if it
is open (feebly open) at each point of X.

Definition 2.2. A topological space X is said to have a base of countable order
if there is a sequence {Bn} of bases for X such that if x ∈ Bn ∈ Bn and Bn+1 ⊂ Bn

for each n ≥ 1, then {Bn}n is a base at x.

Spaces having bases of countable order have been studied in depth by H. Wicke
and J. Worell [22]. It is known that every metrizable space has a base of countable
order.

In the following definition we will use the notion of a tree. A tree is a partially
ordered set (T,≤) in which, for every t ∈ T the set t∗ = {s ∈ T : s < t} of
predecessors is well-ordered. The αth level of T is the set of t for which t∗ has
order type α. A branch in a tree is a maximal chain. A tree of the height ℵ0 is a
tree all of whose levels have cardinality less than ℵ0.
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Definition 2.3. A sieve for a topological space (X, τ) is a pair (G, T ), where
(T,≤) is an indexing tree of the height ℵ0 and G : T → τ is a decreasing function
(i.e. t ≤ t′ implies G(t) ⊇ G(t′)) such that

(i) G(T0) = {G(t) : t ∈ T0} covers X, where T0 is the least level of T ,
(ii) for each t ∈ T , G(t) =

⋃
{G(t′) : t′ is an immediate successor of t}.

We need the following result.

Theorem 2.4. The following are equivalent:

(i) X has a base of countable order.
(ii) X has a sieve (G, T ) such that if b is a branch of T and x ∈

⋂
t∈b G(t),

then {G(t) : t ∈ b} is a base at x.

Proof. See [13, Theorem 6. 3]. �

Let X be a topological space with a base of countable order and Y be a topo-
logical space. Let f : X → Y be a function and (G, T ) be a sieve for X from
Theorem 2.4. Let (T,≤) be an indexing tree and for n ∈ ω, let Tn be the nth
level of T . Define

A1 = {x ∈ X : ∃t1,x ∈ T1, x ∈ G(t1,x), f(x) ∈ Int f(G(t1,x)}.
Suppose that the sets A1, . . . , An−1 have been defined. Define

An = {x ∈ An−1 : ∃tn,x ≥ tn−1,x, tn,x ∈ Tn, x ∈ G(tn,x), f(x) ∈ Int f(G(tn,x))}.
Now, we define a function Of : X → [0,∞] by

Of (x) =

{
inf{ 1

n
: x ∈ An} x ∈ An for some n ≥ 1,

+∞ otherwise.

Lemma 2.5. Let X be a topological space with a base of countable order and Y
be a topological space. A function f : X → Y is open at x ∈ X if and only if
Of (x) = 0.

Proof. If f : X → Y is open at x ∈ X, then x ∈ An for every n ≥ 1. Thus
Of (x) = 0.

Suppose now Of (x) = 0. We want to prove that f is open at x. Note that for
each n ≥ 1, x ∈ An. Also, x ∈

⋂
n≥1 G(tn,x). Since {tn,x : n ≥ 1} is a branch

of T , the family {G(tn,x) : n ≥ 1} is a base of neighborhoods of x. Let U be an
open set in X such that x ∈ U . There is n ∈ ω such that G(tn,x) ⊆ U . Since
x ∈ An, f(G(tn,x)) is a neighborhood of f(x). Thus f(U) is also a neighborhood
of f(x). �

Lemma 2.6. Let f : X → Y be a continuous function, where X is a topological
space with a base of countable order and Y is a topological space. Then Of : X →
[0,∞] is upper semicontinuous.

Proof. For each n ∈ ω, define fn : X → [0,∞] by fn(x) = 1/n, if x ∈ An and
fn(x) = ∞, if x /∈ An. Since An is open, fn is upper semicontinuous. Therefore,
as Of (x) = infn∈ωfn(x) for every x ∈ X, Of is upper semicontinuous. �
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Corollary 2.7. Let X be a topological space with a base of countable order, Y be
a topological space and f : X → Y be a continuous function. The set of all points
of X at which f is open is a Gδ set in X.

Proof. In view of Lemma 2.5, the set of all x ∈ X at which f is open equals to
the set {x ∈ X : Of (x) = 0}. Since

{x ∈ X : Of (x) = 0} =
∞⋂

n=1

{x ∈ X : Of (x) <
1

n
},

so that the result follows from Lemma 2.6. �

Recall that a function f from a topological space X into a topological space Y
is quasicontinuous at x ∈ X [15] if for every open set V in Y with f(x) ∈ V and
for every open set U in X with x ∈ U there is a nonempty open set U ′ ⊂ U such
that f(U ′) ⊂ V . f is quasicontinuous if it is quasicontinuous at every x ∈ X.

Theorem 2.8. Let X be a Baire space with a base of countable order and Y be a
topological space. Let f : X → Y be a feebly open quasicontinuous function. Then
the set of points of X at which f is open is a residual set in X(i.e. it contains a
dense Gδ set in X).

Proof. Let n ∈ ω. Put Hn = {x ∈ X : Of (x) < 1/n}. To prove the density of
Hn, let U be an open nonempty subset of X. There must exist k ∈ ω, k > n
and tk ∈ Tk with G(tk) ⊂ U . Since f is feebly open, Intf(G(tk)) 6= ∅. Put
W = Intf(G(tk)). The quasicontinuity of f implies that there is a nonempty
open set L ⊂ f−1(W )∩G(tk) such that L ⊂ Ak ⊂ {x ∈ X : Of (x) ≤ 1/k} ⊂ Hn.
Also, it is easy to verify that Hn ⊂ IntHn for every n ∈ ω. Thus for every n ∈ ω,
IntHn is dense too. �

Theorem 2.9. Let X be a Baire space with a base of countable order and Y be
a topological space. Let f : X → Y be a feebly open continuous function. Then
the set of points of X at which f is open is a dense Gδ set in X.

Proof. By Theorem 2.8, we know that the set of points of X at which f is open
is dense (it is residual). Corollary 2.7 implies that it is a Gδ set. �

The following example shows that the condition of the feebly openness of f in
Theorem 2.9 is essential.

Example 2.10. Put X = {(x, 0) : x ∈ Q}∪{(p/q, 1/q) : p, q are relatively prime,
p/q ∈ Q}, where Q is the set of rational numbers. Consider X with the topology
inherited from the usual topology of the plane [1]. Let f be the natural projection
onto {(x, 0) : x ∈ Q}. Of course, f is continuous, X is a Baire metrizable space,
but f is not feebly open. It is easy to verify that the set of points of X at which
f is open, is not dense in X.

Definition 2.11. A function f : X → Y is called irreducible if f(X) = Y but
for each proper closed subset F of X, f(F ) 6= Y .

Theorem 2.12. Let f : X → Y be continuous irreducible and closed. If X is a
Baire space with a base of countable order, then the set of points of X at which
f is open is a dense Gδ set in X.
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Proof. By Theorem 4.10 (i) in [14], an irreducible closed function is feebly open.
Thus we can use Theorem 2.9. �

Example 2.10 shows that the irreducibility of f in the previous Theorem is
essential.

Definition 2.13. Let X be a topological space with a base of countable order
and f : X → Y be a function. Define Of : X → [0,∞] by

Of (y) =

{
sup{Of (x) : x ∈ f−1(y)} y ∈ f(X),

0 otherwise.

The following lemma follows immediately from the definition.

Lemma 2.14. Let X be a topological space with a base of countable order and Y
be a topological space. Then a continuous function f : X → Y is open at y ∈ Y
if and only if Of (y) = 0.

Proposition 2.15. Let X be a topological space with a base of countable order,
Y be a topological space and f : X → Y be a continuous function and closed in
y ∈ Y . Then Of is upper semicontinuous at y.

Proof. If y /∈ f(X), then y /∈ f(X) since f is not closed at each point of f(X) \
f(X). Hence Y \f(X) is a neighborhood of y and Of (z) = 0 for each z ∈ Y \f(X).
If y ∈ f(X) and Of (y) = ∞, then there is nothing to prove. Suppose that
Of (y) < ε and choose ε′ > 0 such that Of (y) < ε′ < ε. Then for each x ∈ f−1(y),
we have Of (x) < ε′. Since Of is upper semicontinuous, for each x ∈ f−1(y), we
can find a neighborhood Vx of x such that Of (t) < ε′ for each t ∈ Vx. Let
V =

⋃
x∈f−1(y) Vx. Then V is an open set which contains f−1(y). Since f is closed

in y, there is a neighborhood W of y such that f−1(W ) ⊆ V . If z ∈ W ∩ f(X),
then

Of (z) = sup{Of (t) : t ∈ f−1(z)} ≤ ε′ < ε.

If z ∈ W ∩ (Y \ f(X)), then Of (z) = 0 < ε. Hence Of is upper semicontinuous.
�

The following theorem generalizes S. Levi’s result proved for a metrizable space
X, see [16].

Theorem 2.16. Let X be a topological space with a base of countable order and
Y be a topological space. If a continuous function f : X → Y is closed, then the
set of points of Y at which f is open is a Gδ set.

Proof. Let E denote the set of points of Y at which f is open. Thanks to Lemma
2.14

E = {y ∈ Y : Of (y) = 0} =
⋂
n∈ω

{y ∈ Y : Of (y) <
1

n
}.

According to Proposition 2.15, the latter set is a Gδ subset of Y .
�
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3. Closedness of continuous mappings

In this section, we will study the set of points of closedness of a continuous
function. This study is related to the much studied problem of the existence of
Choquet kernels for set-valued mappings.

Let Φ : X → 2Y be a set-valued mapping acting between topological spaces
X and Y . We say that Φ is upper semicontinuous at x ∈ X if for each open
subset V of Y with Φ(x) ⊆ V there exists an open neighbourhood U of x such
that Φ(U) ⊆ V . The function Φ is called upper semicontinuous if it is upper
semicontinuous at each point of X. Accordingly, a function f maps closed sets
into closed sets, if and only if the mapping f−1 : Y → X is upper semicontinuous
everywhere.

We also define the active boundary of Φ at x by

Frac(Φ)(x) =
⋂

U∈U(x)

Φ(U) \ Φ(x),

where U(x) denotes the set of all neighbourhoods of x and we define Φx : X → 2Y

by

Φx(y) =

{
Frac(Φ)(x) if y = x,

Φ(y) \ Φ(x) if y 6= x.

There has been a considerable effort put into the question of when Frac(Φ)(x)
is a compact kernel for Φ at x, that is, when Frac(Φ)(x) is compact and the
mapping Φx is upper semicontinuous at x, see [4, 5, 7, 8].

In the case when the mapping Φ is strongly injective, i.e., Φ(x) ∩Φ(y) = ∅ for
any distinct x and y, see [3], we get the following general result.

Theorem 3.1. Let (X, τ) be a T1 topological space and Y be a Čech-complete
space. If Φ : X → 2Y is a strongly injective mapping, then

G = {x ∈ X : Frac(Φ)(x) is compact and Φx is upper semicontinuous at x}

is a Gδ subset of X.

Proof. Let β(Y ) be the Čech-Stone compactification of Y . Since Y is Čech-
complete, there exists a sequence of open subsets {Gn}n∈ω of β(Y ) such that
Y =

⋂
n∈ω Gn. For each n ∈ ω, let

On =
⋃
{U ∈ τ : Φ(U \ {x})

β(Y )
⊆ Gn for some x ∈ U}.

Since Φ is strongly injective, for every x ∈ X we have Φx(y) = Φ(y) if y 6= x.
Clearly, each On is open. Let x ∈ G and n ∈ ω and Frac(Φ)(x) ⊆ Gn. There

is an open set Vn in β(Y ) such that Frac(Φ)(x) ⊆ Vn ⊆ Vn
β(Y ) ⊆ Gn. The

upper semicontinuity of Φx at x implies that there is U ∈ τ such that x ∈ U and

Φx(U) ⊆ Vn. Thus Φ(U \ {x})
β(Y )

⊆ Gn. Hence G ⊆
⋂

n∈ω On.
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On the other hand if y ∈
⋂

n∈ω On and Φ is strongly injective, so that

Frac(Φ)(y) =
⋂

U∈U(y)

Φ(U \ {y}),

then y ∈ G. Thus, G =
⋂

n∈ω On; which is a Gδ set. �

We can now prove the following result.

Proposition 3.2. Suppose that f : Y → X is a continuous mapping from a
Čech-complete space Y into a Hausdorff space X. If

CL(f) ⊆ {x ∈ X : Frac(f−1)(x) is compact and f−1
x is upper semicontinuous at x},

then CL(f) is a Gδ subset of X.

Proof. Since f is continuous and X is Hausdorff, the graph of f is closed and so
Frac(f−1)(x) ⊆ f−1(x) for all x ∈ X. Therefore,

{x ∈ X : Frac(f−1)(x) is compact and f−1
x is upper semicontinuous at x} ⊆ CL(f)

and so

{x ∈ X : Frac(f−1)(x) is compact and f−1
x is upper semicontinuous at x} = CL(f).

The result now follows from the previous theorem since the mapping f−1 is
strongly injective. �

Corollary 3.3. Suppose that f : Y → X is a continuous mapping from a Čech-
complete space Y into a Hausdorff first countable space X. If Y has the property
that every relatively countably compact subset of Y has a compact closure then
CL(f) is a Gδ subset of X.

Proof. This follows directly from Theorem 2.3 in [4] and the previous proposition.
�

Many spaces satisfy the property that every relatively countably compact sub-
set has a compact closure. For example, by the Eberlien-Šmulian Theorem, for
any Banach space (X, ‖ . ‖), (X, weak) has this property as does every Diedonné
complete space, see [4] and [8].

Let us recall that G. Gruenhage [12] introduced a class of topological spaces
called W -spaces.

Let X be a topological space and x0 ∈ X. The topological game G(X, x0) is
played by two players O and P as follows.
In the step n ≥ 1, the player O selects a neighborhood Hn of x0 and then P
answers by choosing a point xn ∈ Hn. If

p1 = (H1, x1), · · · , pn = (H1, x1, · · · , Hn, xn)

are the first ”n” moves of some play ( of the game ), we call pn the nth (partial
play) of the game. We say that O wins the game p = (Hn, xn)n≥1 if xn → x0. We
say that P wins the game p = (Hn, xn)n≥1 if (xn)n does not converge to x0.

A strategy for the player P is a sequence of functions s = {sn}, such that
sn is a function from (H1, . . . , Hn) to Hn for each n ≥ 1. When s = {sn} is a
strategy for the player P , a s-play for the player P is a play p = (Hn, xn)n such
that xn = sn(H1, . . . , Hn) for each n ≥ 1. That is a play in which the player P
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select his (or her) choices according to the strategy s. Similarly, a strategy for
the player O can be defined. We refer the reader to [2] for further information
about other kinds of topological games and their applications in analysis.

A point x ∈ X is called a W -point (respectively a w-point) in X if O has
(respectively P fails to have) a winning strategy in the game G(X, x). A space
X in which each point of X is a W -point (respectively a w-point) is called a
W -space (respectively a w-space.) It is known that every first countable space is
a W -space [12, Theorem 3. 3]. However, the converse is not true in general [17,
Example 2. 7].

There are w-spaces which are not W -spaces. For example [11] if X is the one
point compactification T ∪{∞} of an Aronszajn tree T with the interval topology,
then neither P nor O has a winning strategy in G(X,∞).

In order to prove the main result of this section, we need the following auxiliary
results.

Lemma 3.4. Let Y be a metrizable space and X be a Hausdorff w-space. Let
f : Y → X be continuous. If x ∈ CL(f), then ∂f−1(x) is compact.

Proof. Let d be a compatible metric on Y . If x ∈ CL(f) is an isolated point, then
∂f−1(x) = ∅. If x ∈ CL(f) is not an isolated point, we will show that ∂f−1(x)
is countably compact. To prove this let {yn} be a sequence in ∂f−1(x). Without
loss of generality, we may assume that {yn} is infinite. Let U1 be a neighborhood
of x and the first choice of player O. Then we choose some y′1 ∈ f−1(U1) \ f−1(x)
such that d(y1, y

′
1) < 1. Define x1 = f(y′1) as the answer of P to this movement.

In general, in the step n, when the partial play (U1, x1, . . . , Un) is specified, we
choose a point y′n ∈ f−1(Un) \ f−1(x) such that d(yn, y

′
n) < 1

n
. Define xn = f(y′n)

as the next move of player P . In this way, by the induction on n a strategy for
the player P is defined. Since X is a w-space, there is a play p = (Un, xn)n which
is won by O. Hence xn → x.

Let A = {y′1, y′2, . . . } and W = Y \ A. We claim that W is not open. On the
contrary, suppose that W is open. Since f−1(x) ⊂ W and f is closed in x, there
is a neighborhood U of x such that f−1(U) ⊂ W . But then xn ∈ U for infinitely
many n. Therefore y′n ∈ W for infinitely many n. This contradiction proves our
claim. Let y ∈ Ā \ A. Since d(yn, y

′
n) < 1

n
for each n, y is a cluster point of

{yn : n ≥ 1} ⊂ ∂f−1(x). Therefore y ∈ ∂f−1(x). This proves our result. �

Lemma 3.5. Let X be a Hausdorff w-space and Y be a topological space. Let
f : Y → X be a continuous mapping. Then

CL(f) ⊆ {x ∈ X : f−1
x is upper semicontinuous at x}.

Proof. Let x ∈ CL(f). We will prove that f−1
x is upper semicontinuous at x.

Suppose that f−1
x is not upper semicontinuous at x. There is an open set V in

Y such that Frac(f−1)(x) ⊆ V and for every open neighbourhood U of x there is
xU ∈ U , xU 6= x and yu ∈ f−1

x (xu) \ V .
Let U1 be a neighbourhood of x and the first choice of player O. There is

x1 ∈ U1, x1 6= x and y1 ∈ f−1
x (x1) \ V . Define x1 as the answer of P to this

movement.
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In general, in the step n, when the partial play (U1, x1, ..., Un) is specified, there
is a point xn ∈ Un, xn 6= x and a point yn ∈ f−1

x (xn) \ V . Define xn as the next
move of player P . In this way, by the induction on n a strategy for the player P
is defined. Since X is a w-space, there is a play p = (Un, xn)n∈ω, which is won by
O. Hence xn → x.

We claim that the sequence {yn}n∈ω has a cluster point. Suppose there is no
cluster point of the sequence {yn}n∈N. Thus the set L = {yn : n ∈ ω} is a closed
set in Y and f−1(x) ⊆ Y \ L. Since x ∈ CL(f), there is an open neighbourhood
G of x such that f−1(G) ⊆ Y \ L, a contradiction.

Let y ∈ Y be a cluster point of {yn}n∈ω. Then y ∈ Y \ V . It is easy to verify
that y ∈ Frac(f−1)(x), a contradiction. �

Theorem 3.6. Let Y be a completely metrizable space and X be a Hausdorff
w-space. Let f : Y → X be a continuous mapping. Then the set of all points of
X at which f is closed is a Gδ subset of X.

Proof. Follows from Proposition 3.2, Lemmas 3.4 and 3.5 and the fact that
Frac(f−1)(x) = ∂f−1(x).

�

Corollary 3.7. [10, Theorem 1] For every mapping f : Y → X from a completely
metrizable space Y to a first countable Hausdorff space X, the set of all points of
X at which f is closed is a Gδ set.

I.A. Văınštĕın [21] proved that if f is a continuous mapping of a completely
metrizable space Y to a first-countable Hausdorff space X, then for every set
A ⊂ Y such that the restriction f |A : A → f(A) is closed, there exists a Gδ set
B ⊂ Y such that A ⊂ B and the restriction f |B : B → f(B) is closed. Theorem
3.6 enables us to give the following generalization of this result.

Corollary 3.8. Let f be a continuous mapping from a completely metrizable
space Y to a Hausdorff w-space X. Then for every set A ⊂ Y such that the
restriction f |A : A → f(A) is closed, there exists a Gδ set B ⊂ Y such that
A ⊂ B and the restriction f |B : B → f(B) is closed.

Proof. Let A ⊂ Y be such that the restriction f |A : A → f(A) is closed. The
set A is a completely metrizable space. According to Theorem 3.6, there is a Gδ

subset D of X such that f : A → X is closed at each point of D. Observe that
CL(f |A) ⊂ CL(f |A) ([9], 4.5.13 (a)). Let D =

⋂
n≥1 Gn, where each Gn is open

in X. By our assumption, f(A) ⊂ D. Since f is continuous, f−1(Gn) is open.
There is a sequence {Vn}n≥1 of open sets in Y such that A =

⋂
n≥1 Vn. Thus

B =
⋂

n,m≥1 f−1(Gn) ∩ Vm has the required properties. �
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