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Abstract. In this paper, we study an algebra A consisting of all arithmetic
functions, and corresponding dynamical systems acting on A determined by a
fixed prime p. Starting from free probabilistic models on A determined by p,
we construct certain group dynamical systems induced by the additive group R
of all real numbers. We investigate the basic properties and free-probabilistic
data of such dynamical systems by constructing corresponding crossed product
algebras.

1. Introduction

Recently, relations between operator theory and number theory have been stud-
ied (e.g., [9] through [16, 31, 20, 5, 7]). In particular, we apply free probability
(which is one of branches of operator algebra theory, e.g., [29, 30, 32]) to modern
number theory (e.g., [21, 22, 8, 23, 19, 6, 26, 27]).

Arithmetic functions are functions f defined from the natural numbers N into
the complex numbers C. In particular, they induce (classical) Dirichlet series,

Lf (s) =
∑∞

k=1
f(k)
ks , for all s ∈ C, for f ∈ A.

These are used in modern number theory; combinatorial number theory, L-
function theory, and analytic number theory, etc (e.g., [21, 22, 31, 8, 23, 19, 6]).
Entireness and analyticity of L-functions are interesting topics in pure analysis,
too.
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Recall that if f1, f2 are arithmetic functions, then the convolution f1 ∗ f2 is
again an arithmetic function, where

f1 ∗ f2(n)
def
=
∑
d|n

f1(d) f2

(
n
d

)
,

for all n ∈ N, where “d | n” means “d divides n,” or “n is divisible by d,” for
d ∈ N.

The collection A of all arithmetic functions forms an algebra, under the usual
functional addition and convolution. The convolution (∗) on arithmetic functions
provides the usual multiplication on the set of L-functions, i.e.,

(Lf1(s)) (Lf2(s)) = Lf1∗f2(s).

Recently, the author and Jorgensen showed in [15, 16] that all arithmetic func-
tions are understood as Krein-space operators on a certain Krein space, for a fixed
prime. Start from constructing a free probabilistic model (A, gp) as in [11, 13],
we construct an indefinite pseudo-inner product [, ] on A,

[f, h] = gp (f ∗ h∗) , for all f, h ∈ A.
Then, by the free-distributional data obtained in [11, 13], the indefinite pseudo-

inner product structure of A is embedded in an indefinite inner product space
C2

Ao
= (C2, [, ]Ao), under certain quotient relation, where

[(t1, s1), (t2, s2)]Ao =

〈(
t1
s1

)
,

(
0 1
1 0

)(
t2
s2

)〉
2

,

where <,>2 means the (positive-definite) inner product on C2,

< (t1, s1), (t2, s2) >2 = t1t2 + s1s2,

where z means the conjugate of z, for all z ∈ C.
And this indefinite inner product space C2

Ao
is isomorphic to the Krein subspace

Kp of the Krein space K2 = C2 ⊕ C2, with its indefinite inner product [, ]2,

[(t1, s1), (t2, s2)]2 = < t1, t2 >2 − < s1, s2 >2 .

Thus, one can understand all arithmetic functions as Krein-space operators for
fixed primes (See [16]). In [15], as an application of [16], we considered Krein-
space operators induced in particular by Dirichlet characters.

For more about Krein spaces and Krein-space operators, we refer [20, 5, 4].
In this paper, we concentrate on a certain group action E of a flow R, the

additive group (R,+) of real numbers, acting onA. Such an action E is introduced
as a system of morphisms {Ez}z∈C (over C) in [16]. However, in [16], we did
not consider detailed analytic and free-probabilistic properties of such an action.
Here, we study this action and their corresponding images {Ez(f)}f∈A in detail
(See Section 3 below). We understand the construction of morphisms Et as a
group action E of R, by restricting our interests to R from C. i.e.,

t ∈ R 7−→ Et : A → A, for all t ∈ R.
It means that we obtain group dynamical system (A, R, E), and hence, the

corresponding crossed product algebra AE = A ×E R. Representations of AE will
be considered.
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2. Free Probability

We briefly introduce free probability. Free probability is a branch of operator
algebra theory, a noncommutative probability theory on noncommutative (and
hence, on commutative) algebras (e.g., pure algebraic algebras, topological alge-
bras, topological ∗-algebras, etc).

Let A be an arbitrary algebra over the complex numbers C, and let ψ : A → C
be a linear functional on A. The pair (A, ψ) is called a free probability space (over
C). All operators a ∈ (A, ψ) are called free random variables (See [30, 32]). Note
that free probability spaces are dependent upon the choice of linear functionals.

Let a1, · · · , as be a free random variable in a (A, ψ), for s ∈ N. The free
moments of a1, · · · , as are determined by the quantities

ψ(ai1 · · · ain),

for all (i1, · · · , in) ∈ {1, · · · , s}n, for all n ∈ N.
And the free cumulants kn(ai1 , · · · , ain) of a1, · · · , as is determined by the

Möbius inversion;

kn(ai1 , · · · , ain) =
∑

π∈NC(n)

ψπ(ai1 , · · · , ain)µ(π, 1n)

=
∑

π∈NC(n)

(
Π

V ∈π
ψV (ai1 , · · · , ain)µ

(
0|V |, 1|V |

))
,

for all (i1, · · · , in) ∈ {1, · · · , s}n, for all n ∈ N, where ψπ(· · · ) means the
partition-depending moments, and ψV (· · · ) means the block-depending moment ;
for example, if

π = {(1, 5, 7), (2, 3, 4), (6)} in NC(7),

with three blocks (1, 5, 7), (2, 3, 4), and (6), then
ψπ

(
ar1

i1
, · · · , ar7

i7

)
= ψ(1,5,7)(a

r1
i1
, · · · , ar7

i7
) ψ(2,3,4)(a

r1
i1
, · · · , ar7

i7
) ψ(6)(a

r1
i1
, · · · , ar7

i7
)

= ψ(ar1
i1
ar5

i5
ar7

i7
) ψ(ar2

i2
ar3

i3
ar4

i4
) ψ(ar6

i6
).

Here, the set NC(n) denotes the noncrossing partition set over {1, · · · , n}. It
is a lattice with inclusion as ≤, such that

θ ≤ π
def⇐⇒ ∀ V ∈ θ, ∃ B ∈ π, s.t., V ⊆ B,

where V ∈ θ or B ∈ π means that V is a block of θ, respectively, B is a block
of π, and ⊆ means the usual set inclusion, having its minimal element 0n = {(1),
(2), · · · , (n)}, and its maximal element 1n = {(1, · · · , n)}.

A partition-dependent free moment ψπ(a, · · · , a) is given by

ψπ(a, · · · , a) = Π
V ∈π

ψ
(
a|V |
)
,

where |V | means the cardinality of V.

Also, µ is the Möbius functional from NC × NC into C, where NC =
∞
∪

n=1

NC(n). i.e., µ satisfies

µ(π, θ) = 0, for all π > θ in NC(n),

and

µ(0n, 1n) = (−1)n−1 cn−1, and
∑

π∈NC(n)

µ(π, 1n) = 0,
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for all n ∈ N, where

ck = 1
k+1

(
2k
k

)
= 1

k+1
(2k)!
k!k!

means the k-th Catalan numbers, for all k ∈ N. Notice that since each NC(n) is
a well-defined lattice, if π < θ are given in NC(n), one can decide the “interval”

[π, θ] = {δ ∈ NC(n) : π ≤ δ ≤ θ},
and it is always lattice-isomorphic to

[π, θ] = NC(1)k1 ×NC(2)k2 × · · · ×NC(n)kn ,

for some k1, · · · , kn ∈ N, where NC(l)kt means “l blocks of π generates kt

blocks of θ,” for kj ∈ {0, 1, · · · , n}, for all n ∈ N. By the multiplicativity of µ on
NC(n), for all n ∈ N, if an interval [π, θ] in NC(n) satisfies the above set-product
relation, then we have

µ(π, θ) =
n

Π
j=1
µ(0j, 1j)

kj .

(For details, see [30]).
Free moments of free random variables and the free cumulants of them provide

equivalent free distributional data. For example, if a free random variable a in
(A, ψ) is a self-adjoint operator in the von Neumann algebra A in the sense that:
a∗ = a, then both free moments {ψ(an)}∞n=1 and free cumulants {kn(a, · · · , a)}∞n=1

give its spectral distributional data.
However, their uses are different. For instance, to study the free distribution

of fixed free random variables, the computation of free moments is better; and
to study the freeness of distinct free random variables in the structures, the
computation and observation of free cumulants is better (See [30, 29]).

Definition 2.1. We say two subalgebras A1 and A2 of A are free in (A, ψ), if all
“mixed” free cumulants of A1 and A2 vanish.. Similarly, two subsets X1 and X2

of A are free in (A, ψ), if two subalgebras A1 and A2, generated by X1 and X2

respectively, are free in (A, ψ). Two free random variables x1 and x2 are free in
(A, ψ), if {x1} and {x2} are free in (A, ψ).

Suppose A1 and A2 are free subalgebras in (A, ψ). Then the subalgebra A
generated both by these free subalgebras A1 and A2 is denoted by

A
def
= A1 ∗C A2.

Assume that A is generated by its family {Ai}i∈Λ of subalgebras, and suppose
the subalgebras Ai are free from each other in (A, ψ), for i ∈ Λ. i.e.,

A = ∗C
i∈Λ

Ai.

Then, we call A the free product algebra of {Ai}i∈Λ.

3. Free Probabilistic Models of A Induced by The Primes

In this section, we introduce free probabilistic models (A, gp) on the arithmetic
algebra A determined by fixed primes p (See [11, 12, 13]). And, we put topologies
on A determined by primes to make our dynamical systems act on A properly.
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3.1. Arithmetic p-Prime Probability Spaces (A, gp). Let A be the set of
all arithmetic functions, as a vector space over C. Define the convolution (∗) on
A by

f1 ∗ f2(n)
def
=
∑
d|n

f1(d) f2

(
n
d

)
, for all n ∈ N.

Then A becomes an algebra over C. We call A the arithmetic(-functional)
algebra.

Define a linear functional gp on A by the point-evaluation at p;
(3.1.1)

gp(f)
def
= f(p), for all f ∈ A,

for any fixed prime p.

Definition 3.1. Let A be the arithmetic algebra, and let gp be the linear func-
tional (3.1.1), for a prime p. Then the free probability space (A, gp) is called the
arithmetic p-prime probability space.

We study primes p as linear functionals gp on arithmetic functions, and then
arithmetic functions have corresponding free-distributional data induced by primes.

Proposition 3.2. (See [11]) Let (A, gp) be the arithmetic p-prime-probability
space, for a fixed prime p. If f, f1, f2 are free random variable in (A, gp), then

(3.1.2) gp(f1 ∗ f2) = gp(f1) f2(1) + f1(1) gp(f2).
(3.1.3) gp

(
f (n)

)
= nf(1)n−1 f(p), for all n ∈ N,

where

f (n) def
= f ∗ · · · · · · .. ∗ f︸ ︷︷ ︸

n-times

,

for all n ∈ N. �

The free moment computation (3.1.3) is obtained by (3.1.2), inductively. Also,
one has that

(3.1.2)′

gp

(
n∗

j=1
fj

)
=
∑n

j=1 fj(p)

(
Π

l 6=j∈{1,··· ,n}
fl(1)

)
,

for all f1, · · · , fn ∈ (A, gp), for n ∈ N.
From the above proposition, one can verify that free-distributional data of

arithmetic functions f in (A, gp) is completely determined by quantities f(1) and
f(p). It motivates the main result of [13].

Proposition 3.3. (See [13]) Let A be the arithmetic algebra and p, an arbitrary
fixed prime. Then, for a fixed p, the algebra A is decomposed by

A = t
(a,b)∈C×C

[a, b],

where

[a, b]
def
= {f ∈ A : f(1) = a, and f(p) = b in C}.

�

We considered the following morphism Exp∗t in [16], for “t ∈ C.”
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Corollary 3.4. Let t ∈ C. Define a morphism Exp∗t on A by

Exp∗t (f)
def
=
∑∞

n=1
tn

n!
f (n), for all f ∈ A.

Then
(3.1.4)

gp (Exp∗t (f)) =
(
tetf(1)

)
f(p).

Proof. Observe that:

gp (Exp∗x(f)) = gp

(∑∞
n=1

tn

n!
f (n)

)
=
∑∞

n=1
tn

n!

(
f (n)(p)

)
=
∑∞

n=1
tn

n!
(nf(1)n−1f(p))

by (3.1.3)

=
∑∞

n=1
tnf(1)n−1

(n−1)!
f(p) =

∑∞
n=1

t(tn−1f(1))
n−1

(n−1)!
f(p)

= f(p)
(
t
∑∞

k=0
(tf(1))k

k!

)
=
(
tetf(1)

)
f(p) =

(
tetf(1)

)
gp(f),

for all f ∈ A. �

Also, the above morphism Exp∗t (•) on A satisfies a certain co-cycle property
for gp.

Corollary 3.5. Let Exp∗t (•) be as above in (3.1.4). Then
(3.1.5)

gp (Exp∗t (f1 + f2)) = gp ((Exp∗t (f1)) ∗ (Exp∗t (f2)))

+ gp (Exp∗t (f1)) + gp (Exp∗t (f2)) ,
for all f1, f2 ∈ A, for all primes p.

Proof. Let fj be arithmetic functions in the arithmetic p-prime probability space
(A, gp), and let Exp∗t (fj) be the corresponding elements of (A, gp), for j = 1, 2,
where Exp∗t (•) is a morphism introduced as above, for all t ∈ C. Observe that:

gp ((Exp∗t (f1)) ∗ (Exp∗t (f2)))

= gp

((∑∞
n=1

tn

n!
f

(n)
1

)(∑∞
k=1

tk

k!
f

(k)
2

))
= gp

(∑∞
n=1

∑∞
k=1

tn+k

n!k!
f

(n)
1 ∗ f (k)

2

)
=
∑∞

n=1

∑∞
k=1

tn+k

n!k!
gp

(
f

(n)
1 ∗ f (k)

2

)
=
∑∞

n=1

∑∞
k=1

tn+k

n!k!

(
f

(n)
1 (1)f

(k)
2 (p) + f

(n)
1 (p)f

(k)
2 (1)

)
by (3.1.2)

=
∑∞

n=1

∑∞
k=1

tn+k

n!k!

(
(f1(1))

n f
(k)
2 (p) + f

(n)
1 (p) (f2(1))k

)
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since h(n)(1) = (h(1))n, for all h ∈ A, and n ∈ N

=
∑∞

n=1

∑∞
k=1

tn+k

n!k!

(
(f1(1))

n (kf2(1)k−1f2(p)
)

(f2(1))
k (nf1(1)n−1f1(p))

)
by (3.1.3)

= t
∑∞

n=1

∑∞
k=1

tn+k−1

(n−1)!k!
(f1(1))n−1 (f2(1))k f1(p)

+ t
∑∞

n=1

∑∞
k=1

tn+k−1

n!(k−1)!
(f1(1))

n (f2(1))k−1 f2(p)

=
(
tet(f1(1)+f2(1))f1(p)− tetf1(1)f1(p)

)
+
(
tet(f1(1)+f2(1))f2(p)− tetf2(1)f2(p)

)
= tet(f1(1)+f2(1)) (f1(p) + f2(p))

−tetf1(1)f1(p) − tetf2(1)f2(p)

= gp (Exp∗t (f1 + f2))− gp (Exp∗t (f1)) − gp (Exp∗t (f2)) ,
by (3.1.4). �

Let 1A be the identity element of the arithmetic algebra A, i.e.,

1A(n)
def
=

{
1 if n = 1
0 otherwise,

for all n ∈ N. Motivated by the morphism Exp∗t (•) on A, define a morphism

Et : A → A
for t ∈ C, by
(3.1.6)

Et(f)
def
= 1A +

∑∞
n=1

tn

n!
f (n), for all f ∈ A,

i.e.,

Et(f) = 1A + Exp∗t (f) in A, for all f ∈ A,
for t ∈ C. Also, by identifying f (0) with 1A, one has
(3.1.6)′

Et(f) =
∑∞

n=0
tn

n!
f (n), for f ∈ A.

Then, by the above corollary, one obtains that:

Corollary 3.6. Let Et : A → A be the morphism as above, for t ∈ C.
(3.1.7) E1(f1) ∗ E1(f2) = E1(f1 + f2) in A, for all f1, f2 ∈ A.
(3.1.8) For all f ∈ A, the C-valued function t 7→ gp (Et(f)) is entire on C, for

all primes p.
(3.1.9) For all f ∈ A, the corresponding arithmetic function Et(f) is the unique

solution to the differential equation;
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(i) Et(f) ∈ A, for all t ∈ C,
(ii) d

dt
Et(f) = f ∗ Et(f) = Et(f) ∗ f,

(iii) E0(f) = 1A,

Proof. Observe that
E1(f1) ∗ E1(f1)

=
(
1A +

∑∞
n=1

1
n!
f

(n)
1

)
∗
(
1A +

∑∞
k=1

1
k!
f

(k)
2

)
= 1A +

∑∞
k=1

1
k!
f

(k)
2 +

∑∞
n=1

1
n!
f

(n)
1

+
∑∞

n=1

∑∞
k=1

1
n!k!

(
f

(n)
1 ∗ f (k)

2

)
since 1A is the identity element of A (under convolution)

= 1A + Exp∗1(f2) + Exp∗1(f1)
+ Exp∗1(f1) ∗ Exp∗1(f2)

= E1(f1 + f2),

by (3.1.5). Thus, the statement (3.1.7) holds true.

Now, consider the function

t ∈ C 7−→ gp (Et(f)) ∈ A,
for an arbitrary fixed arithmetic function f ∈ A. Notice that

gp (Et(f)) = gp (1A + Exp∗t (f)) = gp (Exp∗t (f))
= tetf(1)gp(f) = (tf(p)) etf(1),

by (3.1.4). Since f(p) and f(1) are constants in C, the maps

t 7→ tf(p) and t 7→ etf(1)

are entire on C, and hence,

t 7−→ tf(p)etf(1)

is entire on C. Equivalently, the statement (3.1.8) holds.

By (3.1.8) and (3.1.7), the statement (3.1.9) holds true. In particular, one can
get that:

t
dt

(Et(f)) = t
dt

(
1A +

∑∞
n=1

tn

n!
f (n)

)
=
∑∞

n=1
tn−1

(n−1)!
f (n) =

∑∞
n=1

tn−1

(n−1)!

(
f (n−1) ∗ f

)
= f ∗

(∑∞
k=0

tk

k!
f (k)
)

by identifying h(0) = 1A
= f ∗ (1A + Exp∗t (f))
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= f ∗ Et(f) = Et(f) ∗ f.
�

By (3.1.7), one can obtain that:
(3.1.7)′

gp (E1(f1) ∗ E1(f2)) = gp (E1(f1 + f2)) ,

for all f1, f2 ∈ A, for all primes p.
The above special case (3.1.7) will be extended to our future works below. Also,

motivated by (3.1.7) and (3.1.7)′, we obtain the following theorem, too.

Theorem 3.7. Let Et : A → A be in the sense of (3.1.6). Define a subset
(3.1.10)

Γ
def
= {E1(f) ∈ A : f ∈ A}

of A. Then the subset Γ of (3.1.10) is an infinite abelian group under convolu-
tion. i.e.,

Proof. Define a subset Γ of A as above. Then, under convolution, it satisfies that

E1(f1) ∗ E1(f2) = E1(f1 + f2),

in Γ, by (3.1.7), and hence, the operation (∗) is closed in Γ.
(E1(f1) ∗ E1(f2)) ∗ E1(f3)

= E1 (f1 + f2 + f3)
= E1(f1) ∗ (E1(f2) ∗ E1(f3)) ,

by (3.1.7), for all f1, f2, f3 ∈ A. Thus, Γ is associative. i.e., it is a semigroup
under (∗).

Moreover, there exists an arithmetic function 0A in A,

0A(n)
def
= 0, for all n ∈ N,

such that

Et (0A) = 1A + Exp∗t (0A) = 1A, for all t ∈ C.

So, one has E1 (0A) = 1A in Γ, and hence,

E1 (0A) ∗ E1(f) = 1A∗ E1(f) = E1 (0A + f) = E1(f),

for all f ∈ A. Therefore, there exists the (∗)-identity 1A = E1 (0A) in Γ. Thus,
Γ is a monoid.

For all f ∈ A, there exists −f ∈ A. Again, by (3.1.7), we have

E1(f) ∗ E1(−f) = E1 (f + (−f)) = E1 (0A) = 1A,

in Γ. It shows that, for any E1(f) ∈ Γ, there exists a unique inverse E1(−f) in
Γ. Therefore, the subset Γ forms a group under (∗) in A.

Furthermore, since the convolution (∗) is commutative in A, it is commutative
in Γ, too. Therefore, the group Γ is an abelian group in A. �
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The above theorem (3.1.10) shows that the group Γ is a Lie group in a Lie
algebra A.

And, by (3.1.2) and (3.1.3), we obtain the following joint free moment compu-
tation (3.1.6).

Proposition 3.8. (See [11, 13]) Let f1, · · · , fs be free random variables of the
arithmetic p-prime-probability space (A, gp), for s ∈ N. Then

(3.1.11)

gp

(
n∗

j=1
fij

)
=
∑n

j=1

(
fij(p)

(
Π

k∈{1,··· ,n}, k 6=j
fik(1)

))
,

for all (i1, · · · , in) ∈ {1, · · · , s}n, for all n ∈ N, where the Π on the right-hand
side of (3.1.4) means the usual multiplication of C. �

Now, let f1, · · · , fs be free random variables in the arithmetic p-prime-probability
space (A, gp), for a prime p, for s ∈ N. Observe that

kn (fi1 , · · · , fin)

=
∑

π∈NC(n)

(
Π

V ∈π
(gp)V (fi1 , · · · , fin)µ

(
0|V |, 1|V |

))
=

∑
π∈NC(n)

(
Π

V =(j1,··· ,jk)∈π
gp

(
k∗

l=1
fijl

)
µ(0k, 1k)

)
=

∑
π∈NC(n)

(
Π

V =(j1,··· ,jk)∈π

(∑k
t=1 fijt

(p)

(
Π

u∈{1,··· ,k},u 6=t
fiju

(1)

))
µ(0k, 1k)

)
,

by (3.1.4). So, we obtain the following free-cumulant computation as equivalent
free-distributional data of (3.1.11).

Proposition 3.9. Let f1, · · · , fs be free random variables in the arithmetic p-
prime-probability space (A, gp). Then

(3.1.12)
kn (fi1 , · · · , fin)

=
∑

π∈NC(n)

(
Π

V ∈π

(∑
t∈V

fijt
(p)

(
∗

u∈V \ {t}
fiju

(1)

))
µ
(
0|V |, 1|V |

))
,

for all (i1, · · · , in) ∈ {1, · · · , s}n, for all n ∈ N. �

Also, by (3.1.5) and (3.1.12), one obtains the following necessary freeness con-
ditions on (A, gp), for all primes p.

Theorem 3.10. (See [11]) Let f1, f2 ∈ (A, gp). Then f1 and f2 are free in (A,
gp), if and only if either (3.1.13) or (3.1.14) holds, where

(3.1.13) f1(p) = 0 = f2(p),
(3.1.14) fi(1) = 0 = fj(p), where i 6= j ∈ {1, 2}. �

3.2. Norm Topologies on A. Let (A, gp) be the arithmetic p-prime probability
space. For a fixed prime p and its corresponding linear functional gp, define a
norm ‖.‖p on A by

(3.2.1)

‖f‖p

def
=
√
|f(1)|2 + |f(p)|2,
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for all f ∈ (A, gp). The definition of morphism ‖.‖p of (3.2.1) is motivated by the

structures of [11, 13, 15, 16], where |.| on the right-hand side of (3.2.1) means the
modulus on C. As we have seen in Proposition 3.2 (and [13]), whenever a prime p
is fixed, then free random variables f of the arithmetic p-prime probability space
(A, gp) are classified by (f(1), f(p)) ∈ C2.

One may understand (3.2.1) as a process;

f ∈ A 7−→ (f(1), f(p)) ∈ C2 7−→ ‖(f(1), f(p))‖2 ∈ R+
0 ,

where ‖.‖2 means the usual Euclidean norm on C2, where R+
0 is the subset of

R, consisting of all positive real numbers or 0, i.e.,
(3.2.1)′

‖f‖p = ‖(f(1), f(p))‖2 , for all f ∈ (A, gp).

Proposition 3.11. The morphism ‖.‖p : A → R+
0 of (3.2.1) is a well-defined

pseudo-norm on A with respect to a fixed prime p.

Proof. By (3.2.1)′, indeed, ‖.‖p is a pseudo-norm on A, since the Euclidean norm

‖.‖2 is a well-defined norm on C2.
Assume now that f1 6= f2 in A − {0A}, and assume further that

fj(1) = 0 = fj(p), for j = 1, 2.

Then

‖f1‖p = 0 = ‖f2‖p .

Therefore, the morphism ‖.‖p of (3.2.1) is a pseudo-norm, which is not a norm
on A. �

Now, define a subset Np of A by
(3.2.2)

Np
def
= {f ∈ A : ‖f‖p = 0},

equivalently,

Np = {f ∈ A : f(1) = 0 = f(p)}.

Proposition 3.12. The subset Np of A is an (two-sided) ideal of A.

Proof. Let f1, f2 ∈ Np, and t1, t2 ∈ C. Then

(t1f1 + t2f2) (1) = 0,

and

(t1f1 + t2f2) (p) = 0,

so, t1f1 + t2f2 ∈ Np, too. Thus, the subset Np is a (pure-algebraic) subspace
of A.

Now, let f ∈ Np, and h ∈ A. Then

(f ∗ h) (1) = f(1)h(1) = 0,

and

(f ∗ h)(p) = f(1)h(p) + f(p)h(1) = 0.



184 I. CHO

Therefore, f ∗ h ∈ Np, too. So, the subspace Np is a left ideal of A.
By the commutativity of the convolution (∗) on A, the subset Np of A is a

(two-sided) ideal. �

Construct now a quotient space Ap of A quotient by Np as
(3.2.3)

Ap = A / Np.

Then the normed space (Ap, ‖.‖p) is well-defined. i.e., the inherited pseudo-

norm ‖.‖p of (3.2.1) on A becomes a well-defined norm on Ap. All elements of Ap

are of the forms

[f ]Np = {h ∈ A : ‖h− f‖p = 0},
as equivalence classes, determined by the quotienting Np. But, for convenience,

we will denote [f ]Np simply by f, if there is no confusion.
We denote this normed space (Ap, ‖.‖p) simply by Ap. Also, construct the

norm-completion Ap of Ap,
(3.2.4)

Ap
def
= Ap

‖.‖p in A.

where X
‖.‖p means the ‖.‖p-norm-closure of X in A. i.e., we constructed the

corresponding Banach space Ap from the normed space Ap of (3.2.3).

Definition 3.13. The Banach space Ap of (3.2.4) induced by the arithmetic
p-prime probability space (A, gp) is called the p(-prime)-Banach space of A.

By definition, if f is a “nonzero” element of Ap, then neither f(1) = 0, nor
f(p) = 0, equivalently,

(3.2.5)

either f(1) 6= 0 or f(p) 6= 0.

So, without loss of generality, if we mention “f ∈ Ap,” then one can understand
f as an (certain limit of) arithmetic function(s) of A, satisfying (3.2.5).

Hence, the linear functional gp acts well on Ap (under quotient). i.e., we have
a Banach probability space (Ap, gp).

Definition 3.14. The Banach probability space (Ap, gp) is said to be the (arith-
metic) p-(prime-)Banach probability space of A.

Let f ∈ (A, gp), and let Et(f) =
∑∞

n=0
tn

n!
f (n) be in the sense of (3.1.6) and

(3.1.6)′, for t ∈ C, with identity: f (0) = 1A. Then

(Et(f)) (1) = etf(1),

and

(Et(f)) (p) = tetf(1)f(p).

So, if f ∈ (A, gp), for any arbitrary fixed t ∈ C,
0 ≤ ‖Et(f)‖p < ∞ in R+

0 .

Thus, Et(f) ∈ Ap, whenever f ∈ Ap.
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Proposition 3.15. For any arbitrary fixed t ∈ C, if f ∈ Ap, then Et(f) ∈ Ap,
too. Thus, Et(f) is a free random variable in the p-Banach probability space (Ap,
gp). �

Later, in this paper, we restrict our interests to the case where t ∈ R.

4. Krein-Space Representations of (A, gp)

In this section, we briefly introduce a Krein-space representation of A, deter-
mined by a fixed prime p, and the corresponding arithmetic p-prime probability
space (A, gp). For more details, see [15, 16].

In [15], we showed that C2
Ao

= (C2, [, ]2:Ao) is an “indefinite” inner product
space, where

[(t1, t2), (s1, s2)]2:Ao
=

〈(
t1
t2

)
,

(
0 1
1 0

)(
s1

s2

)〉
2

,

where <,>2 is the inner product on C2;

< (t1, t2), (s1, s2) >2 = t1s1 + t2s2,

and where

Ao =

(
0 1
1 0

)
.

Also, there exists a vector-space epimorphism πp : A → C2
Ao
, such that

πp(h) = (h(1), h(p)), for all f ∈ A.
Then we have

[πp(f), πp(h)]2:Ao
= gp (f ∗ h∗) ,

where

h∗(n)
def
= h(n) in C, for all n ∈ N.

By [7], this indefinite inner product C2
Ao

is isomorphic to the Krein-subspace
Kp = ∆2 ⊕ ∆−

2 of the Krein space K2 = C2 ⊕ C2, where

∆2 = {(t, t) : t ∈ C}
and

∆−
2 = {(t, −t) : t ∈ C}.

i.e., C2
Ao

is a Krein space, too under [, ]2:Ao (Also, see [16]).
Define now an algebra-action Θ of A acting on C2

Ao
by

(4.1)

f ∈ A 7−→ Θf : C2
Ao
→ C2

Ao

by

Θf =

(
f(1) 0
f(p) f(1)

)
, for all f ∈ A.

Then Θ is indeed a well-defined algebra-action of A acting on C2
Ao

. Thus, we
can act Θ for Ap (under topology).

Moreover, it satisfies that:
(4.2)
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Θ∗
f = Θf∗ =

(
f ∗(1) 0
f ∗(p) f ∗(1)

)
,

for all f ∈ A. Remark that, we are using the inner product [, ]2:Ao on C2, not
the usual ones.

Indeed, one can check that:

[Θf (ξ), η]2:Ao
= [ξ, Θf∗(η)]2:Ao

,

for all ξ, η ∈ C2.
Also, we have the following multiplication rule;
(4.3)

Θf1Θf2 = Θf1∗f2 , for all f1, f2 ∈ A.
The fundamental properties of Θf are considered in [15]. The equivalent oper-

ators θf acting on the isomorphic Krein space Kp of C2
Ao

are studied in detail, in
[16].

If we take a vector (1, 0) in C2
Ao
, then it is identified as πp(h), for some h ∈

A, such that h(1) = 1, and h(p) = 0. So, one can understand the vector (1, 0) of
C2

Ao
as the image πp (1A) (e.g., [13]). Denote (1, 0) by Ωp. i.e.,

Ωp = (1, 0) ∈ C2
Ao
.

Then one can define a linear functional ϕp on the operator algebra B(C2
Ao

) by
(4.4)

ϕp (T )
def
= [TΩp, Ωp]2:Ao

, for all T ∈ B(C2
Ao

).

Then one has
(4.5)

ϕp(Θ
n
f ) = gp

(
f (n)

)
, for all n ∈ N,

for all f ∈ A, by [15, 16].
So, the free probabilistic model (A, gp) corresponds a free probabilistic model

(B(C2
Ao

), ϕp) (under quotient). By Section 3.2, we can conclude that the p-
Banach probability space (Ap, gp) induced by (A, gp) corresponds (B(C2

Ao
), ϕp).

i.e., there exists well-defined Krein-space representations

f ∈ (A, gp) 7−→ Θf ∈
(
B(C2

Ao
), ϕp

)
,

and

f ∈ (Ap, gp) 7−→ Θf ∈
(
B(C2

Ao
), ϕp

)
,

under free-probabilistic equivalence (in the sense of Voiculescu, e.g., [30, 32]).
If one constructs a subalgebra Ap, generated by {Θf}f∈A, in B(C2

Ao
), then (A,

gp) is equivalent to (Ap, ϕp) “up to quotient,” “under a topology of Section 3.2),
equivalently, we can get that:

Theorem 4.1. (See [16]) Free probability spaces (Ap, gp) and (Ap, ϕp) are equiv-
alent. �

5. Embedding E of R on Ap

Let Et : Ap → Ap be a morphism in the sense of (3.1.6) and (3.1.6)′, for all
“t ∈ R.” As we discussed and assumed in Section 3.2, we understand Et(f) as



DYNAMICAL SYSTEMS ON ARITHMETIC FUNCTIONS 187

elements of the p-Banach probability space (Ap, gp) of Section 4. Note here that
we are restricting our interests to the cases where t are in R (not in C).

As in (3.1.6)′, let

Et (f) =
∑∞

n=0
tn

n!
f (n), for t ∈ R,

with identity:

f (0) = 1A, for all f ∈ Ap.

Theorem 5.1. For any t, s ∈ R, we have
(5.1)

Et+s(f) = Et(f) ∗ Es(f) in Ap for all f ∈ Ap.

Proof. Observe that:

Et+s(f) =
∑∞

n=0
(t+s)n

n!
f (n)

=
∑∞

n=0
1
n!

(∑n
k=0

(
n
k

)
tksn−k

)
f (n)

=
∑∞

n=0
1
n!

∑n
k=0

n!
k!(n−k)!

tksn−k f (n)

=
∑∞

n=0

(∑n
k=0

tksn−k

k!(n−k)!

)
f (n)

(5.2)

=
∑∞

n=0

( ∑
k,l∈N ∪ {0}, n=k+l

tk

k!
sl

l!

)
f (n),

for all f ∈ A, for t, s ∈ R. Also, observe that,

Et(f) ∗ Es(f) =
(∑∞

k=0
tk

k!
f (k)
)(∑∞

l=0
sl

l!
f (l)
)

=
∑∞

k=0

∑∞
l=0

tk

k!
sl

l!
f (k+l)

(5.3)

=
∑∞

n=0

( ∑
k,l∈N ∪ {0}, n=k+l

tk

k!
sl

l!

)
f (n),

for all f ∈ Ap, for t, s ∈ R. Therefore, by (5.2) and (5.3), one can conclude
that

Et+s(f) = Et(f) ∗ Es(f),

for all f ∈ Ap, for all t, s ∈ R. �

The system {Et}t∈R of morphisms Et’s satisfies

Et+s(•) = Et(•) ∗ Es(•) on Ap,
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by (5.1). Let’s understand R as its maximal additive subgroup (R, +), which
is identical to R, set-theoretically. In dynamical system, sometimes, this group is
said to be the “flow” (up to group-isomorphisms).

Motivated by (5.1), define a group-action E of the flow R = (R, +) on the
p-Banach algebra Ap by

(5.4)

E : t ∈ R 7−→ Et on Ap.

Then E is indeed a well-defined group-action of R on Ap, because (i) each Et

is a well-defined function on Ap, sending an element f of Ap to an element Et(f)
of Ap, and (ii) E satisfies the relation (5.1). i.e., one can get that:

Corollary 5.2. The morphism E of (5.4) is a group-action of the flow R acting
on Ap. �

The above group-action E of the flow R on Ap satisfies the following property.

Proposition 5.3. Let E be the group action (5.4) of the flow R acting on Ap.
Then

(5.5)

gp (Et(f) ∗ Es(f)) = (t+ s)e(t+s)f(1)f(p),

for all primes p, for all f ∈ Ap, and t, s ∈ R.
Proof. By (5.1), one has that

Et(f) ∗ Es(f) = Et+s(f), for all f ∈ Ap,

for t, s ∈ R. Thus,
(Et(f) ∗ Es(f)) (p) = gp (Et(f) ∗ Es(f))

= gp (Et+s(f)) = (t+ s)e(t+s)f(1)f(p),
by (3.1.4), because gp (Et(f)) = gp (Exp∗t (f)) , for all primes p, for all f ∈

A. �

The above relation (5.5) (with the general formula (3.11)) guarantees that:
gp (Et(f) ∗ Es(f))

= Et(f)(1) Es(f)(p) + Et(f)(p) Es(f)(1)
by (3.1.1)

=
(∑∞

n=0
tn

n!
f (n)(1)

) (
sesf(1)f(p)

)
+
(
tetf(1)f(p)

) (∑∞
k=0

sk

k!
f (k)(1)

)
by (3.1.4)

=
(∑∞

n=0
(tf(1))n

n!

) (
sesf(1)f(p)

)
+
(
tetf(1)f(p)

) (∑∞
k=0

(sf(1))k

k!

)
since h(m)(1) = (h(1))m , for all h ∈ Ap, for all m ∈ N

=
(
etf(1)

) (
sesf(1)f(p)

)
+
(
tetf(1)f(p)

) (
esf(1)

)
= se(t+s)f(1)f(p) + te(t+s)f(1)f(p)
=
(
se(t+s)f(1) + te(t+s)f(1)

)
(f(p))

= (t+ s) e(t+s)f(1)f(p) = gp (Et+s(f)) .
Recall that, for any arithmetic function f ∈ Ap, one can get f ∗ in Ap, such that
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f ∗(n) = f(n) in C, for all n ∈ N.
The group-action E also satisfies that:

Proposition 5.4. Let f ∈ Ap, and let Et(f) be the corresponding element in Ap,
for t ∈ R. Then (Et(f))∗ = Et(f

∗).

Proof. Observe that:

(Et(f))∗ (k) = (Et(f)) (k)

=
∑∞

n=0
tn

n!
f (n)(k) =

∑∞
n=0

(
tn

n!

)
f (n)(k)

=
∑∞

n=0
tn

n!

(
(f ∗)(n) (k)

)
since t ∈ R, and since

(
f (n)

)∗
= (f ∗)(n) , for all k ∈ N

= Et(f
∗),

for all t ∈ R, for all f ∈ Ap, and k ∈ N. And hence, one can obtain that

(Et(f))∗ = Et(f
∗).

for all f ∈ Ap, and t ∈ R. �

Consider now that, for f, h ∈ Ap, and for t ∈ R,
Et (f + h) =

∑∞
n=0

tn

n!
(f + h)(n)

=
∑∞

n=0
tn

n!

(∑n
k=0

(
n
k

)(
f (k) ∗ h(n−k)

))
=
∑∞

n=0
tn

n!

(∑n
k=0

n!
k!(n−k)!

(
f (k) ∗ h(n−k)

))
=
∑∞

n=0 t
n

( ∑
k,l∈N∪{0}, n=k+l

1
k!l!

(
f (k)

k!
∗ h(l)

l!

))

=
∑∞

n=0

( ∑
k,l∈N∪{0}, n=k+l

tn

k!l!

(
f (k)

k!
∗ h(l)

l!

))

=
∑∞

n=0

( ∑
k,l∈N∪{0}, n=k+l

tktl

k!l!

(
f (k) ∗ h(l)

))
(5.6)

=
∑∞

k=0

∑∞
l=0

tktl

k!l!

(
f (k) ∗ h(l)

)
.

Therefore, one can obtain the following theorem, generalizing (3.1.7).

Theorem 5.5. Let f, h ∈ Ap, and let E be in the sense of (5.4). Then
(5.7)

Et (f) ∗ Et(h) = Et (f + h) , for all t ∈ R.

Proof. The proof of (5.7) is done by the above computation (5.6). By (5.6), we
have

Et(f + h) =
∑∞

k=0

∑∞
l=0

tktl

k!l!

(
f (k) ∗ h(l)

)
.

By definition, one can get that:
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Et(f) ∗ Et(h) =
(∑∞

k=0
tk

k!
f (k)
)
∗
(∑∞

l=0
tl

l!
h(l)
)

=
∑∞

k=0

∑∞
l=0

tktl

k!l!

(
f (k) ∗ h(l)

)
.

Therefore,

Et(f + h) = Et(f) ∗ Et(h),

for all t ∈ R, for f ∈ Ap. �

Definition 5.6. We call the images Et of the group-action E of the flow R acting
on Ap, the t-th exponential on Ap. Also, we call the group-action E, the flowed
exponential on Ap.

The following theorem generalizes (5.1) and (5.7) together.

Theorem 5.7. Let f, h ∈ Ap, and t, s ∈ R. Then
(5.8)

Et(f) ∗ Es(h) = E1 (tf + sh) in Ap.

Proof. Observe that:

Et(f) ∗ Es(h) =
(∑∞

k=0
tk

k!
f (n)

)
∗
(∑∞

l=0
sl

l!
h(l)
)

=
∑∞

k=0

∑∞
l=0

tksl

k!l!

(
f (k) ∗ h(l)

)
=
∑∞

n=0

( ∑
k,l∈N∪{0}, n=k+l

tksl

k!l!

(
f (k) ∗ h(l)

))

=
∑∞

n=0
1
n!

( ∑
k,l∈N∪{0}, n=k+l

n! tksl

k!l!

(
f (k) ∗ h(l)

))

=
∑∞

n=0
1
n!

(∑∞
j=0

n!
j!(n−j)!

tjsn−j
(
f (j) ∗ h(n−j)

))
=
∑∞

n=0
1
n!

(∑∞
j=0

(
n
j

)(
(tf)(j) ∗ (sh)(n−j)

))
because (ra)(n) = rn a(n), for all a ∈ A, r ∈ R

=
∑∞

n=0
1
n!

(tf + sh)(n)

= E1 (tf + sh) .
�

By (5.8), one can verify that

Et(f) ∗ 0A = Et(f) ∗ Es(0A) = E1(tf + s · 0A) = E1(tf),

i.e.,
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Et(f) = E1(tf),

for all f ∈ Ap, t ∈ R.

Corollary 5.8. Let f ∈ Ap, and t ∈ R. Then
(5.9)

Et(f) = E1(tf).

�

Indeed, from (5.8) and (5.9), one can re-obtain (5.1) and (5.7) as follows:

Et(f) ∗ Es(f) = E1 (tf + sf) = E1 ((t+ s)f) = Et+s(f),

and

Et(f) ∗ Et(h) = E1(tf + th) = E1 (t(f + h)) = Et(f + h),

for all f, h ∈ Ap, and t, s ∈ R.

Remark 5.9. In fact, the relations (5.8) and (5.9) hold if t is taken in C.

Also, by (5.9) and by the above remark, one can obtain the following corollary.

Corollary 5.10. Let Γ be a group in the sense of (3.1.10), and let

Γ′ def
= {Et(f) : ∀f ∈ Ap, ∀t ∈ C}

be a subset of Ap. Then Γ′ is a group-isomorphic to Γ as groups.

Proof. The proof is done by (5.9). i.e.,

Γ′ = {Et(f) = E1(tf) : ∀f ∈ Ap,∀t ∈ C}
⊆ {E1(f) : ∀f ∈ Ap} = Γ.

Thus, Γ′ is a subset of Γ, set-theoretically. Moreover, under convolution, Γ′ is
homomorphic to Γ, by (5.8). i.e.,

Et1(f1) ∗ Et2(f2) = E1 (t1f1 + t2f2)

7−→ E1(t1f1) ∗ E1(t2f2),

for all f1, f2 ∈ Ap, and t1, t2 ∈ R. So, Γ′ is a subgroup of Γ.
Observe that Γ is a subset of Γ′. Indeed, if h ∈ Γ, then h = E1(f), for some f

∈ Ap. Moreover, if f = tf1 in Ap, for t ∈ C, and f1 ∈ Ap, then it is identical to
Et(f1) in Γ. i.e., a group Γ is a subset of Γ′ (which is homomorphic to Γ).

Therefore, Γ is group-isomorphic to Γ′. �

So, we can get a subgroup Γ+ of Γ, defined by

Γ+ = {Et(f) : f ∈ Ap, t ∈ R}.
Then it is a (classical) Lie group.
Let f0 ∈ Ap be a fixed nonzero arithmetic function, i.e., f0 6= 0Ap . For this fixed

f0 ∈ Ap, define a subset Γf0 of Γ+ by
(5.9)

Γf0

def
= {Et(f0) : t ∈ R}.

Clearly, Γf0 is a subset of the group Γ+. Moreover, it satisfies that:
(5.10)



192 I. CHO

Et(f0) ∗ Es(f0) = Et+s(f0),

for all t, s ∈ R, and E0(f0) acts as the (∗)-identity on Γf0 , i.e.,
(5.11)

Et(f0) ∗ E0(f0) = Et(f0) ∗ 1A = Et(f0)
= 1A ∗ Et(f0) = E0(f0) ∗ Et(f0),

for all t ∈ R. Indeed,

E0(f0) = E1 (0 · f0) = E1(0A) =
∑∞

n=0
1
n!

0
(n)
A = 1A.

Also, each element Et(f0) has its (∗)-inverse E−t(f0), such that:
(5.12)

Et(f0) ∗ E−t(f0) = E0(f0) = E−t(f0) ∗ Et(f0).

Proposition 5.11. Let Γf0 be a subset of the group Γ+, in the sense of (5.9), for
nonzero f0 ∈ Ap. Then it is a subgroup of Γ under convolution (∗). Moreover, it
is group-isomorphic to the flow R. i.e.,

(5.13)

Γf0 = (Γf0 , ∗)
Group
= (R, +) = R.

Proof. By (5.10), the convolution (∗) is closed in Γf0 . Also, the operation is asso-
ciative;

(Et1(f0) ∗ Et2(f0)) ∗ Et3(f0)
= Et1+t2+t3(f0)
= Et1(f0) ∗ (Et2(f0) ∗ Et3(f0)) ,

by (5.1) and (5.8).
Also, the (∗)-identity 1A = E0(f0) is contained in Γf0 , by (5.11). Finally,

every element Et(f0) is (∗)-invertible with its (∗)-inverse E−t(f0), for all t ∈ R.
Therefore, the subset Γf0 , for a fixed f0 ∈ A, of Γ is a subgroup.

This subgroup Γf0 is group-isomorphic to the flow R. Indeed, one can define a
group-isomorphism,

ϕ : Et(f0) ∈ Γf0 7−→ t ∈ R.

�

By the above proposition, one can realize that the Lie group Γ+ is generated
(or sectionized) by the system {Γf}f∈A of subgroups Γf in the sense of (5.9). i.e.,
Γ+ is filtered by A.

6. Flowed Exponential E on A as Krein-Space Operators

As we have seen in Section 4, each arithmetic function f , as a free random
variable of the p-Banach probability space (Ap, gp) (under quotient), is understood

as a Krein-space operator Θf acting on the Krein-space C2
Ao

Krein
= Kp, satisfying

that:

Θf =

(
f(1) 0
f(p) f(1)

)
,

with

Θ∗
f = Θf∗ and ΘfΘh = Θf∗h, on C2

Ao
,
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for all f, h ∈ A,
So, if f is a free random variable of the p-Banach probability space (Ap, gp),

then the corresponding Krein-space operator Θf is well-defined on C2
Ao

.
Now, let f ∈ Ap, and t ∈ R, and suppose Et(f) is the t-th exponential of f in

(Ap, gp). Then
(6.1)

ΘEt(f) =

(
(Et(f)) (1) 0
(Et(f)) (p) (Et(f)) (1)

)
=

(
etf(1) 0

tetf(1)f(p) etf(1)

)
on C2

Ao
.

Proposition 6.1. Let Et(f) ∈ Γ+, for f ∈ Ap, and t ∈ R. Then
(6.2)

ΘEt(f) = etf(1)

(
1 0

tf(p) 1

)
on C2

Ao
.

Proof. The proof of (6.2) is directly from (6.1). �

The formula (6.2) shows that, whenever a Krein-space operator ΘEt(f) is fixed
on C2

Ao
, there exists h ∈ Ap (or h ∈ A), such that: (i) h is unital in the sense

that: h(1) = 1, (ii) h(p) = tf(p), and (iii)

ΘEt(f) = etf(1) Θh on C2
Ao
.

Remark that such an element h is unique in Ap (under the quotient on A).
By (6.1) and (6.2), one can get that:

Proposition 6.2. Let Et(f), Es(h) ∈ (Ap, gp), for f, h ∈ Ap, and t, s ∈ R, and
let ΘEt(f) and ΘEs(h) be corresponding Krein-space operators on C2

Ao
. Then

(6.3)

ΘEt(f) ΘEs(h) = etf(1)+sh(1)

(
1 0

tf(p) + sh(p) 1

)
,

on C2
Ao
.

Proof. Note that

ΘEt(f)ΘEs(h) = ΘEt(f)∗Es(h).

Thus, it is identical to

ΘE1(tf+sh) =

(
(E1(tf + sh)) (1) 0
(E1(tf + sh)) (p) (E1(tf + sh)) (1)

)

= etf(1)+sh(1)

(
1 0

tf(p) + sh(p) 1

)
.

�

7. Dynamical Systems on Ap

In this section, we act the flow R = (R, +) on the p-Banach algebra Ap, for a
fixed prime p. In particular, we identify the flow R as its isomorphic group Γf0 ,
for some f0 ∈ Ap \ {0Ap} (See (5.9)). Remark that, for any h ∈ Ap \ {0Ap}, two
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subgroups Γh and Γf0 of the Lie group Γ+ are group-isomorphic from each other,
because

Γh
Group
= R,

by (5.13), whenever h is a nonzero element of Ap. It means that: (i) we are
free from the choice of f0 to construct subgroups Γf0 in Ap, and (ii) Γ+ has all
isomorphic filters {Γh}h∈Ap .

As in Section 6, one may understand Ap as a Banach algebra Ap = Θ (Ap)
realized on the Krein space C2

Ao
. i.e., one can identify Ap as

Ap = {Θf ∈ B(C2
Ao

) : f ∈ Ap}.
So, similarly, one may understand Γf0 as the subgroup(

{ΘEt(f0) : t ∈ R}, ·
)
,

of Ap. We denote the above group in Ap again by Γf0 .

Notation From now on, if there is no confusion, then denote Et(f0) ∈ Γf0

simply by Et, for a fixed f0 ∈ Ap \ {0Ap}. Also, denote the quantities f0(1) and
f0(p) by w1 and wp, respectively. Further, let uj = Re(wj), for j = 1, p, where
Re(z) means the real part of z, for all z ∈ C. �

Define now an action αf0 of the flow R Group
= Γf0 acting on the p-Banach algebra

Ap by
(7.1)

αf0
t (Θf )

def
= ΘEtΘfΘ

∗
Et , for all f ∈ Ap,

for all t ∈ R.
By the very definition (7.1), each morphism αf0

t is a well-defined function on
Ap. And it satisfies that:(

αf0
t ◦ αf0

s

)
(Θf0) = αf0

t

(
αf0

s (Θf )
)

= αf0
t (ΘEsΘfΘ

∗
Es) = ΘEtΘEsΘfΘ

∗
Es

Θ∗
Et

= ΘEt∗EsΘfΘE∗
s ∗E∗

t
= ΘEt+sΘfΘ(Et∗Es)∗

since Ap is commutative under (∗)
= ΘEt+sΘfΘ(Et+s)∗

(7.2)

= αf0
t+s (Θf ) ,

for all t, s ∈ R.

Proposition 7.1. The morphism αf0 of (7.1) is a well-defined group action of
the flow R = Γf0 acting on the Banach algebra Ap, with

αf0

0 = 1B(C2
Ao

) = 1Ap , on Ap,

equivalently, αf0
t has its inverse αf0

−t on Ap, for all t ∈ R.

Proof. As we discussed in the above paragraph, each αf0
t is a well-defined function

on Ap, for all t ∈ R, and the morphism αf0 satisfies that

αf0
t ◦ αf0

s = αf0
t+s, for all t, s ∈ R,
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on Ap, by (7.2). Therefore, indeed, the morphism αf0 is a group action of Γf0 ,
which is group-isomorphic to the flow R, acting on Ap.

Let t = 0. Then, for any Θf ∈ Ap, one has that

αf0

0 (Θf ) = ΘE0ΘfΘ
∗
(E0) = Θ1AΘfΘ

∗
1A

= 1ApΘf1Ap = Θf ,

by Section 5. i.e., αf0

0 = 1Ap , on Ap.

It also demonstrates that each operator αf0
t on Ap has its inverse αf0

−t, by (7.2),
for all t ∈ R. �

By (5.1) and by the fact; (Et)∗ = Et(f
∗
0 ), one obtains that:

αf0
t (f) = ΘEtΘfΘ

∗
Et = ΘEtΘfΘEt(f∗0 )

=

(
etf0(1)

(
1 0

tf0(p) 1

))(
f(1) 0
f(p) f(1)

)(
etf0(1)

(
1 0

tf0(p) 1

))

= et(f0(1)+f0(1))
(

1 0
tf0(p) 1

)(
f(1) 0
f(p) f(1)

)(
1 0

tf0(p) 1

)

= etRe(f0(1))

(
f(1) 0

tf0(p)f(1) + f(p) + tf(1)f0(p) f(1)

)

= etRe(f0(1))

(
f(1) 0

tf(1)Re (f0(p)) + f(p) f(1)

)
.

= etRe(w1)

(
f(1) 0

tf(1) (Re(wp)) + f(p) f(1)

)
.

= etu1

(
f(1) 0

tupf(1) + f(p) f(1)

)
.

The following proposition is obtained by the above computation.

Proposition 7.2. Let αf0 be a group action (7.1) of the flow R acting on Ap.
Then

(7.3)

αf0
t (Θf ) = etu1

(
f(1) 0

tupf(1) + f(p) f(1)

)
in Ap,

for all Θf ∈ Ap. �

Since we took f0 in Ap \ {0Ap},
either w1 6= 0, or wp 6= 0.

Suppose both w1 6= 0, and wp 6= 0. Then clearly, αf0
t (Θf ) satisfies the general

expression (7.3);
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αf0
t (Θf ) = etu1

(
f(1) 0

tupf(1) + f(p) f(1)

)
, in Ap.

Assume now that w1 = 0, and wp 6= 0. Then u1 = 0, and up = Re(wp) in C.
Thus, in such a case, the formula (7.3) goes to

αf0
t (Θf ) =

(
f(1) 0

tupf(1) + f(p) f(1)

)
, in Ap

Let’s assume w1 6= 0, and wp = 0. Then u1 = Re(w1), and up = 0 in C. So, in
this case, the formula (7.3) becomes

αf0
t (Θf ) = etu1

(
f(1) 0
f(p) f(1)

)
= etu1Θf , in Ap.

More general to (7.3), we obtain the following computations.

Theorem 7.3. Let αf0 be the group action (7.1) of the flow R = Γf0 acting on
Ap. Then

αf0

ΣN
j=1tj

(Θf ) =

(
N

Π
j=1
etju1

)(
f(1) 0∑N

j=1 tjupf(1) + f(p) f(1)

)
,

and

αf0
t

(
N

Π
j=1

Θfj

)
= etu1

(
k1 0
kp k1

)
,

in Ap, where

k1 =
N

Π
j=1
fj(1),

and

kp = tup

(
N

Π
j=1
fj(1)

)
+
∑N

j=1 fj(p)

(
Π

l 6=j∈{1,··· ,N}
fl(1)

)
,

in C, for all t, t1, · · · , tN ∈ R, and f, f1, · · · , fN ∈ Ap, for all N ∈ N.

Proof. By (7.3), if we let t =
∑N

j=1 tj in R, then

αf0

ΣN
j=1tj

(Θf ) = αf0
t (Θf )

= etu1

(
f(1) 0

tupf(1) + f(p) f(1)

)

=

(
N

Π
j=1
etju1

)(
f(1) 0∑N

j=1 tjupf(1) + f(p) f(1)

)
,

for all t1, · · · , tN ∈ R, for all N ∈ N.
Also, one obtains that:

αf0
t

(
N

Π
j=1

Θfj

)
= αf0

t

(
Θ N∗

j=1
fj

)
,

by (5.1) and (5.5)
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= etu1


(

N∗
j=1
fj

)
(1) 0

tup

(
N∗

j=1
fj

)
(1) +

(
N∗

j=1
fj

)
(p)

(
N∗

j=1
fj

)
(1)


by (7.3)

= etu1


N

Π
j=1

(fj(1)) 0

tup

(
N

Π
j=1
fj(1)

)
+ gp

(
N∗

j=1
fj

)
N

Π
j=1

(fj(1))


= etu1

(
k1 0
kp k1

)
,

where

k1 =
N

Π
j=1

(fj(1)) ,

and

kp = tup

(
N

Π
j=1
fj(1)

)
+
∑N

j=1 fj(p)

(
Π

l 6=j∈{1,··· ,N}
fl(1)

)
,

in C, by (3.1.11), where f1, · · · , fN ∈ Ap, for N ∈ N. �

By the well-defined homomorphism Θ from Ap to Ap, one can understand our

flowed action αf0 (acting on Ap) as a flowed action (7.6) below, acting on Ap,
(7.6)

αf0
t (h) = Et ∗ h ∗ E∗

t , for all h ∈ Ap,

for all t ∈ R. Remark that (7.6) is identified with

αf0
t (h) =

∑∞
n=0

∑∞
k=0

tn+k

n!k!

(
(f0)

(n) ∗ h ∗ (f ∗0 )(k)
)
,

for all h ∈ Ap.

Definition 7.4. Let αf0 be the group action (7.6) of the flow R acting on the
p-Banach algebra Ap. The mathematical triple (R, Ap, α

f0) is called the p-prime
Γf0-dynamical system of R on Ap.

Let (R, Ap, α
f0) be the p-prime Γf0-dynamical system of R = Γf0 on Ap. Then

one can construct the corresponding crossed product Banach algebra,
(7.7)

Xf0:p
def
= Ap ×αf0 R,

by the Banach algebra generated by Ap and

αf0 (R) = {ΘEt ∈ Ap : t ∈ R},
satisfying the following formulae (7.8) and (7.9) below:

(fΘEt) (hΘEs) = f ΘEthΘEs

= f ΘEth
(
1ApΘEs

)
= f ΘEt h (ΘE0ΘEs)
= f ΘEt h Θ(Et)∗∗(E−t)∗ ΘEs
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because

(Et)∗ ∗ (E−t)∗ = (Et ∗ E−t)
∗

= (E0)∗ = 1∗Ap
= 1Ap

in Ap, and hence,
= f ΘEt h Θ(Et)∗ Θ(E−t)∗ ΘEs

= f
(
ΘEt h Θ(Et)∗

)
Θ(E−t)∗ ΘEs

(7.8)

=
(
f ∗
(
αf0

t (h)
))

Θ(E−t)∗ ΘEs

=
(
f ∗
(
αf0

t (h)
))

Θ(E−t)∗∗Es

=
(
f ∗
(
αf0

t (h)
))

ΘE−t(f∗0 )∗Es(f0)

=
(
f ∗
(
αf0

t (h)
))

ΘE1(−tf∗0 +sf0),

for all f, h ∈ Ap, and t, s ∈ R.
Also, we have that

(f ΘEt)∗ = Θ∗
Et f ∗ = Θ∗

Et
f ∗ ΘE0

= Θ∗
Et f ∗ (ΘEtΘE−t)

= (Θ∗
Etf ∗ΘEt) ΘE−t

(7.9)

=
((
αf0

t

)∗
(f ∗)

)
ΘE−t ,

for all f ∈ Ap, and t ∈ R.
i.e., the crossed product Banach algebra

Xf0:p = Ap ×αf0 R
induced by the p-prime Γf0-dynamical system (R, Ap, α

f0) is the Banach sub-
algebra of the Banach tensor product algebra Ap ⊗C Ap, satisfying:

(7.8) (fΘEt) (hΘEs) =
(
f ∗
(
αf0

t (h)
))

Θ(E−t)∗ΘEs ,

and

(7.9) (fΘEt)∗ =
((
αf0

t

)∗
(f ∗)

)
ΘE−t ,

for all f ΘEt , h ΘEs ∈ Xf0:p, with f, h ∈ Ap, and t, s ∈ R.

Definition 7.5. The crossed product Banach algebra Xf0:p = Ap ×αf0 R induced
by the p-prime Γf0-dynamical system (R, Ap, α

f0) is called the p-prime Γf0-
dynamical Banach (sub)algebra (of Ap ⊗C Ap).

The crossed product Banach algebra Xf0:p has its norm Nf0:p, defined by

Nf0:p (f ΘEt)
def
= ‖f ∗ Et‖p ,

where ‖.‖p is in the sense of (3.2.1) and (3.2.1)′, for all f ΘEt ∈ Xfp:p, with f
∈ Ap, and t ∈ R. It is a well-defined norm on Xf0:p.

By construction, Xf0:p forms a Banach algebra under Nf0:p. Observe that:
Nf0:p (f ΘEt) = ‖f ∗ΘEt‖p

= ‖((f ∗ Et) (1), (f ∗ Et)(p))‖2

where ‖.‖2 means the usual norm on C2

= ‖(f(1)Et(1), f(1)Et(p) + f(p)Et(1))‖2

=
∥∥(etf0(1)f(1), tetf0(1)f(1)f0(p) + etf0(1)f(p)

)∥∥
2
,
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for all f ΘEt ∈ Xf0:p, with f ∈ Ap, and t ∈ R.
Now, let Ef0 be a subset of Ap,

Ef0

def
= {ΘEt , Θ∗

Et : t ∈ R}.
Recall that

Θ∗
Et = Θ∗

Et(f0) = ΘEt(f0)∗

=

(
(Et(f0)) (1) 0

(Et(f0)) (p) (Et(f0)) (1)

)
= etf0(1)

(
1 0

t f0(p) 1

)
= etf∗0 (1)Θh∗t

for all t ∈ R.
Construct a Banach subalgebra Ef0 of Ap generated by Ef0 . i.e.,
(7.10)

Ef0

def
= C [Ef0 ],

where Y mean the norm-completions of subsets Y of Ap. Every element of Ef0

can be understood as a (limit of) linear combination of {ΘEt}t∈R.
Define now a “conditional” tensor product algebra
(7.11)

Xf0:p
def
= Ap ⊗αf0 Ef0

by a Banach subalgebra of Ap ⊗C Ap, with the operations satisfying (7.12) and
(7.13) under linearity:

(7.12)

(f ⊗ΘEt) (h⊗ΘEs) =
(
f ∗ αf0

t (h)
)
⊗
(
Θ(E−t)∗ΘEs

)
,

and
(7.13)

(f ⊗ΘEt)∗ =
((
αf0

t

)∗
(f ∗)

)
⊗ ΘE−t ,

for all f ∈ Ap, and t ∈ R.

Theorem 7.6. Let Xf0:p = Ap ×αf0 R be the p-prime Γf0-dynamical Banach
algebra, and let Xf0:p = Ap ⊗αf0 Ef0 be the conditional tensor product algebra in
the sense of (7.11) satisfying (7.12) and (7.13). Then two Banach algebras Xf0:p

and Xf0:p are isomorphic. i.e.,
(7.14)

Xfp:p = A ×αf0 R Banach-Algebra
= A ⊗αf0 Ef0 = Xf0:p.

Proof. Define a morphism

Φ : Xf0:p → Xf0:p

by

Φ
def
= 1Ap ⊗ Θ,

i.e., it is a linear transformation satisfying
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Φ (f ΘEt) = f ⊗ ΘEt , for all f ∈ Ap, t ∈ R.
By the very definition, Φ is a generator-preserving bijective linear morphism.

Also, it satisfies that:
Φ ((f ΘEt)(h ΘEs))

= Φ
((
f ∗ αf0

t (h)
)

Θ(E−t)∗ΘEs

)
(7.15)

=
(
f ∗ αf0

t (h)
)
⊗
(
Θ(E−t)∗ΘEs

)
.

Thus, this bijective linear transformation Φ satisfies the multiplicativity (7.15),
i.e., the multiplication (7.8) of Xf0:p is preserved to the multiplication (7.13) of
Xf0:p, by Φ. Therefore, it is an algebra-isomorphism.

The norm Nf0:p on Xf0:p and the norm N f0:p on Xf0:p are equivalent because
they are generated by those of Ap and Ap, which are equivalent. Moreover,

N f0:p (Φ(f ΘEt)) = N f0:p (f ⊗ΘEt) = Nf0:p(f Θf ),

for all f ∈ Ap, t ∈ R. Therefore, Φ is an isometric bijective algebra-isomorphism.
Equivalently, two Banach algebras Xf0:p and Xf0:p are Banach-algebra-isomorphic.

�

The above theorem characterize the p-prime Γf0-dynamical Banach algebra,
the crossed product Banach algebra, Xf0:p = Ap ×αf0 R induced by the p-prime
Γf0-dynamical system (R, Ap, α

f0), as a conditional tensor product subalgebra
Xf0:p = Ap ⊗αf0 Ef0 of the tensor product Banach algebra Ap ⊗C Ap.

8. Freeness on Xf0:p

In this section, we study the p-prime Γf0-dynamical Banach algebra Xf0:p more
in detail, in particular, we establish free-probabilistic model on Xf0:p.

In Section 7, we showed that two Banach algebras Xf0:p and Xf0:p are isomorphic
from each other, where Xf0:p is in the sense of (7.11), satisfying (7.12) and (7.13).
It means that the flowed dynamical systems acting on the p-Banach algebra Ap

is analyzed by elements of

Xf0:p
Banach-Algebra

= Xf0:p,

by (7.14). From now on, understand Xf0:0 and Xf0:p alternatively.
Define a morphism

Ωp : Xf0:p = Xf0:p → Ap

by a linear transformation satisfying that:
(8.1)

Ωp (f ⊗ΘEt) = δt,0

(
f ⊗ 1Ef0

)
= δt,0 f,

where 1Ef0
= 1Ap = ΘE0 , and δ means the Kronecker delta. i.e.,

Ωp

(∑N
j=1 rj (fj ⊗ΘEtj )

)
=
∑N

j=1 rjΩp (fj ⊗ΘEtj )

=
∑N

j=1 rj δtj ,0fj.

Then it is a well-defined conditional expectation from Xf0:p onto Ap. Indeed,
for all f ∈ Ap, equivalent to
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f ⊗ 1Ef0
in Ap ⊗C {1Ef0

} ⊂ Xf0:p,

we have

Ωp

(
f ⊗ 1Ef0

)
= f, for all f ∈ Ap,

and
Ωp

((
f1 ⊗ 1Ef0

)
(f2 ⊗ΘEt)

)
= Ωp ((f1 ∗ f2)⊗ΘEt) = δt,0 (f1 ∗ f2)
= f1 ∗ (δt,0f2) = f1 ∗ (Ωp (f2 ⊗ΘEs)) ,

for all f1 ∈ Ap, f2 ⊗ ΘEt ∈ Xf0:p. Also, by definition, this morphism Ωp is
bounded (or continuous). So, under linearity, Ωp is a (Banach-algebra) conditional
expectation from Xf0:p onto Ap.

Lemma 8.1. Let Ωp : Xf0:p → Ap be a morphism in the sense of (8.1). Then it
is a well-defined conditional expectation. �

Define a linear functional

ϕf0:p : Xf0:p → C,
by the linear functional, satisfying that:
(8.2)

ϕf0:p
def
= gp ◦ Ωp.

Indeed, this function ϕf0:p is linear, since
ϕf0:p (t (f1 ⊗ΘEt1 ) + s(f2 ⊗ΘEt2 ))

= gp (Ωp (t(f1 ⊗ΘEt1 ) + s(f2 ⊗ΘEt2 )))
= gp (tδt1,0 f1 + sδt2,0 f2)
= t gp (δt1,0f1) + s gp (δt2,0f2)
= t ϕf0:p (f1 ⊗ΘEt1 ) + s ϕf0:p (f2 ⊗ΘEt2 ) .

By the boundedness of Ωp, it is bounded, too. So, ϕf0:p is a continuous linear
functional on Xf0:p.

Definition 8.2. Let Xf0:p = Ap ×αf0 R = Ap ⊗αf0 Ef0 = Xf0:p be the p-prime
Γf0-Banach algebra, and let ϕf0:p = gp ◦ Ωp be the linear functional (8.2) on
Xf0:p, where Ωp is the conditional expectation (8.1). The corresponding Banach
probability space (Xf0:p, ϕf0:p) is called the p-prime Γf0-dynamical probability
space.

Let (Xf0:p, ϕf0:p) be the p-prime Γf0-dynamical probability space, consisting
of the p-prime Γf0-Banach algebra Xf0:p and the linear functional ϕf0:p of (8.2).
Now, we compute free moments of free random variables of (Xf0:p, ϕf0:p).

Recall that:
(8.3)

(f1 ΘEt1 ) (f2 ΘEt2 ) =
(
f1 ∗ αf0

t1 (f2)
)

Θ(E−t1 )∗ΘEt2

=
(
f1 ∗ αf0

t1 (f2)
)

ΘE1(−t1f∗0 +t2f0),

for fj ΘEtj ∈ Xf0:p, for j = 1, 2.
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Notation For convenience, we write αf0
t (h) simply by h(t), for all h ∈ Ap and

t ∈ R. i.e.,
(8.4)

h(t) = αf0
t (h) = Et(f0) ∗ h ∗ Et(f0)

∗ in Ap,

realized by (7.3) in Ap. One can understand f ΘEt ∈ Xf0:p and f ⊗ ΘEt ∈ Xf0:p

as same (or equivalent) elements below. �

Observe that:
(f1 ΘEt1 ) (f2 ΘEt2 ) (f3 ΘEt3 )

=
(
f1 ∗ f2(t1) ΘE1(−t1f∗0 +t2f0)

)
(f3 ΘEt3 )

=
(
f1 ∗ f2(t1) ∗ f3(t1+t2)

)
ΘE1(−(−t1f∗0 +t2f0)∗+t3f0)

(8.5)
=
(
f1 ∗ f2(t1) ∗ f3(t1+t2)

)
ΘE1(t1f0−t2f∗0 +t3f0),

for fj ΘEtj ∈ Xf0:p, for j = 1, 2, 3.
Inductively, one can get that:

Lemma 8.3. Let fj ΘEtj ∈ Xf0:p, for j = 1, · · · , n, for n ∈ N. Then one can get
that:

(8.6)

n

Π
k=1

(fk ΘEtk ) =

(
n∗

k=1
f

k

�
k−1
Σ

i=0
tj

�
)

Θ
E1

�
n
Σ

k=1
(−1)n−ktkf

[k]
0

�,
where fk(s) = (fk)(s) in the sense of (8.2), for j = 1, · · · , n, and s ∈ R, and

(8.6)′

([k])n
j=1 = ([1], [2], · · · , [n])

=

{
(∗, 1, ∗, 1, · · · , ∗, 1) if n is even
(1, ∗, 1, ∗, · · · , ∗, 1) if n is odd,

for all n ∈ N.

Proof. The proof is by (8.5) and by induction. �

Now, recall that:
(8.7)

E0 = E0(f0) = E1 (0f0) = E1(0Ap) = 1Ap .

Observe now that:

Ωp

(
n

Π
k=1

(fk ΘEtk )

)
= Ωp

((
n∗

k=1
f

k

�
j−1

Σ
i=1

ti

�
)

Θ
E1

�
n
Σ

k=1
(−1)n−kf

[k]
0

�
)

by (8.6)

=


(

n∗
k=1

f
k

�
j−1

Σ
i=1

ti

�
)

if
n

Σ
k=1

(−1)n−kf
[k]
0 = 0Ap

0Ap otherwise,
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in Ap, by (8.7). So, one has the following lemma.

Lemma 8.4. Let fk ΘEtk ∈ (Xf0:p, ϕf0:p), for k = 1, · · · , n, for n ∈ N. Then
(8.8)

Ωp

(
n

Π
k=1

fk ΘEtk

)
=


(

n∗
k=1

f
k

�
j−1

Σ
i=1

ti

�
)

if
n

Σ
k=1

(−1)n−kf
[k]
0 = 0Ap

0Ap otherwise,

in Ap. �

By (8.6), (8.7) and (8.8), we obtain the following free moment computations
on the p-prime Γf0-dynamical probability space (Xf0:p, ϕf0:p).

Theorem 8.5. Let fk ΘEk be free random variables in the p-prime Γf0-dynamical
probability space (Xf0:p, ϕf0:p), for k = 1, · · · , n, for n ∈ N. Then

(8.9)

ϕf0:p

(
n

Π
k=1

fk ΘEtk

)

=


∑n

k=1 vk:p

(
Π

l∈{1,··· ,n}, l 6=k
vk:1

)
if

n∑
k=1

(−1)n−kf
[k]
0 = 0Ap

0, otherwise,

where

vk:p = e
u1

 
kP

i=1
ti

!((
k∑

i=1

ti

)
upfk(1) + fk(p)

)
,

and

vk:1 = e
u1

�
k
Σ

i=1
ti

�
fk(1), in C,

for all k = 1, · · · , n.

Proof. By (8.6), (8.7) and (8.8), we have
(8.10)

ϕf0:p

(
n

Π
k=1

fk ΘEtk

)
=

 gp

(
n∗

k=1
f

k

�
k−1
Σ

i=1
ti

�
)

if
n

Σ
k=1

(−1)n−kf
[k]
0 = 0Ap

gp

(
0Ap

)
= 0 otherwise,

in C.
By (7.3), we have

f(t)(1) = etu1f(1),

and

f(t)(p) = etu1 (tupf(1) + f(p)) ,

for all t ∈ R, where

u1 = Re(w1) = Re(f0(1)),



204 I. CHO

and

up = Re(wp) = Re(f0(p)).

Therefore,

f
k

�
k−1
Σ

i=1
ti

�(1) = e
u1

�
k
Σ

i=1
ti

�
fk(1)

denote
= vk:1,

and

f
k

�
k−1
Σ

i=1
ti

�(p) = e
u1

�
k
Σ

i=1
ti

�((
k∑

i=1

ti

)
upfk(1) + fk(p)

)
denote
= vk:p,

in C, for all k = 1, · · · , n.
So, by (8.10) and (3.1.11), if nonzero, then one can get that:

ϕf0:p

(
n

Π
k=1

fk ΘEtk

)
= gp

(
n∗

k=1
f

k

�
k−1
Σ

i=1
ti

�
)

=
∑n

k=1 vk:p

(
Π

l∈{1,··· ,n}, l 6=k
vk:1

)
,

where vk:1 and vk:p are given as above, for all k = 1, · · · , n. �

Consider now the case where the above computation (8.9) is non-zero. By
condition, one should have ∑n

k=1 (−1)n−kf
[k]
0 = 0Ap ,

to make (8.9) be non-zero.
Suppose first that f0 is self-adjoint in Ap, in the sense that: f ∗0 = f0, equiva-

lently, f0 is R-valued,

f0(n) = f0(n) in C, for all n ∈ N.
Then one can conclude that the formula (8.9) goes to;

ϕf0:p

(
n

Π
k=1

fk ΘEtk

)

=


∑n

k=1 vk:p

(
Π

l∈{1,··· ,n}, l 6=k
vk:1

)
if

(
n∑

k=1

(−1)n−k

)
f0 = 0Ap

0, otherwise,

by the assumption that: f ∗0 = f0 in Ap

=


∑n

k=1 vk:p

(
Π

l∈{1,··· ,n}, l 6=k
vk:1

)
if

(
n∑

k=1

(−1)n−k

)
= 0

0, otherwise,
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=


∑n

k=1 vk:p

(
Π

l∈{1,··· ,n}, l 6=k
vk:1

)
if n is even

0, if n is odd,

for all n ∈ N. More precisely, we obtain the following corollary.

Corollary 8.6. Under the same hypothesis with the above theorem, if f0(1), f0(p)
∈ R, then

(8.11)

ϕf0:p

(
n

Π
k=1

fk ΘEtk

)
=


∑n

k=1 vk:p

(
Π

l∈{1,··· ,n}, l 6=k
vk:1

)
if n is even

0, if n is odd,

for all n ∈ N, where vk:p and vk:1 are given as in the above theorem, for all k
= 1, · · · , n.

Proof. In [15, 16], we showed that Θf0 is self-adjoint in the sense that Θ∗
f0

= Θf0 ,
if and only if f0(1) and f0(p) are contained in R. i.e., in Ef0 , it is self-adjoint.
By [11], one can understand f0 as a self-adjoint element in Ap. Thus, by the
discussion of the above paragraph, one can get (8.11). �

Also, by (8.9), we obtain that:

Corollary 8.7. Let f ΘEt ∈ (Xf0:p, ϕf0:p), with f ∈ Ap, t ∈ R. Then
(8.12)

ϕf0:p ((f ΘEt)n) =


∑n

k=1 vk:p

(
Π

l∈{1,··· ,n}, l 6=k
vk:1

)
if

n∑
k=1

(−1)n−kf
[k]
0 = 0Ap

0, otherwise,

where

vk:p = e
u1

�
k
Σ

i=1
ti

�((
k∑

i=1

ti

)
upf(1) + f(p)

)
,

and

vk:1 = e
u1

�
k
Σ

i=1
ti

�
f(1), in C,

for all k = 1, · · · , n, for all n ∈ N. �

Suppose f ∈ Ap, and Et ∈ Γf0 , for t ∈ R. By Section 3.1,

gp (Et) = Et(p) = (Et(f0)) (p) = twp e
tw1 ,

and

Et(1) = (Et(f0)) (1) = etw1 ,

in C, where w1 = f0(1), and wp = f0(p).
It shows that Et(1) 6= 0 in Ap, and gp(E

t) 6= 0, whenever t 6= 0. (Notice that
gp(E

t) = 0, only when t = 0.)
By (3.1.13) and (3.1.14), one can verify the following freeness characterization

on the p-prime Banach probability space (Ap, gp).
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Proposition 8.8. Two “nonzero” free random variables f1 and f2 are free in
(Ap, gp), if and only if either

(8.13) f1(p) = 0 = f2(p), with f1(1) 6= 0 and f2(1) 6= 0, or
(8.14) fi(1) = 0 = fj(p), for i 6= j ∈ {1, 2}, with fi(p) 6= 0, and fj(1) 6= 0.

Proof. The proof of the theorem is by the little modification of that of (3.1.13)
and (3.1.14) in [11, 12]. By the very definition-and-construction of the Banach
space Ap under the equivalence relation Np on A (See Sections 5 and 6), if f ∈
Ap is nonzero, then either f(1) 6= 0, or f(p) 6= 0. So, f1 and f2 are free in (Ap,
gp), if and only if either (8.13) or (8.14) holds. �

The above proposition implies that:

Theorem 8.9. Let f ∈ (Ap, gp) be nonzero, and Et ∈ Γf0 , for t ∈ R. Then f
and Et are free in (Ap, gp), if and only if either

(8.15) t = 0 and f(p) = 0, if f(1) 6= 0, or
(8.16) t = 0 and f(1) = 0, if f(p) 6= 0.

Proof. Suppose t 6= 0. Then both

Et(1) = etu1 6= 0, and Et(p) = tupe
tu1 6= 0.

So, by (8.13) and (8.14), if f 6= 0Ap , then f and Et are not free in (Ap, gp).
Assume now that t = 0. Then E0 = 1Ap , the identity element of Ap.

E0(1) = 1Ap(1) = 1 6= 0, and E0(p) = 1Ap(p) = 0.

So, f and E0 are free in (Ap, gp), if and only if f(p) = 0 (with f(1) 6= 0), to
satisfy (8.13). Similarly, f and E0 are free in (Ap, gp), if and only if f(1) = 0
(with f(p) 6= 0), to satisfy (8.14). �

The above theorem shows that, in general, if f 6= 0Ap , then f and Et are not
free in (Ap, gp), whenever t 6= 0.

The following corollary is the direct consequence of the above theorem.

Corollary 8.10. Let f ∈ (Ap, gp), and f(t) = αf0
t (f) ∈ (Ap, gp), for t ∈ R.

(8.17) f and f(t) are not free in (Ap, gp),
whenever f 6= 0Ap in Ap.

Proof. Assume first that t = 0 in R. Then f(0) = f in Ap. Therefore, f and f(0)

are not free in (Ap, gp). Suppose now that t 6= 0 in R. Then, by (8.15) and (8.16),
f and Et are not free in (Ap, gp). Therefore, mixed free cumulants of

f and f(t) = Et(f0) ∗ f ∗ Et(f
∗
0 )

do not vanish in general, because mixed free cumulants of f and f(t) can be
understood as certain mixed free cumulants of f and Et. So, f and f(t) are not
free in (Ap, gp).

Indeed, one can get that:
k2

(
f, f(t)

)
= k2 (f, Et(f0) ∗ f ∗ Et(f

∗
0 ))

= gp (f ∗ Et(f0) ∗ f ∗ Et(f
∗
0 ))

− (gp(f)) (gp (Et(f0) ∗ f ∗ Et(f
∗
0 )))
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by the Möbius inversion of Section 2
= gp

(
f (2) ∗ Et(f0) ∗ Et(f

∗
0 )
)

− f(p) (gp (f ∗ Et(f0) ∗ Et(f
∗
0 ))))

by the commutativity of (∗) on Ap

= gp

(
f (2) ∗ Et(f0 + f ∗0 )

)
− f(p) (gp (f ∗ Et(f0 + f ∗0 )))

by (5.7)
= gp

(
f (2) ∗ Et(Ref0)

)
− f(p) (gp (f ∗ Et(Ref0)))

since f0 + f ∗0 = Ref0, with Ref0(1) = u1, and Ref0(p) = up

=
(
(f(1))2 tupe

tu1 + 2etu1f(1)f(p)
)

− f(p) (f(1)tupe
tu1 + etu1f(p))

= (f(1))2 tupe
tu1 + 2etu1f(1)f(p)

− f(1)f(p)tupe
tu1 − etu1f(p)2

= etu1
(
(f(1))2 tup + 2f(1)f(p)− f(1)f(p)tup − f(p)2

)
.

It shows that

k2(f, f(t)) = 0, if and only if f(1) = 0 = f(p),

equivalently, f = 0Ap in Ap, for all t ∈ R.
Therefore, if f 6= 0Ap , then f and f(t) are not free in (Ap, gp), for all t ∈ R. �

The above corollary shows that the family {f(t)}t∈R in Ap forms a non-free
family in (Ap, gp). We obtain the following generalization of the above corollary

Proposition 8.11. Let f1, f2 ∈ (Ap, gp) be nonzero. Then f1 and f2(t) are not
free in (Ap, gp), for all t ∈ R.

Proof. If f1 = f2 in Ap, then it holds, by (8.17). Suppose that f1 6= f2. Assume
further that f1 and f2 are not free in (Ap, gp). Similar to the proof of (8.17),
observe that:

k2

(
f1, f2(t)

)
= k2 (f1, Et(f0) ∗ f2 ∗ Et(f

∗
0 ))

= gp (f1 ∗ Et(f0) ∗ f2 ∗ Et(f
∗
0 ))

− (gp(f1)) (gp (Et(f0 ∗ f2 ∗ Et(f
∗
0 ))))

= gp (f1 ∗ f2 ∗ Et(Ref0))
− f1(p) (gp(f2 ∗ Et(Ref0)))

= (f1 ∗ f2(1)) (Et(Ref0)) (p) + (f1 ∗ f2) (p) (Et(Ref0)(1))
− f1(p) (f2(p)Et(Ref0)(1) + f2(1)Et(Ref0)(p))

= (f1(1)) (f2(1)) (tupe
tu1) + f1(1)f2(p)e

tu1 + f1(p)f2(1)e
tu1

− (f1(p)) (f2(p)) e
tu1 + f2(1) (tupe

tu1)
(8.18)

= etu1 (tupf1(1)f2(1) + f1(1)f2(p) + f1(p)f2(1)
−f1(p)f2(p) + tupf2(1)) .

By (8.13) and (8.14), the above second mixed free cumulant of f1 and f2(t) =

αf0
t (f2) vanishes only if either f1 = 0Ap or f2 = 0Ap . So, f1 and f2(t) are not free

whenever f1 and f2 are not free in (Ap, gp).
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Suppose now that f1 and f2 are free in (Ap, gp). Then, by (8.13) and (8.14),
either (i) f1(p) = 0 = f2(p) with f1(1) 6= 0, and f2(1) 6= 0, or (ii) say f1(1) = 0
= f2(p), with f1(p) 6= 0, and f2(1) 6= 0.

Assume first that the condition (i) holds, for the freeness of f1 and f2. Then
the mixed second free cumulant (8.18) of f1 and f2(t) becomes that

(8.18)′

tupe
tu1f2(1) (f1(1) + 1) .

So, in general, the formula (8.18)′ does not vanish. It vanishes only when t =
0 in R. In fact, it guarantees the third mixed free cumulant

k3(f1, f2(0), f1) 6= 0.

Now, assume that the condition (ii) holds. Then the above formula (8.18)
becomes

(8.18)′′

etu1 (f1(p)f2(1) + tupf2(1)) .

So, the formula (8.18)′′ does not vanish.
The formulae (8.18)′ and (8.18)′′ show that even though f1 and f2 are free in

(Ap, gp), the elements f1 and f2(t) are not free in (Ap, gp). �

By the above consideration, we obtain the following theorem characterizing the
freeness on Xf0:p.

Theorem 8.12. Let Tj = fjΘEtj be nonzero free random variables in the p-prime
Γf0-dynamical probability space (Xf0:p, ϕf0:p), for j = 1, 2. They are free in (Xf0:p,
ϕf0:p), if and only if both (8.19) and (8.20) hold, where

(8.19) t1 = 0 = t2,
(8.20) f1 and f2 are free in (Ap, gp).

Proof. (⇐) Assume the conditions (8.19) and (8.20) holds. By (8.19), it is not
difficult to check that

kf0:p
n (Ti1 , · · · , Tin) = kn (fi1 , · · · , fin) ,

for all mixed n-tuples (i1, · · · , in) ∈ {1, 2}n, for all n ∈ N \ {1}, where kf0:p
n (· · · )

means the free cumulants on Xf0:p, with respect to the linear functional ϕf0:p. By
(8.20), all mixed free cumulants of f1 and f2 vanish, and hence,

kf0:p
n (Ti1 , · · · , Tin) = 0,

for all mixed n-tuples (i1, · · · , in), for all n ∈ N \ {1}. So, T1 and T2 are free
in (Xf0:p, ϕf0:p).

(⇒) Suppose T1 and T2 are free in (Xf0:p, ϕf0:p). Assume that either t1 or t2
are nonzero in R. Say t1 6= 0. i.e., we assume the condition (8.19) does not hold.
Consider the mixed second cumulant of T1 and T2;

kf0:p
2 (T1, T2) = kf0:p

2 (f1ΘEt1 , f2ΘEt2 )
= ϕf0:p (f1ΘEt1f2ΘEt2 ) − ϕf0:p (f1ΘEt1 )ϕf0:p (f2ΘEt2 )
= ϕf0:p

((
f1 ∗ f2(t1)

)
ΘEt1+t2

)
− 0
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since t1 6= 0, by (8.9)

=

{
gp

(
f1 ∗ f2(t1)

)
if t1f0 − t2f

∗
0 = 0Ap

0 otherwise,
by (8.10)

=

{
f1(1)f2(1)tet1u1up + (f1(1)f2(p) + f1(p)f2(1))e

t1u1 , or
0

It shows that, in general, if t1 6= 0, then kf0:p
2 (T1, T2) 6= 0. For instance, if f ∗0

= f0, and t1 = t2 in R \ {0}, then the second mixed free cumulant of T1 and T2

does not vanish. It contradicts our assumption that T1 and T2 are free in (Xf0:p,
ϕf0:p).

Assume now that f1 and f2 are not free in (Ap, gp). i.e., suppose the condition
(8.20) does not hold. It suffices to consider the case where the condition (8.19)
holds. It shows again that

kf0:p
n (Ti1 , · · · , Tin) = kn (fi1 , · · · , fin) ,

for mixed n-tuples (i1, · · · , in). It shows that there exists n0 ∈ N and mixed
n0-tuple (i1, · · · , in0), such that

kn0

(
fi1 , · · · , fin0

)
= kf0:p

n0

(
Ti1 , · · · , Tin0

)
6= 0.

This contradicts our assumption that T1 and T2 are free.
Therefore, if T1 and T2 are free in (Xf0:p, ϕf0:p), then both (8.19) and (8.20)

hold. �

The above theorem completely characterize the inner freeness of the p-prime
Γf0-dynamical Banach algebra Xf0:p, in terms of a fixed prime p and the flow
determined by a fixed element f0 ∈ Ap. Under the linear functional ϕf0:p, the
freeness on Xf0:p is affected by that on Ap.

9. Equivalent Dynamical Systems with
(
Γf0 , Ap, α

f0
)

In Sections 7 and 8, we established a certain flowed dynamical system induced
by the p-prime Banach algebra Ap and the flow R, via a group action αf0 for a fixed
“nonzero” element f0 ∈ Ap, having Γf0 = R, and studied the corresponding crossed
product Banach algebra Xf0:p to investigate how this dynamical system works on
arithmetic functions. In this section, we study systems of such dynamical systems.

9.1. Group Dynamical Systems on Ap Induced by Γf1+f2+···+fk
. Let p be a

fixed prime, and let (Ap, gp) be the p-prime Banach probability space induced by
the arithmetic p-prime probability space (A, gp) (under quotient and topology),
and let Xf0:p be the crossed product Banach algebra Ap ×αf0 R induced by the
p-prime Γf0-dynamical system (R, Ap, α

f0). Then we obtain the p-prime Γf0-
dynamical probability space (Xf0:p, ϕf0:p).

Now, let f0 be fixed in Ap as above, and assume f1, · · · , fk ∈ Ap, satisfying
that:
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f0 =
k∑

j=1

fj in Ap.

Then we have

Et = Et(f0) = Et

(
k∑

j=1

fj

)
=

k∗
j=1

Et(fj)

in Ap, by Section 5, for all t ∈ R.
Thus, one can get that

ΘEt = Θ k∗
j=1

Et(fj)
=

k

Π
j=1

ΘEt(fj) in B
(
C2

Ao

)
,

for all t ∈ R, by Section 6.
From now on, we restrict our interests to the case where k = 2. i.e.,

f0 = f1 + f2 in Ap,

so

Et = Et(f1 + f2) = Et(f1) ∗ Et(f2),

and hence,

ΘEt = ΘEt(f1)ΘEt(f2) on C2
Ao
.

Under above conditions, one can have that:
αf0

t (h) = Et(f0) ∗ h ∗ Et(f0)
∗

= Et(f0) ∗ h ∗ Et(f
∗
0 )

= Et(f1 + f2) ∗ h ∗ Et(f
∗
1 + f ∗2 )

= Et(f1) ∗ Et(f2) ∗ h ∗ Et(f
∗
1 ) ∗ Et(f

∗
2 )

= Et(f2) ∗ (Et(f1) ∗ h ∗ Et(f
∗
1 )) ∗ Et(f

∗
2 )

since (∗) is commutative on Ap

= αf2
t (Et(f1) ∗ h ∗ Et(f

∗
1 ))

where αf2
t is in the sense of (7.6) (and (7.6)′) for f2

= αf2
t

(
αf1

t (h)
)

=
(
αf2

t ◦ αf1
t

)
(h)

for all h ∈ Ap, for all t ∈ R. i.e.,
(9.1.1)

αf0
t = αf1+f2

t = αf1
t ◦ αf2

t , for all t ∈ R.
Inductively, we obtain that:

Lemma 9.1. Let αf0 be the group action of the flow R = Γf0 acting on Ap in the

sense of (7.6)′. If f0 =
k∑

j=1

fj in Ap, for some k ∈ N, then

(9.1.2)

αf0
t =

k◦
j=1

α
fj

t , for all t ∈ R,

where (◦) means the usual functional composition.

Proof. By (9.1.1), we have

αf1+f2
t = αf1

t ◦ αf2
t , for all t ∈ R,

and hence, inductively, we obtain
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α
Σk

j=1fj

t = α
f1+Σk

j=2fj

t = αf1
t ◦ αΣk

j=2fj

t

= αf1
t ◦ αf2

t ◦ αΣk
j=3fj

t

= · · · = k◦
j=1
α

fj

t

for all t ∈ R. �

The above general formula (9.1.2) says that, if a fixed nonzero element f0 ∈
Ap is formed by a sum

∑k
j=1 fj of other elements f1, · · · , fk of Ap, for some k ∈

N, then the group action αf0 of the flow R is understood as a certain product of
group actions αf1 , · · · , αfk of the flow R.

Define now a product group

Rk = R × · · · × R︸ ︷︷ ︸
k-times

,

equipped with an operation (+k),

(t1 ,̇ · · · , tk) +k (s1, · · · , sk) = (t1 + s1, · · · , tk + sk).

Then the algebraic structure Rk = (Rk, +k) is a well-defined group with its
group identity

0k =

0, 0, · · · , 0︸ ︷︷ ︸
k-rimes

 ,

where each element (t1, · · · , tk) has its (+k)-inverse,

−(t1, · · · , tk) = (−t1, · · · ,−tk),
for all k ∈ N.
Define now a subgroup ∆k of (Rk, +k) by

∆k = {(t, t, t, · · · , t) ∈ Rk : t ∈ R},
under the inherited operation (+k), for all k ∈ N. It is easy to check that indeed

∆k is a subgroup of Rk, moreover, it is group-isomorphic to the flow R. Indeed,
there exists a well-defined group-isomorphism,

∆k 3 (t, t, · · · , t) 7−→ t ∈ R.
Thus, one can understand the subgroup ∆k of (Rk, +k) as the flow R, for all k

∈ N.
For fixed elements f1, · · · , fk ∈ Ap, define a group action κf1,··· ,fk of ∆k acting

on Ap by
(9.1.3)

κf1,··· ,fk

(t,t,··· ,t)(h)
def
=
(
αf1

t ◦ · · · ◦ αfk
t

)
(h),

for all h ∈ Ap, and t ∈ R.
Then one can check that κf1,··· ,fk

(t,··· ,t) is a well-defined function on Ap, because α
fj

t

are well-defined functions on Ap, for all j = 1, · · · , k, for all t ∈ R. Furthermore,

κf1,··· ,fk

(t,··· ,t)+(s,··· ,s)(h) = κf1,··· ,fk

(t+s,··· ,t+s)(h)

=
(
αf1

t+s ◦ · · · ◦ α
fk
t+s

)
(h)
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= α
Σk

j=1fj

t+s (h)
by (9.1.2)

=
(
α

Σk
j=1fj

t ◦ αΣk
j=1fj

s

)
(h)

since αf are well-defined group actions (for all f ∈ Ap)

=
(
αf1

t ◦ · · · ◦ αfk
t ◦ αf1

s ◦ · · · ◦ αfk
s

)
(h)

by (9.1.2)

=
((
αf1

t ◦ · · · ◦ αfk
t

)
◦
(
αf1

s ◦ · · · ◦ αfk
s

))
(h)

=
(
κf1,··· ,fk

(t,··· ,t) ◦ κf1,··· ,fk

(s,··· ,s)

)
(h),

for all h ∈ Ap, and (t, · · · , t), (s, · · · , s) ∈ ∆k. i.e., we obtain that:
(9.1.4)

κf1,··· ,fk

(t,··· ,t)+(s,··· ,s) = κf1,··· ,fk

(t,··· ,t) ◦ κf1,··· ,fk

(s,··· ,s) on Ap.

Therefore, κf1,··· ,fk is a well-defined group action of ∆k acting on Ap. Since ∆k

is group-isomorphic to the flow R, one has a flowed group-dynamical system (∆k,
Ap, κ

f1,··· ,fk).
By (9.1.2), (9.1.3) and (9.1.4), we obtain the following theorem.

Theorem 9.2. Let Xf0:p = Ap ×αf0 R be the p-prime Γf0-dynamical Banach

algebra. If f0 =
∑k

j=1 fj in Ap, for f1, · · · , fk ∈ Ap, then Xf0:p is isomorphic to
the crossed product Banach algebra

Ap ×κf1,··· ,fk ∆k

induced by the group dynamical system (∆k, Ap, κ
f1,··· ,fk).

Proof. It is sufficient to show that the dynamical systems

(R = Γf1+f2+···+fk
, Ap, α

f0) and (∆k, Ap, κ
f1,..,fk)

are equivalent. But, we showed that two groups R = Γf0 and ∆k are group-
isomorphic, moreover, group actions αf0 and κf1,··· ,fk satisfy (9.1.3), i.e.,

αf0
t = κf1,··· ,fk

(t,··· ,t) on Ap, for all t ∈ R.

In other words, the above two dynamical systems are equivalent. Therefore
they induce isomorphic crossed product Banach algebras

Xf0:p = Ap ×αf0 R, and Ap ×κf1,··· ,fk ∆k,

respectively. �

If we denote the crossed product algebra Ap ×κf1,··· ,fk ∆k by Xf1,..,fk:p, then it
has equivalent free probability with that of Xf0:p by the above theorem and by
Section 8.

9.2. Group Dynamical Systems on Ap Induced by Γf1 × Γf2 × · · · × Γfk
.

Let Γfj
be the groups, isomorphic to the flow R, in the sense of Section 6, for

fixed fj ∈ Ap, for j = 1, · · · , k, for some k ∈ N. Construct now the product group
(9.2.1)



DYNAMICAL SYSTEMS ON ARITHMETIC FUNCTIONS 213

Γf1,··· ,fk

def
=

k

Π
j=1

Γfj
,

equipped with the operation (·), such that:(
ΘEt1 (f1), ΘEt2 (f2), · · · ,ΘEtk

(fk)

)
·
(
ΘEs1 (f1), ΘEs2 (f2), · · · ,ΘEsk

(fk)

)
=
(
ΘEt1 (f1)ΘEs1 (f1), · · · ,ΘEtk

(fk)ΘEsk
(fk)

)
=
(
ΘE1(t1f1+s1f1), · · · ,ΘE1(tkfk+skfk)

)
=
(
ΘEt1+s1 (f1), · · · ,ΘEtk+sk

(fk)

)
.

Clearly, the algebraic structure (Γf1,··· ,fk
, ·) forms a group, as the product group

of Γf1 , · · · ,Γfk
.

Define a subgroup Df1,··· ,fk
of the group Γf1,··· ,fk

of (9.2.1) by
(9.2.2)

Df1,··· ,fk

def
=
{(

ΘEt(f1), ΘEt(f2), · · · ,ΘEt(fk)

)
|t ∈ R

}
,

under the inherited operation (·) from Γf1,··· ,fk
.

Then the pair (Df1,··· ,fk
, ·) becomes a subgroup of Γf1,··· ,fk

of (9.2.1), moreover,
it is group-isomorphic to the subgroup ∆k of the product group Rk of Section
9.1. Indeed, one can define a group-isomorphism,(

ΘEt(f1), · · · ,ΘEt(fk)

) βk7−→ (t, · · · , t),
where βk means the group-isomorphism between Df1,··· ,fk

and ∆k.

Since ∆k is group-isomorphic to the flow R = Γf0 whenever f0 =
∑k

j=1 fj, the
above group Df1,··· ,fk

is group-isomorphic to the flow R = Γf0 , too. So, one can
define a group action γf1,··· ,fk of Df1,··· ,fk

acting on Ap by
(9.2.3)

γf1,··· ,fk
def
= κf1,··· ,fk ◦ βk.

Then it is a well-defined group action, moreover, we obtain that:

Theorem 9.3. The group dynamical systems

(R = Γf0 , Ap, α
f0) and (Df1,··· ,fk

, Ap, γ
f1,··· ,fk)

are equivalent, whenever f0 =
∑k

j=1 fj in Ap.

Proof. We showed that two group dynamical systems (R, Ap, α
f0) and (∆k, Ap,

κf1,··· ,fk) are equivalent, whenever f0 =
∑k

j=1 fj in Ap. By (9.2.2) and (9.2.3), it is

not difficult to check that the group dynamical systems (Df1,··· ,fk
, Ap, γ

f1,··· ,fk) and
(∆k, Ap, κ

f1,··· ,fk) are equivalent. Therefore, we obtain the desired consequence.
�

The following corollary is the direct consequence of the above theorem.

Corollary 9.4. Let f0 =
∑k

j=1 fj in Ap. Then the Banach algebras

Xf0:p = Ap ×αf0 R and Xf1,··· ,fk
= Ap ×γf1,··· ,fk Df1,··· ,fk

are isomorphic. �
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