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REFINEMENTS OF QUASI-ARITHMETIC MEANS
INEQUALITIES FOR HILBERT SPACE OPERATORS

JADRANKA MIĆIĆ

Communicated by M. Fujii

Abstract. In this paper some inequalities involving quasi-arithmetic means
for a continuous field of self-adjoint operators, a field of positive linear map-
pings and continuous strictly monotone functions are refined. These refined
converses are presented by using the Mond-Pečarić method improvement. Ob-
tained results are applied to refine selected inequalities with power functions.

1. Introduction

Let T be a locally compact Hausdorff space and µ be a Radon measure on T .
Let A be a C∗-algebra of operators on some Hilbert space H. We say that a field
(xt)t∈T of operators in A is continuous if the function t 7→ xt is norm continuous
on T.

Assume further that there is a field (φt)t∈T of positive linear mappings φt :
A → B from A to another C∗-algebra B of operators on a Hilbert space K. We
say that such a field is continuous if the function t 7→ φt(x) is continuous for
every x ∈ A. Additionally, if the C∗-algebras include the identity operators and
the function t 7→ φt(1H) is integrable with

∫
T
φt(1H) dµ(t) = 1K , we say that a

field (φt)t∈T is unital.
Let B(H) be the C∗-algebra of all bounded linear operators on a Hilbert space

H. We define bounds of a self-adjoint operator x ∈ B(H) by

mx := inf
‖ξ‖=1

〈xξ, ξ〉 and Mx := sup
‖ξ‖=1

〈xξ, ξ〉
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for ξ ∈ H.
The absolute value of x ∈ B(H) is defined by |x| := (x∗x)1/2.
We observe the quasi-arithmetic operator mean

Mϕ(x,φ) = ϕ−1

(∫
T

φt (ϕ(xt)) dµ(t)

)
, (1.1)

where (xt)t∈T is a bounded continuous field of self-adjoint operators in a C∗-
algebra B(H) with spectra in [m,M ] for some scalars m < M , (φt)t∈T is a unital
field of positive linear mappings φt : B(H) → B(K) and ϕ ∈ C[m,M ] is a strictly
monotone function. This mean is briefly denoted by Mϕ.

In [6] the monotonicity of these means is presented:

Mϕ ≤ Mψ (1.2)

for all strictly monotone functions ψ, ϕ ∈ C[m,M ], such that one of the following
conditions holds:

(i): ψ ◦ ϕ−1 is operator convex and ψ−1 is operator monotone
(ii): ψ ◦ ϕ−1 is operator concave and −ψ−1 is operator monotone
(iii): ϕ−1 is operator convex and ψ−1 is operator concave

Monotonicity (1.2) without operator convexity is presented in [5], but with con-
ditions on the bounds of xt, t ∈ T . Improvements of some operator means
inequalities are, for example, considered in [4].

The purpose of this paper is to consider converse of (1.2). We study refining
of these inequalities without operator convexity or operator monotonicity and
without conditions on spectra of the operators. Applying the obtained results we
further refine selected inequalities involving power means.

2. Quasi-arithmetic means

For convenience we introduce some abbreviations. For f : I → R and m,M ∈ I,
m 6= M , we denote

δf ≡ δf (m,M) := f(m) + f(M)− 2f

(
m+M

2

)
and

kf ≡ kf (m,M) :=
f(M)− f(m)

M −m
and lf ≡ lf (m,M) :=

Mf(m)−mf(M)

M −m
,

so the linear function through (m, f(m)) and (M, f(M)) has the form h(z) =
kf z + lf .

2.1. Auxiliary results. To prove our main results we need the following lemmas.

Lemma 2.1. (a special case of [7, Lemma 4]) Let A be a self-adjoint operator on
a Hilbert space H such that m1H ≤ A ≤M1H for some scalars m < M . If f is a
convex function on [m,M ], then

f(A) ≤ kf A+ lf − δf Ã ≤ kf A+ lf , (2.1)
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where

Ã :=
1

2
1H − 1

M −m

∣∣∣∣A− m+M

2
1H

∣∣∣∣ .
If f is concave, then the reverse inequality is valid in (2.1).

Proof. For the sake of completeness, we give a direct proof here. We prove the
convex case only. We use known result (see [7, Lemma 3]): If f is a convex
function on an interval I, m,M ∈ I and p1, p2 ∈ [0, 1] such that p1 + p2 = 1, then

f (p1m+ p2M)
≤ p1f(m) + p2f(M)−min{p1, p2}

[
f(m) + f(M)− 2f

(
m+M

2

)]
.

(2.2)

Let functions p1, p2 : [m,M ] → [0, 1] be defined by p1(z) = M−z
M−m , p2(z) = z−m

M−m .
Then for any z ∈ [m,M ] we can write f (z) = f (p1(z)m+ p2(z)M) . Using (2.2)
and since z̄ := min

{
M−z
M−m ,

z−m
M−m

}
= 1

2
− 1

M−m

∣∣z − m+M
2

∣∣, we get

f(z) ≤ M − z

M −m
f(m) +

z −m

M −m
f(M)− z̄

[
f(m) + f(M)− 2f

(
m+M

2

)]
.

(2.3)
Now since Sp(A) ⊆ [m,M ], then by utilizing the functional calculus to (2.3) we
obtain LHS of (2.1).

Since m1H ≤ A ≤ M1H then −M−m
2

1H ≤ A − m+M
2

1H ≤ M−m
2

1H . It follows

|A− m+M
2

1H | ≤ M−m
2

1H , so Ã ≥ 0. Also, since f is convex then δf ≥ 0. Therefore,

δf Ã ≥ 0 and RHS of (2.1) holds. �

In the following lemma a refinement of inequalities [1, Theorem 2.9 and Theo-
rem 2.21] is given.

Lemma 2.2. Let A be a self-adjoint operator on a Hilbert space H such that
m1H ≤ A ≤ M1H for some scalars m < M . Let mÃ be the lower bound of the

operator Ã = 1
2
1H− 1

M−m

∣∣A− M+m
2

1H
∣∣. If f is a convex function on [m,M ], then

0 ≤ 〈f(A)y, y〉 − f(〈Ay, y〉) ≤ C(m,M, f, δf mÃ)1H ≤ C(m,M, f, 0)1H , (2.4)

for every unit vector y ∈ H, where

C(m,M, f, c) = max
m≤z≤M

{kf z + lf − c− f(z)} , c ∈ R. (2.5)

Additionally, if f > 0 on [m,M ], then

f(〈Ay, y〉) ≤ 〈f(A)y, y〉
≤ K(m,M, f, δf mÃ)f(〈Ay, y〉) ≤ K(m,M, f, 0)f(〈Ay, y〉) (2.6)

for every unit vector y ∈ H, where

K(m,M, f, c) = max
m≤z≤M

{
kf z + lf − c

f(z)

}
, c ∈ R. (2.7)

If f is concave, then the reverse inequalities are valid in (2.4) and (2.6) with
min instead of max in (2.5) and (2.7), respectively.
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Proof. We prove the convex case only. The first inequality in (2.4) is obvious. By
using (2.1) and since 0 ≤ mÃ1H ≤ Ã we have

〈f(A)y, y〉 ≤ kf〈Ay, y〉+ lf − 〈δf Ãy, y〉 ≤ kf〈Ay, y〉+ lf − δfmÃ. (2.8)

It follows

〈f(A)y, y〉 − f(〈Ay, y〉) ≤ max
m≤z≤M

{kf z + lf − δfmÃ − f(z)} 1H

and hence we have the second inequality in (2.4). Since δfmÃ ≥ 0 we have the
third inequality in (2.4).

If f > 0 on [m,M ], then divide inequalities (2.8) by f(〈Ay, y〉) we get

〈f(A)y, y〉
f(〈Ay, y〉)

≤ kf〈Ay, y〉+ lf − δfmÃ

f(〈Ay, y〉)
≤ max

m≤z≤M

{
kf z + lf − δfmÃ

f(z)

}
1H

and we have the second inequality in (2.6). Since δfmÃ ≥ 0 we obtain the third
inequality in (2.6). �

By using the improvement of the Mond-Pečarić method given in Lemma 2.1
we present an auxiliary result for quasi-arithmetic means.

Lemma 2.3. Let (xt)t∈T , m,M and (φt)t∈T be as in the definition of the quasi-
arithmetic mean (1.1) and ϕ, ψ ∈ C([m,M ]) be strictly monotone functions. If
ψ ◦ ϕ−1 is convex, then

ψ (Mψ) ≤ k1 ϕ (Mϕ) + l11K − δ1x̃ϕ ≤ k1 ϕ (Mϕ) + l11K , (2.9)

where k1 = kψ◦ϕ−1(ϕ(m), ϕ(M)), l1 = lψ◦ϕ−1(ϕ(m), ϕ(M)), δ1 = δψ◦ϕ−1(ϕ(m),
ϕ(M)), and

x̃ϕ :=
1

2
1K − 1

|ϕ(M)− ϕ(m)|

∫
T

φt

(∣∣∣∣ϕ(xt)−
ϕ(m) + ϕ(M)

2
1H

∣∣∣∣) dµ(t). (2.10)

If ψ ◦ ϕ−1 is concave, then the reverse inequality is valid in (2.9).

Proof. We prove the convex case only. Setting f = ψ ◦ ϕ−1 and A = ϕ(xt)
in (2.1), and since Sp(ϕ(xt)) ⊆ [ϕ(m), ϕ(M)] if ϕ is increasing or Sp(ϕ(xt)) ⊆
[ϕ(M), ϕ(m)] if ϕ is decreasing, we obtain

ψ(xt) ≤ k1ϕ(xt) + l11H − δ1

(
1

2
1H −

1

|ϕ(M)− ϕ(m)|

∣∣∣ϕ(xt)−
ϕ(m) + ϕ(M)

2
1H

∣∣∣).
Applying a positive linear mapping φt, integrating and using

∫
T
φt(1H) dµ(t) = 1K ,

we obtain LHS of (2.9). Since δ1 x̃ϕ ≥ 0, RHS of (2.9) holds. �

2.2. Ratio type inequalities. In this subsection ratio type inequalities involv-
ing quasi-arithmetic means are given. In the following theorem is given a com-
plementary result to (1.2) without operator convexity of ψ ◦ ϕ−1.

Theorem 2.4. Let (xt)t∈T , m,M and (φt)t∈T be as in the definition of the quasi-
arithmetic mean (1.1), 0 < m < M and ϕ, ψ ∈ C([m,M ]) be strictly monotone
functions. Let k1, l1, δ1 and x̃ϕ be as in Lemma 2.3. If one of the following
conditions
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(4-i) : ψ ◦ ϕ−1 is convex and ψ−1 is operator monotone
(4-ii): ψ ◦ ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then

Mψ ≤ K1(mϕ,Mϕ,mexϕ) Mϕ ≤ K1(mϕ,Mϕ, 0) Mϕ ≤ K1(m,M, 0)Mϕ, (2.11)

where mexϕ is the lower bound of the operator x̃ϕ, mϕ and Mϕ are the lower and
upper bounds of the mean Mϕ, respectively, and

K1(n,N, c) := max
n≤z≤N

{
ψ−1(k1ϕ(z) + l1 − cδ1)

z

}
. (2.12)

If one of the following conditions

(4-iii) : ψ ◦ ϕ−1 is concave and ψ−1 is operator monotone
(4-iv): ψ ◦ ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the reverse inequalities are valid in (2.11) with min instead of
max in (2.12).

Proof. We prove only the case (4-i). Applying operator monotone function ψ−1

to inequalities (2.9) and since 0 ≤ mexϕ1K ≤ x̃ϕ, we have

Mψ ≤ ψ−1 (k1ϕ (Mϕ) + l11K − δ1x̃ϕ) ≤ ψ−1
(
k1ϕ (Mϕ) + l11K − δ1mexϕ1K

)
≤ ψ−1 (k1ϕ (Mϕ) + l11K) .

It follows

Mψ ≤ max
mϕ≤z≤Mϕ

{
ψ−1(k1ϕ(z)+l1−δ1mexϕ)

z

}
Mϕ

≤ max
mϕ≤z≤Mϕ

{
ψ−1(k1ϕ(z)+l1)

z

}
Mϕ ≤ max

m≤z≤M

{
ψ−1(k1ϕ(z)+l1)

z

}
Mϕ,

since m1K ≤ mϕ1K ≤ Mϕ ≤ Mϕ1K ≤ M1K . Hence we have the desired inequali-
ties (2.11). �

In the following theorem a complementary result to (1.2) is presented without
operator monotonicity of ψ−1.

Theorem 2.5. Let (xt)t∈T , m,M and (φt)t∈T be as in the definition of the quasi-
arithmetic mean (1.1), 0 < m < M and ϕ, ψ ∈ C([m,M ]) be strictly monotone
functions. If one of the following conditions

(5-i) : ψ ◦ ϕ−1 is operator convex and ψ−1 is increasing convex
(5-ii): ψ ◦ ϕ−1 is operator concave and ψ−1 is decreasing convex

is satisfied, then

Mϕ ≤ K2(mϕ,Mϕ,mexϕ) Mψ ≤ K2(mϕ,Mϕ, 0) Mψ ≤ K2(m,M, 0) Mψ, (2.13)

where mϕ and Mϕ are the lower and upper bounds of the mean Mϕ, respectively,
mexϕ is the lower bound of the operator

x̃ϕ,ψ =
1

2
1K − 1

|ψ(Mϕ)− ψ(mϕ)|

∣∣∣∣ψ (Mϕ)−
ψ(mϕ) + ψ(Mϕ)

2
1K

∣∣∣∣ ,



116 J. MIĆIĆ

k2 = kψ−1(ψ(mϕ), ψ(Mϕ)), l2 = lψ−1(ψ(mϕ), ψ(Mϕ)), δ2 = δψ−1(ψ(mϕ), ψ(Mϕ)),
and

K2(n,N, c) := max
z∈I

{
k2 z + l2 − cδ2

ψ−1(z)

}
, (2.14)

where I is the closed interval between ψ(n) and ψ(N).
If one of the following conditions

(5-iii) : ψ ◦ ϕ−1 is operator convex and ψ−1 is decreasing concave
(5-iv): ψ ◦ ϕ−1 is operator concave and ψ−1 is increasing concave

is satisfied, then the reverse inequalities are valid in (2.13) with min instead of
max in (2.14).

If one of the following conditions

(5-v) : ψ ◦ ϕ−1 is operator convex and ψ−1 is decreasing convex
(5-vi): ψ ◦ ϕ−1 is operator concave and ψ−1 is increasing convex

is satisfied, then

Mψ ≤ K3(mψ,Mψ,mexψ) Mϕ ≤ K3(mψ,Mψ, 0) Mϕ ≤ K3(m,M, 0) Mϕ, (2.15)

where mψ and Mψ are the lower and upper bounds of the mean Mψ, respectively,
mexψ is the lower bound of the operator

x̃ψ =
1

2
1K − 1

|ψ(Mψ)− ψ(mψ)|

∣∣∣∣ψ (Mψ)− ψ(mψ) + ψ(Mψ)

2
1K

∣∣∣∣ ,
k3 = kψ−1(ψ(mψ), ψ(Mψ)), l3 = lψ−1(ψ(mψ), ψ(Mψ)), δ3 = δψ−1(ψ(mψ), ψ(Mψ)),
and

K3(n,N, c) := max
z∈I

{
k3 z + l3 − cδ3

ψ−1(z)

}
, (2.16)

where I is the closed interval between ψ(n) and ψ(N).
If one of the following conditions

(5-vii) : ψ ◦ ϕ−1 is operator convex and ψ−1 is decreasing concave
(5-viii): ψ ◦ ϕ−1 is operator concave and ψ−1 is increasing concave

is satisfied, then the reverse inequalities are valid in (2.15) with min instead of
max in (2.16).

Proof. (5-i): Replacing f by a convex function ψ−1 and A by ψ (Mϕ) in RHS of
(2.6), we obtain

〈Mϕy, y〉 = 〈ψ−1 (ψ (Mϕ)) y, y〉 ≤ K2(mϕ,Mϕ,mexψ)ψ−1(〈ψ (Mϕ) y, y〉) (2.17)

for every unit vector y ∈ H, where

K2(mϕ,Mϕ,mexϕ) = K(ψ(mϕ), ψ(Mϕ), ψ
−1,mexϕ)

= max
ψ(mϕ)≤z≤ψ(Mϕ)

{
k2 z+l2−δ2mexϕ

ψ−1(z)

}
> 0.

By using Jensen’s operator inequality for an operator convex function ψ ◦ϕ−1 we
have

ψ (Mϕ) = ψ ◦ϕ−1

(∫
T

φt (ϕ(xt)) dµ(t)

)
≤
∫
T

φt (ψ(xt)) dµ(t) = ψ (Mψ) . (2.18)
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Replacing f by ψ−1 and A by ψ (Mψ) in LHS of (2.6), we obtain

ψ−1 (〈ψ(Mψ)y, y〉) ≤ 〈Mψy, y〉 (2.19)

for every unit vector y ∈ H. Finally, we obtain
1

K2(mϕ,Mϕ,mexψ
)
〈Mϕy, y〉 ≤ ψ−1 (〈ψ(Mϕ)y, y〉) by (2.17)

≤ ψ−1 (〈ψ(Mψ)y, y〉) by (2.18) and increase of ψ−1

≤ 〈Mψy, y〉 by (2.19)

for each unit vector y ∈ H and hence we have the first inequality in (2.13). The
remaining inequalities in (2.13) are obvious.

(5-ii)-(5-iv): We obtain these results by a similar method as in (5-i).
(5-v): Replacing f by a convex function ψ−1 and A by ψ (Mψ) in RHS of (2.6),

we obtain

〈Mψy, y〉 = 〈ψ−1 (ψ (Mψ)) y, y〉 ≤ K3(mψ,Mψ,mexψ)ψ−1(〈ψ (Mψ) y, y〉) (2.20)

for every unit vector y ∈ H, where

K3(mψ,Mψ,mexψ) = K(ψ(mψ), ψ(Mψ), ψ−1,mexψ)

= max
ψ(mϕ)≤z≤ψ(Mψ)

{
k3 z+l3−δ3mexψ

ψ−1(z)

}
> 0.

Replacing f by ψ−1 and A by ψ (Mϕ) in LHS of (2.6), we obtain

ψ−1 (〈ψ(Mϕ)y, y〉) ≤ 〈Mϕy, y〉 (2.21)

for every unit vector y ∈ H.
Finally, we obtain

1
K3(mψ ,Mψ ,mexψ

)
〈Mψy, y〉 ≤ ψ−1 (〈ψ(Mψ)y, y〉) by (2.20)

≤ ψ−1 (〈ψ(Mϕ)y, y〉) by (2.18) and decrease of ψ−1

≤ 〈Mϕy, y〉 by (2.21)

for each unit vector y ∈ H and hence we have the first inequality in (2.15). The
remaining inequalities in (2.15) are obvious.

(5-vi)-(5-viii): We obtain these results by a similar method as in (5-v). �

In the following theorem we point out another complementary result to (1.2)
without operator monotonicity of ψ−1.

Theorem 2.6. Let (xt)t∈T , m,M and (φt)t∈T be as in the definition of the quasi-
arithmetic mean (1.1), 0 < m < M and ϕ, ψ ∈ C([m,M ]) be strictly monotone
functions.

(6-i) : If ϕ−1 is convex and ψ−1 is operator convex, then

Mψ ≤ K4(mϕ,Mϕ,mexϕ) Mϕ ≤ K4(mϕ,Mϕ, 0) Mϕ ≤ K4(m,M, 0) Mϕ, (2.22)

where mexϕ is the lower bound of the operator x̃ϕ defined by (2.10), mϕ and Mϕ are
the lower and upper bounds of the mean Mϕ, respectively, k4 = kϕ−1(ϕ(m), ϕ(M)),
l4 = lϕ−1(ϕ(m), ϕ(M)), δ4 = δϕ−1(ϕ(m), ϕ(M)), and

K4(n,N, c) := max
n≤z≤N

{
k4 ϕ(z) + l4 − cδ4

z

}
. (2.23)
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(6-ii) : If ϕ−1 is concave and ψ−1 is operator concave, then the reverse
inequalities are valid in (2.22) with min instead of max in (2.23).

(6-iii) : If ϕ−1 is convex and ψ−1 is concave, then

Mψ ≤
K4(mϕ,Mϕ,mexϕ)

K5(mψ,Mψ,mexψ)
Mϕ, (2.24)

where mexψ , mψ, Mψ, k5, l5, δ5 are as constants in (6− i) with replacing ϕ by ψ,
and

K5(n,N, c) := min
n≤z≤N

{
k5 ψ(z) + l5 − cδ5

z

}
.

(6-iv) : If ϕ−1 is concave and ψ−1 is operator convex, then

Mψ ≤
1

K6(mϕ,Mϕ,mexϕ)
Mϕ ≤

1

K6(mϕ,Mϕ, 0)
Mϕ ≤

1

K6(m,M, 0)
Mϕ, (2.25)

where mϕ and Mϕ are the lower and upper bounds of the operator ϕ(Mϕ), respec-
tively, mexϕ is the lower bound of the operator

x̃ϕ =
1

2
1K − 1

Mϕ −mϕ

∣∣∣∣ϕ (Mϕ)−
mϕ +Mϕ

2
1K

∣∣∣∣ ,
k6 = kϕ−1(ϕ(mϕ), ϕ(Mϕ)), l6 = lϕ−1(ϕ(mϕ), ϕ(Mϕ)), δ6 = δϕ−1(ϕ(mϕ), ϕ(Mϕ)),
and

K6(n,N, c) := min
z∈I

{
k6z + l6 − cδ6

ϕ−1(z)

}
, (2.26)

where I is the closed interval between ϕ(n) and ϕ(N).

(6-v) : If ϕ−1 is convex and ψ−1 is operator concave, then the reverse
inequalities are valid in (2.25) with max instead of min in (2.26).

Proof. (6-i): Using (1.2), we obtain

Mψ ≤ MI , (2.27)

where I is the identity function. Replacing ψ by I in Theorem 2.4 (i), then (2.11)
gives

MI ≤ K3(mϕ,Mϕ,mexϕ) Mϕ ≤ K3(mϕ,Mϕ, 0) Mϕ ≤ K3(m,M, 0)Mϕ. (2.28)

Combining (2.27) and (2.28), we have the desired inequality (2.22).
(6-ii): We obtain this result by a similar method as in (6-i).
(6-iii): We obtain (2.24) by combining (i) and (6-ii).
(6-iv): Replacing f by ϕ−1 > 0 and A by ϕ (Mϕ) in
〈f(A)y, y〉 ≥ K(m,M, f, δf mÃ)f(〈Ay, y〉) (see (2.6)), we obtain

〈Mϕy, y〉 =
〈
ϕ−1

(
ϕ (Mϕ)

)
y, y
〉
≥ K6(mϕ,Mϕ,mexϕ) ϕ

−1
(〈
ϕ (Mϕ) y, y

〉)
(2.29)

for every unit vector y ∈ H.
Next, we consider the mapping Φ: CB(T,A) → M(B) ⊆ B(K) from normed

involutive algebra of of bounded continuous functions on T with values in A to the
multiplier algebra M(B) acting on K defined by setting Φ (X) =

∫
T
φt(xt) dµ(t),

whereX = (xt)t∈T .Note that Φ is a unital positive linear map. Also ϕ
(∫

T
xt dµ(t)

)
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=
∫
T
ϕ(xt) dµ(t) for every linear functional ϕ in the norm dual A∗, cf. [3].

Stinespring decomposition theorem ensures that Φ can be written in the form
Φ(X) = V ∗π(X)V , where π is a ∗-homomorphism to B(H), and V is an isome-
try on H. It follows that for each unit vector y ∈ H

ϕ−1
(〈
ϕ (Mϕ) y, y

〉)
= ϕ−1

(〈
Φ(ϕ(X)) y, y

〉)
= ϕ−1

(〈
π(ϕ(X))V y, V y

〉)
≥
〈
ϕ−1

(
π (ϕ(X))

)
V y, V y

〉
by ‖V y‖ = 1 and concavity of ϕ−1

=
〈
π(X)V y, V y

〉
=
〈
Φ(X) y, y

〉
=
〈
MI y, y

〉
.

So,

ϕ−1
(〈
ϕ (Mϕ) y, y

〉)
≥
〈
MI y, y

〉
. (2.30)

Combining (2.29) and (2.30), we have

Mϕ ≥ K6(mϕ,Mϕ,mexϕ) MI . (2.31)

Now combining (2.31) and (2.27), we have the the first inequality in (2.25). The
remaining inequalities in (2.25) are obvious.

(6-v): We obtain this result by a similar method as in (6-iv). �

2.3. Difference type inequalities. Similar to the above, in this section differ-
ence type inequalities involving quasi-arithmetic means are given. The proofs are
similar to the above proofs and we omit details.

Theorem 2.7. Let all assumptions of Theorem 2.4 hold, except that m can be
negative or 0.

If (4-i) or (4-ii) is satisfied, then

Mψ ≤ Mϕ+C1(mϕ,Mϕ,mexϕ)1K ≤ Mϕ+C1(mϕ,Mϕ, 0)1K ≤ Mϕ+C1(m,M, 0)1K ,
(2.32)

where

C1(n,N, c) := max
n≤z≤N

{
ψ−1(k1ϕ(z) + l1 − cδ1)− z

}
. (2.33)

If (4-iii) or (4-iv) is satisfied, then the reverse inequalities are valid in (2.32)
with min instead of max in (2.33).

Theorem 2.8. Let all assumptions of Theorem 2.5 hold, except that m can be
negative or 0.

If (5-i) or (5-ii) is satisfied, then

Mϕ ≤ Mϕ+C2(mϕ,Mϕ,mexϕ)1K ≤ Mϕ+C2(mϕ,Mϕ, 0)1K ≤ Mϕ+C2(m,M, 0)1K ,
(2.34)

where

C2(n,N, c) := max
z∈I

{
k2 z + l2 − cδ2 − ψ−1(z)

}
, (2.35)

where I is the closed interval between ψ(n) and ψ(N).
If (5-iii) or (5-iv) is satisfied, then the reverse inequalities are valid in (2.34)

with min instead of max in (2.35).
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If (5-v) or (5-vi) is satisfied, then

Mψ ≤ Mϕ+C3(mψ,Mψ,mexψ)1K ≤ Mϕ+C3(mψ,Mψ, 0)1K ≤ Mϕ+C3(m,M, 0)1K ,
(2.36)

where
C3(n,N, c) := max

z∈I

{
k3 z + l3 − cδ3 − ψ−1(z)

}
, (2.37)

where I is the closed interval between ψ(n) and ψ(N).
If (5-vii) or (5-viii) is satisfied, then the reverse inequalities are valid in (2.36)

with min instead of max in (2.37).

Theorem 2.9. Let all assumptions of Theorem 2.5 hold, except that m can be
negative or 0.

If (6-i) is satisfied, then

Mψ ≤ Mϕ+C4(mϕ,Mϕ,mexϕ)1K ≤ Mϕ+C4(mϕ,Mϕ, 0)1K ≤ Mϕ+C4(m,M, 0)1K ,
(2.38)

where
C4(n,N, c) := max

n≤z≤N
{k4 ϕ(z) + l4 − cδ4 − z} . (2.39)

If (6-ii) is satisfied, then the reverse inequalities are valid in (2.38) with min
instead of max in (2.39).

If (6-iii) is satisfied, then

Mψ ≤ Mϕ + C4(mϕ,Mϕ,mexϕ)1K − C5(mψ,Mψ,mexψ)1K ,

where
C5(n,N, c) := min

n≤z≤N
{k5 ψ(z) + l5 − cδ5 − z} .

If (6-iv) is satisfied, then

Mψ ≤ Mϕ−C6(mϕ,Mϕ,mexϕ)1K ≤ Mϕ−C6(mϕ,Mϕ, 0)1K ≤ Mϕ−C6(m,M, 0)1K ,
(2.40)

where
C6(n,N, c) := min

z∈I

{
k6z + l6 − cδ6 − ϕ−1(z)

}
, (2.41)

where I is the closed interval between ϕ(n) and ϕ(N).
If (6-v) is satisfied, then the reverse inequalities are valid in (2.40) with max

instead of min in (2.41).

3. Power means

In this section we refine selected inequalities involving power means defined as
follows

Mr(x,φ) :=


(∫

T

φt (x
r
t ) dµ(t)

)1/r

, r ∈ R\{0},

exp
(∫

T

φt (log xt) dµ(t)
)
, r = 0 ,

(3.1)

where (xt)t∈T is a bounded continuous field of strictly positive elements in a
unital C∗-algebra A with the spectra in [m,M ], 0 < m < M , defined on a
locally compact Hausdorff space T equipped with a bounded Radon measure µ
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and (φt)t∈T is a unital field of positive linear mappings φt : A → B between
C∗-algebras. The mean Mr(x,φ) is briefly denoted by Mr.

In the following theorem we obtain a refinement of some inequalities given in
[2, Theorem 4.4]. Also, in this case we give the explicit formula for the constant
K1 given in Theorem 2.4.

Theorem 3.1. Let (xt)t∈T , m,M and (φt)t∈T be as in the definition of the power
mean (3.1). Let mr and Mr, mr ≤Mr, be the bounds of Mr, respectively, and mexr

be the lower bound of the operator x̃r = 1
2
1K− 1

|Mr−mr|

∫
T
φt
(
|xrt − mr+Mr

2
1H |
)
dµ(t).

If 0 6= r ≤ s, s ≥ 1 or r ≤ s ≤ −1, then

Ms ≤ 4̄(mr,Mr, r, s,mexr) Mr ≤ 4̄(mr,Mr, r, s, 0) Mr ≤ 4
(M
m
, r, s, 0

)
Mr,

where

4̄(mr,Mr, r, s, c) =


(k̄1mrr+l̄1−cδ̄1)

1/s

mr
if s

r
l̄1−cδ̄1
mr

≥ (1− s
r
) k̄1,

4
(
M
m
, r, s, c

)
if s

r
l̄1−cδ̄1
mr

< (1− s
r
) k̄1 <

s
r
l̄1−cδ̄1
Mr

,

(k̄1Mr
r+l̄1−cδ̄1)

1/s

Mr
if s

r
l̄1−cδ̄1
Mr

≤ (1− s
r
) k̄1,

(3.2)
with the abbreviations: k̄1 = Ms−ms

Mr−mr , l̄1 = Mrms−mrMs

Mr−mr , δ̄1 := ms+M s−21− s
r (mr+

M r)
s
r and 4(h, r, s, c) is a generalized Specht ratio 4(h, r, s) defined by

4(h, r, s, c) :=
{

r
s−r

hs−hr+c(hr−1)[1+hs−21−s/r(1+hr)s/r]
hr−1

}1/s

×
{

s
r−s

hr−hs−c(hr−1)[1+hs−21−s/r(1+hr)s/r]
hs−1

}−1/r

.
(3.3)

Proof. Setting ϕ(t) = tr and ψ(t) = ts in Theorem 2.4, we obtain

0 ≤ Ms ≤ K1(mr,Mr,mexr) Mr ≤ K1(mr,Mr, 0) Mr ≤ K1(m,M, 0)Mr,

where

K1(n,N, c) = max
n≤z≤N

{
(k̄1z

r + l̄1 − cδ̄1)
1/s

z

}
= max

n≤z≤N

{(
k̄1z

r + l̄1 − cδ̄1
zs

)1/s
}
.

(3.4)
We have (according to [7, Corollary 13])

max
n≤z≤N

{
k̄1z

r + l̄1 − cδ̄1
zs

}
= K̄(mr,Mr,m

r,M r,
s

r
, c) for s > 1, (3.5)

where

K̄(mr,Mr,m
r,M r,

s

r
, c) :=


k̄1mrr+l̄1−cδ̄1

mr
if s

r
l̄1−cδ̄1)
mr

≥ (1− s
r
) k̄1,

K(mr,M r, s
r
, c) if s

r
l̄1−cδ̄1
mr

< (1− s
r
) k̄1 <

s
r
l̄1−cδ̄1
Mr

,

k̄1Mr
r+l̄1−cδ̄1
Mr

if s
r
l̄1−cδ̄1
Mr

≤ (1− s
r
) k̄1

(3.6)
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and K(a, b, p, c) is a generalized Kantorovich constant

K(a, b, p, c) :=
abp − bap + c (ap + bp − 21−p(a+ b)p)) (b− a)

(p− 1)(b− a)

×
(
p− 1

p

bp − ap

abp − bap + c (ap + bp − 21−p(a+ b)p)) (b− a)

)p
,

(3.7)
for a 6= b, p ∈ R and 0 ≤ c ≤ 0.5. Similarly, we have

min
n≤z≤N

{
k̄1z

r + l̄1 − cδ̄1
zs

}
= k̄(mr,Mr,m

r,M r,
s

r
, c) if s < −1, (3.8)

with k̄(mr,Mr,m
r,M r, s

r
,mexr) which equals RHS in (3.6) with reverse inequality

signs.
Using (3.4), (3.5), (3.8) and monotonicity of a function ψ−1(t) = t

1
s we obtain

K1(n,N, c) =

(
max
n≤z≤N

{
k̄1z

r + l̄1 − cδ̄1
zs

})1/s

= K̄(mr,Mr,m
r,M r,

s

r
, c)1/s,

which gives our constant (3.2), because we can check directly that

K
(
mr,M r,

s

r
, c
)1/s

= 4
(
M

m
, r, s, c

)
. (3.9)

�

Using that 4̄(mr,Mr, r, s, c) ≤ 4
(
M
m
, r, s, c

)
and letting r → 0 in Theorem 3.1

we obtain the following result.

Corollary 3.2. Let mr, Mr, m, M be as in Theorem 3.1 and mex0 be the lower
bound of the operator x̃0 = 1

2
1K− 1

| logM−logm|

∫
T
φt
(
| log(xt)− logM+logm

2
1H |
)
dµ(t).

If s ≥ 1, then

Ms ≤ S

(
Mr

mx0

, s,mex0

)1/s

M0 ≤ S

(
Mr

mr

, s, 0

)1/s

M0 ≤ S

(
M

m
, s, 0

)1/s

M0,

where

S(h, s, c) =
h

s
hs−1(1−c(hs/2−1)2)

e log h
s

hs−1

(3.10)

is a generalized Specht ratio S(h, s) := h
s

hs−1

e log h
s

hs−1
(see [2, §2.6]).

To prove Corollary 3.2 it is sufficient to prove the following lemma.

Lemma 3.3. Let h > 0. Then

lim
r→0

4(h, r, s, c) = S(h, s, c)1/s,

where 4(h, r, s, c) and S(h, s, c) are defined by (3.3) and (3.10), respectively.
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Proof. In the proof we use (3.9): 4(h, r, s, c) = K(hr, s
r
, c)1/s. We have

lim
r→0

K(hr,
s

r
, c) = lim

r→0

r

s− r
·
hs − hr + c(hr − 1)

(
hs + 1− 21− s

r (1 + hr)s/r
)

hr − 1

× lim
r→0

(
s

r − s
·
hr − hs + c(1− hr)

(
hs + 1− 21− s

r (1 + hr)s/r
)

hs − 1

)−s/r

.

(i):

lim
r→0

r

s− r
·
hs − hr + c(hr − 1)

(
hs + 1− 21− s

r (1 + hr)s/r
)

hr − 1

= lim
r→0

r

hr − 1
·
(

lim
r→0

hs − hr

s− r
− lim

r→0

c(hr − 1)

s− r

(
hs + 1− 21− s

r (1 + hr)s/r
))

=
1

log h
·
(
hs − 1

s
+ 0 · (hs + 1− 2hs/2)

)
=
hs − 1

s log h

(ii):

lim
r→0

(
−s
r

)
log

(
s

r − s
·
hr − hs + c(1− hr)

(
hs + 1− 21− s

r (1 + hr)s/r
)

hs − 1

)

= −
hs − 1 +

(
−1 + c(hs + 1− 2hs/2)

)
s log h

hs − 1

= −1 +
s log h

hs − 1
− c(hs + 1− 2hs/2)s log h

hs − 1

=⇒ lim
r→0

(
s

r − s
·
hr − hs + c(1− hr)

(
hs + 1− 21− s

r (1 + hr)s/r
)

hs − 1

)−s/r

=
1

e

h
s

hs−1

h
sc(hs/2−1)2

hs−1

Combining (i) and (ii), we have

lim
r→0

K(hr,
s

r
, c) =

h
p

hp−1(1−c(hs/2−1)2)

e log h
p

hp−1

= S(h, s, c).

Then, by using (3.9), we obtain

lim
r→0

4(h, r, s, c) = lim
r→0

K(hr,
s

r
, c)1/s = S(h, s, c)1/s.

�

In the following corollary we give the explicit formula for the constant K2 given
in Theorem 2.5.

Corollary 3.4. Let (xt)t∈T , m,M and (φt)t∈T be as in the definition of the power
mean (3.1). Let mr and Mr be the lower and upper bounds of the mean Mr,
respectively, and mexs be the lower bound of the operator

x̃s =
1

2
1K − 1

|M s
r −ms

r|

∣∣∣∣Ms
r −

ms
r +M s

r

2
1K

∣∣∣∣ .
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If 0 < s ≤ −r or 0 < r ≤ s ≤ 2r or r ≤ s < 0, then

Ms ≤ K2(mr,Mr,m,M,mexs) Mr

≤ K2(mr,Mr,m,M, 0) Mr ≤ K(m,M, 1/s, 0)Mr,

where

K2(mr,Mr,m,M, c) =


k2mr+l2−cδ2

m
1/s
r

if l2−cδ2
smr

≥ (1− 1
s
) k2,

K(m,M, 1/s, c) if l2−cδ2
smr

< (1− 1
s
) k2 <

l2−cδ2
sMr

,

k2Mr+l2−cδ2
M

1/s
r

if l2−cδ2
sMr

≤ (1− 1
s
) k2,

with the abbreviations: k2 = Mr−mr
Ms
r−msr

, l2 = Ms
rmr−msrMr

Ms
r−msr

, δ2 = mr + Mr −

2
(
msr+M

s
r

2

)1/s

and K(m,M, 1/s, c) is the generalized Kantorovich constant defined

by (3.7).

Proof. We obtain this corollary by setting ϕ(t) = tr and ψ(t) = ts in Theorem 2.5.
We omit the details of the construction constants. �

Remark 3.5. Similar to the ratio case we can obtain difference type inequalities
involving power means by using Theorem 2.7–Theorem 2.9.

For example, if 0 6= r ≤ s, s ≥ 1 or r ≤ s ≤ −1, then

Ms ≤ Mr + C̄1(mr,Mr, r, s,mexr)1K
≤ Mr + C̄1(mr,Mr, r, s, 0)1K ≤ Mr + C̄1(m,M, r, s, 0)1K ,

(3.11)

where

C̄1(n,N, r, s, c) = max
n≤z≤N

{
(k̄1 z

r + l̄1 − cδ̄1)
1/s − z

}
and mr, Mr, k̄1, l̄1, δ̄1 and mexr are as defined in Theorem 3.1.

Finally, we present some examples which illustrate some of the above inequal-
ities.

Example 3.6. Setting r = 1/3 and s = 1 in Theorem 3.1 we observe inequal-
ities involving power means M1/3(x,φ) and M1(x,φ). There is no general re-
lation between these means under the operator order. Really, if T = {1, 2},
Φk((aij)1≤i,j≤3) = 1

2
(aij)1≤i,j≤2, µ({k}) = 1, k = 1, 2 and

X1 =

6 1 1
1 1 0
1 0 1

3

=

242 45 45
45 9 8
45 8 9

 ,

X2 =

10 −1 −1
−1 2 1
−1 1 3

3

=

1047 −142 −157
−142 31 37
−157 37 53

 ,
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then

M1/3 =
(
Φ1

(
X

1/3
1

)
+ Φ2

(
X

1/3
2

))3

=

(
512 0
0 3.375

)
,

M1 = Φ1

(
X1

)
+ Φ2

(
X2

)
=

(
644.5 −48.5
−48.5 20

)
and

M1 −M1/3 =

(
132.5 −48.5
−48.5 16.625

)
6Q 0.

Furthermore, 0.247 I2 ≤ X1 ≤ 258.753 I2, 2.562 I2 ≤ X2 ≤ 1091.310 I2 and let
m = 0.247, M = 1091.310 (rounded to three decimal places). Also, M1/3 has the

bounds m1/3 = 3.375 and M1/3 = 512. Further, X̃1/3 =

(
0.195 0.050
0.050 0.078

)
, so

mX̃1/3
= 0.059. Also, δ̄1 = 765.723. Taking all these into account we obtain

∆̃
(
m1/3,M1/3, 1/3, 1,mX̃1/3

)
= 15.836

∆̃
(
m1/3,M1/3, 1/3, 1, 0

)
= 29.241

∆
(
M
m
, r, s, 0

)
= 42.729

and hence we have ratio type inequalities:

M1 < 15.836 M1/3 < 29.241 M1/3 < 42.729 M1/3.

Similarly, applying (3.11), we obtain

C̄1

(
m1/3,M1/3, 1/3, 1,mX̃1/3

)
= 486.683

C̄1

(
m1/3,M1/3, 1/3, 1, 0

)
= C̄1

(
m,M, 1/3, 1, 0

)
= 532.049.

and hence we have difference type inequalities:

M1 < M1/3 + 486.683 I2 < M1/3 + 532.049 I2.

Example 3.7. Under the same assumptions as in Example 1, we obtain in-
equalities involving means M1/3 and M2 (constants are rounded to three decimal
places):

M1/3 < M2 < 59.289 M1/3 < 97.127 M1/3 < 290.967 M1/3,

M1/3 < M2 < M1/3 + 564.026 I2 < M1/3 + 609.902 I2.

We remark that there is no general relation between M1/3 and M2 under the
operator order.

E.g. if X1 =

100 1 1
1 1 0
1 0 2

3

and X2 =

 2 −1 −1
−1 1 0
−1 0 3

3

, then M1/3 6Q M2.
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