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Abstract. Let {an}∞n=1 be a sequence of group invertible elements of a unital
C∗ algebra A that converges to a. We present some equivalent conditions for
the group invertibility of a and for the convergence of {a#n }∞n=1 to a#.

1. Introduction

Let A be a C∗-algebra. An element a ∈ A is Drazin invertible, if there exists
x ∈ A such that

ax = xa, xax = x, axa− a is nilpotent.

Such x, if it exists, is unique and it is called the Drazin inverse of a and is denoted
by aD. The index of nilpotency of axa − a is denoted by i(a). If i(a) = k, then
Drazin inverse of a satisfies

aDaaD = aD, aaD = aDa, ak+1aD = ak, (1.1)

and k is the smallest integer such that (1.1) is satisfied. In the special case when
i(a) = 1, the Drazin inverse aD is known as the group inverse of a, and it is
denoted by a#. An element a is invertible if and only if i(a) = 0 and in this case
aD = a−1. The subset of group invertible and invertible elements of A is denoted
by A# and A−1, respectively.
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Another well known kind of generalized inverse is the Moore–Penrose inverse.
If for a ∈ A, there exists x ∈ A such that

axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa,

then we say that a is Moore–Penrose invertible. Such x is denoted by a† and called
the Moore–Penrose inverse of a. By A†, we denote the subset of A consisting of
all Moore–Penrose invertible elements.

An element a in a C∗-algebra A is said to be regular when a ∈ aAa. A
basic result in the theory of generalized inverses is that any regular element in a
C∗-algebra is Moore–Penrose invertible.

Contrary to the usual inverse of a square matrix, it is well-known that the
Drazin inverse and the Moore–Penrose generalized inverse of a matrix are not
necessarily a continuous function of the elements of the matrix. For the first
time, the continuity of the Drazin inverse on the set of matrices was studied by
S.L. Campbell and C.D. Meyer [5]. They proved that for the set of convergent
matrices (An)n∈N that converges to the matrix A,

AD
n → AD ⇔ (∃n0 ∈ N)(∀n ≥ n0) r(Cn) = r(C),

where An = Cn + Nn and A = C + N are the core nilpotent decompositions of
An and A, respectively and r(C) is the rank of the matrix C.

The continuity of the Drazin inverse on the set of bounded operators on Banach
spaces, was considered by V. Rakočević [18], and later by V. Rakočević and J.J.
Koliha [12] for the Banach algebra setting. See also [9].

Theorem 1.1. [12] Let an and a be Drazin invertible elements of the Banach
algebra A such that an → a. Then

aDn → aD ⇐⇒ sup
n

∥aDn ∥ <∞ ⇐⇒ aDnan → aDa.

Obviously, the case when an and a are group invertible elements follows di-
rectly by Theorem 1.1. But what happens if we do not suppose that a is group
invertible?

If we suppose that (an)n∈N is a convergent sequence of group invertible elements
from a C∗-algebra A such that {an}∞n=1 converges to a ∈ A, one of the problems
studied in this paper is to characterize the case when a ∈ A#.

If we assume that a is Drazin invertible, by Theorem 1.1, we have that

a#n → aD ⇐⇒ sup
n

∥a#n ∥ <∞ ⇐⇒ a#n an → aDa.

Since ana
#
n an = an, for any n ∈ N, by letting n → ∞ we get aaDa = a, which

means that a is group invertible. But recall that we have assumed that a is Drazin
invertible (see [6]).

In this paper, we will present some equivalent conditions for the group invert-
ibility of an element a and for the continuity of group inverse in the case when a
is the limit of the convergent sequence (an)n∈N of the group invertible elements
from a C∗-algebra.

Beside the continuity of the Drazin inverse, the continuity of the Moore–Penrose
inverse was studied by many researchers. Similarly, as in the matrix case for the
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Drazin inverse, G.W. Stewart [20] proved that for the convergent sequence of
matrices (An)n∈N that converges to the matrix A,

A†
n → A† ⇔ (∃n0 ∈ N)(∀n ≥ n0) r(An) = r(A).

The continuity of the Moore–Penrose inverse of an operator on Hilbert spaces
has been studied by Izumino [11] under the additional assumption that An, A are
Moore–Penrose invertible. The analogous result is obtained in the C∗-algebra
case in [17, Theorem 2.2], [8, Theorem 6], [19, Theorem 2.2]:

Theorem 1.2. Let A be a C∗-algebra and let an, a ∈ A† such that an → a. Then

a†n → a† ⇐⇒ sup
n

∥a†n∥ <∞ ⇐⇒ a†nan → a†a ⇐⇒ ana
†
n → aa†.

Throughout this article we will assume that the C∗-algebra A has a unit 1.

2. Results

In this section, the word projection will be reserved for an element p in a C∗-
algebra which is idempotent (p2 = p) and self-adjoint (p∗ = p). Evidently, if p is
a nonzero projection, then ∥p∥ = 1. For a projection p, 1− p is also a projection
which will be denoted by p.

For an element a of a C∗-algebra A, we denote by σ(a) the spectrum of a and
by r(a) the spectral radius of a. It is well known that σ(a) is a nonempty compact
subset of C; if λ ∈ σ(a), then |λ| ≤ ∥a∥; if a is normal (i.e., aa∗ = a∗a), then
r(a) = ∥a∥; if a is self-adjoint (i.e., a = a∗), then σ(a) ⊂ R.

Inspired by [10], in [1], the following defintion for the C∗-algebra case, is given:

Definition 2.1. Let p, q be two projections in a C∗-algebraA. The minimal angle
between p and q is the number θ(p, q) ∈ [0, π/2] such that cos θ(p, q) = ∥pq∥.

Evidently, θ(p, q) = θ(q, p). In the following theorem, we will prove some basic
properties of θ(p, q). One can see [14, Theorem 3.1] for a related result. Let us
remark that some other results concerning angles are proved, see e.g. [3, 4, 15];
but all these results are established –and proved– in a Hilbert space setting.

Theorem 2.2. Let p, q be projections in a C∗-algebra A such that p− q ∈ A−1.
Then

(i) ∥(p− q)−1∥ = 1√
1−∥pq∥2

and ∥(p− q)−1∥ = 1/ sin θ(p, q),

(ii) ∥pq∥ = ∥p q∥ and cos θ(p, q) = cos θ(p, q).

Proof. Without loss of generality we can assume that p, q are nontrivial projec-
tions. By Lemma 2.4 [14], we have that for λ ∈ C \ {0, 1,−1},

λ ∈ σ(p− q) ⇐⇒ 1− λ2 ∈ σ(pq).

Hence

∥(p− q)−1∥ = r((p− q)−1)

=
1

inf{|λ| : λ ∈ σ(p− q)}
=

1

inf{|λ| : λ2 = 1− t, t ∈ σ(pq)}
.

Since by Lemma 2.4 [14]: r(pq) = ∥pq∥2 and σ(pq) ⊂ [0, 1], the item (i) is proved.
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To prove (ii), it is enough to observe that p− q = q − p and to apply item (i)
for the projections p and q. □

To motivate the following concept, let us recall (see Theorem 16 of [7]) that if
P and Q are two n× n complex Hermitian and idempotent matrices, then there
exists a unitary matrix U such that

P = Udiag

([
Ip 0
0 0

]
, Iq, Ir, 0, 0

)
U∗

and

Q = Udiag

([
C2 CS
CS S2

]
, Iq, 0, Is, 0

)
U∗,

where C = diag(cos θ1, . . . , cos θp), S = diag(sin θ1, . . . , sin θp), θ1, . . . , θp ∈ (0, π/2)
are the principal angles between the range spaces of P and Q, 0 (repeated q times)
and π/2 (repeated max{r, s} times). Since

P −Q = Udiag

([
S2 −CS

−CS −S2

]
, 0, Ir,−Is, 0

)
U∗,[

S2 −CS
−CS −S2

]
=

[
0 −S
−S 0

] [
C S
−S C

]
,

and
[

C S
−S C

]
is unitary, we get that

∥P −Q∥ =


1 if max{r, s} ̸= 0,

max{sin θi : 0 ≤ i ≤ p} if max{r, s} = 0, p ̸= 0,

0 if max{r, s} = p = 0.

Hence,

∥P −Q∥
= max{sin θ : θ is a principal angle between the ranges spaces of P and Q}.

So, in the C∗-algebra settings, we introduce the following definition:

Definition 2.3. Let p and q be projections in a C∗-algebraA. The maximal angle
between p and q is the number ψ(p, q) ∈ [0, π/2] such that ∥p− q∥ = sinψ(p, q).

This definition is correct, since by Akhiezer–Glazman equality (see e.g., [16,
Lemma 1 (i)] for a C∗-algebra case): If p and q are projections in a C∗-algebra,
then

∥p− q∥ = max{∥pq∥, ∥qp∥}.
So, ∥p− q∥ ≤ 1. Observe that from the Akhiezer–Glazman equality we have,

∥p+ q − 1∥ = ∥p− q∥ = max{∥pq∥, ∥q p∥} = max{cos θ(p, q), cos θ(p, q)}, (2.1)
which in view of Theorem 2.2, under the additional hypothesis of the invertibility
of p − q, implies that ∥p + q − 1∥ = cos θ(p, q). It is interesting to compare this
last equality with the equality of the third item of the next theorem.

The following result will be useful to express the main result in a more geo-
metrical way.
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Theorem 2.4. Let A be a C∗-algebra and let p, q ∈ A be non trivial projections
such that p+ q − 1 ∈ A−1. Then

(i) ∥pq∥ = ∥qp∥ and θ(p, q) = θ(p, q).
(ii) sinψ(p, q) = cos θ(p, q).
(iii) ∥(p+ q − 1)−1∥ = 1/ cosψ(p, q).
(iv) θ(p, q) ≤ ψ(p, q).
(v) If p ̸= q, then θ(p, q) = ψ(p, q) ⇐⇒ σ(pq) ∩ (0, 1) = {∥pq∥2}.

Proof. (i) Since p − q = p + q − 1 ∈ A−1, by item (ii) of Theorem 2.2 we get
∥pq∥ = ∥pq∥, so ∥pq∥ = ∥qp∥.

(ii) It follows by the Akhiezer–Glazman equality and item (i).
(iii) By (i) of Theorem 2.2.
(iv) By p(p+ q − 1) = pq and item (iii), we get

1 = ∥p∥ = ∥pq(p+ q − 1)−1∥ ≤ ∥pq∥∥(p+ q − 1)−1∥ =
cos θ(p, q)

cosψ(p, q)
.

It is enough to recall that cos : [0, π/2] → R is a decreasing function.
(v) Let us remark that θ(p, q) = ψ(p, q) ⇐⇒ ∥p− q∥2 + ∥pq∥2 = 1.
(v ⇒) By Lemma 2.4 (i,ii) of [14] we have that ∥pq∥2 ∈ σ(pq) ⊂ [0, 1]. If

pq = 0, since there exists x ∈ A such that x(p + q − 1) = 1 after multiplying
by q, we get 0 = q, which is impossible since q is non trivial projection. If
∥pq∥ = 1, then ∥p− q∥2 = 1− ∥pq∥2 = 0, which is impossible since p ̸= q. Hence
∥pq∥2 ∈ σ(pq) ∩ (0, 1). If there exists c ∈ (0, 1) ∩ σ(pq) such that c ̸= ∥pq∥2, by
Lemma 2.4 (ii) of [14] we have

∥pq∥2 = r(pq) = sup{|λ| : λ ∈ σ(pq)} ≥ c.

Recall that we have supposed c ̸= ∥pq∥2. Thus, ∥pq∥2 > c. Hence

∥p− q∥2 = 1− ∥pq∥2 < 1− c. (2.2)

Since
√
1− c /∈ {0, 1,−1} and c ∈ σ(pq), by Lemma 2.4 (v) of [14] we get

√
1− c ∈

σ(p− q). But, in this case

∥p− q∥ = r(p− q) = sup{|λ| : λ ∈ σ(p− q)} ≥
√
1− c,

which is a contradiction with (2.2).
(v ⇐) Note that by [14, Lemma 2.4 (i)] we have σ(pq) ⊂ [0, 1]. Let x =

pq + qp− p− q + 1. From

xp = px, xq = qx, (p+q−1)2 = (1−p+q)(p−q+1) = (p−q+1)(1−p+q),

we get p+q−1 ∈ A−1 if and only if p−q−1, p−q+1 ∈ A−1. Hence we can deduce
that ±1 /∈ σ(p − q). Also observe that it is not possible that σ(p − q) = {0}: if
otherwise, since p− q is normal, then 0 = r(p− q) = ∥p− q∥, thus p = q and by
hypothesis, σ(pq) ∩ (0, 1) = {∥pq∥2} = 1, which is a contradiction. Since p− q is
self-adjoint, using Lemma 2.4 of [14], and Akhiezer–Glazman equality, we have
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∥p− q∥ = r(p− q) = sup{|λ| : λ ∈ σ(p− q)}
= sup{|λ| : λ ∈ σ(p− q) \ {0, 1,−1}} = sup{|λ| : 1− λ2 ∈ σ(pq), λ ∈ (0, 1)}
= sup{

√
1− ξ : ξ ∈ σ(pq) \ {0, 1}}. (2.3)

Since σ(pq) ⊂ [0, 1], then σ(pq) \ {0, 1} = σ(pq) ∩ (0, 1). By hypothesis we have

that σ(pq)∩(0, 1) = {∥pq∥2}. Hence (2.3) implies that ∥p−q∥ =
√
1− ∥pq∥2. □

Here, we shall characterize when the limit of a sequence composed of group in-
vertible elements of a C∗-algebra A is also group invertible. Further Theorem 2.5
will be useful to establish this characterization. Observe that if a ∈ A#, then
aa# is an idempotent and the norm of a nonzero idempotent is not lesser than 1.

Theorem 2.5. Let A be a C∗-algebra. If a ∈ A# \ {0}, then

∥aa#∥ =
1

cosψ(aa†, a†a)
.

Proof. It follows from Theorem 2.4 (iii), [2, Cor. 2.1 (i)], and [13, Prop. 4.2]. □
Next result gives an expression of a# in terms of the Moore–Penrose inverse

for an element a ∈ A#. It is noteworthy that this result holds if we exchange a
C∗-algebra by a unitary ring with an involution.

Theorem 2.6. Let A be a C∗-algebra. If a ∈ A#, then

(a#)† = a†a3a†.

Proof. Denote p = aa† and q = a†a. By Theorem 2.3 and Corollary 2.1 of [2] we
have

p+ q − 1 ∈ A−1 and a# = (p+ q − 1)−1a†(p+ q − 1)−1.

From the equalities (p+ q − 1)a = qa and a(p+ q − 1) = ap we have

a = (p+ q − 1)−1qa and a = ap(p+ q − 1)−1.

To prove the theorem, we will check that (qap)† = a# by the definition of the
Moore–Penrose inverse.

(qap)a#(qap) = q
(
ap(p+ q − 1)−1

)
a†

(
(p+ q − 1)−1qa

)
p = qaa†ap = qap.

a#(qap)a# = (p+ q − 1)−1a†
(
(p+ q − 1)−1qa

)
p(p+ q − 1)−1a†(p+ q − 1)−1

= (p+ q − 1)−1a†
(
ap(p+ q − 1)−1

)
a†(p+ q − 1)−1

= (p+ q − 1)−1a†aa†(p+ q − 1)−1

= (p+ q − 1)−1a†(p+ q − 1)−1 = a#.

a#(qap) = (p+ q − 1)−1a†
(
(p+ q − 1)−1qa

)
p

= (p+ q − 1)−1a†ap = (p+ q − 1)−1qaa† = aa† is self-adjoint.

(qap)a# = q
(
ap(p+ q − 1)−1

)
a†(p+ q − 1)−1

= qaa†(p+ q − 1)−1 = a†ap(p+ q − 1)−1 = a†a is self-adjoint.
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Thus, qap ∈ A† and (qap)† = a#. Hence qap = ((qap)†)† = (a#)†. □
Observe that the proof of former result distils that if a ∈ A#, then

a#(a#)† = aa† and (a#)†a# = a†a.

The following elementary fact will be also useful. Let A be a Banach algebra
with identity and let {bn}∞n=1 ⊂ A be a sequence with limit b ∈ A. If bn ∈ A are
invertible, and if sup

n
∥b−1

n ∥ <∞, then b is invertible and b−1
n → b−1.

To prove the main result, we need to remark that for an ∈ A† such that an → a,
the following holds:

a ∈ A†, a†n → a† ⇔ sup
n

∥a†n∥ <∞ ⇔ a ∈ A†, a†nan → a†a⇔ a ∈ A†, ana
†
n → aa†.

(2.4)
Evidently, the only difference between (2.4) and the well-known necessary and
sufficient conditions for the continuity of the Moore–Penrose inverse which are
given in ( [17, Theorem 2.2], [8, Theorem 6], [19, Theorem 2.2]), is the implication

sup
n

∥a†n∥ <∞ ⇒ a ∈ A†.

It follows by the following: Since

a†n−a†m = −a†n(an−am)a†m+a†na
∗
n
†(a∗n−a∗m)(1−ama†m)+(1−a†nan)(a∗n−a∗m)a∗m

†a†m,

we get that a†n is a Cauchy sequence, and thus convergent to an element b ∈ A.
Letting n → ∞ in ana

†
nan = an we get aba = a. Thus, a is regular, hence

Moore–Penrose invertible.
In the following theorem we present some necessary and sufficient conditions

for the continuity of the group inverse. As we mentioned before that problem was
considered in [12]. Here, we don’t have an additional assumption that a limit a
is group invertible.

Theorem 2.7. Let A be a C∗-algebra and let {an}∞n=1 be a sequence of nonzero
elements from A# that converges to a ∈ A. The following statements are equiv-
alent:

(i) a ∈ A# and a#n → a#.
(ii) {a#n }∞n=1 is a bounded sequence.
(iii) a ∈ A†, a†n → a† and there exist ψ ∈ [0, π/2) and n0 ∈ N such that

ψ(ana
†
n, a

†
nan) ≤ ψ for all n ≥ n0.

Proof. Let us denote πn = a#n an, pn = ana
†
n, and qn = a†nan.

(i) ⇒ (ii) is evident.
(ii) ⇒ (iii): From (2.1) and Corollary 2.1 (ii) of [2] we have

∥a†n∥ = ∥(pn + qn − 1)a#n (pn + qn − 1)∥ ≤ ∥pn + qn − 1∥2∥a#n ∥ ≤ ∥a#n ∥.

Hence sup
n

∥a†n∥ < ∞, and using (2.4), we obtain a ∈ A† and a†n → a†. By

Theorem 2.5 we have
1

cosψ(pn, qn)
= ∥πn∥ ≤ ∥an∥∥a#n ∥.
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Since {an}∞n=1 and {a#n }∞n=1 are convergent, there exists δ > 0 such that δ ≤
cosψ(pn, qn) for any n ∈ N. By setting ψ = arccos δ allows us to get (iii).

(iii) ⇒ (i): By Theorem 2.6, we have that {(a#n )†}∞n=1 is a convergent sequence.
For any n ∈ N, let bn = (a#n )

†. By [2, Cor. 2.1] and Theorem 2.4 we get

∥b†n∥ = ∥a#n ∥ = ∥(pn + qn − 1)−1a†n(pn + qn − 1)−1∥ ≤ ∥a†n∥
cos2 ψ(pn, qn)

≤ ∥a†n∥
cos2 ψ

.

(2.5)
Since {a†n}∞n=1 is bounded, by (2.5) we have that {b†n}∞n=1 is bounded. By (2.4),
the sequence {b†n}∞n=1 converges to some element, say r ∈ A. In other words,
lim
n→∞

a#n = r. Now, by letting n→ ∞ in the equalities

an = ana
#
n an, a#n = a#n ana

#
n , ana

#
n = a#n an,

we obtain, respectively, a = ara, r = rar, and ar = ra, from which we get that
a is group invertible and a# = r = lim

n→∞
a#n . □

Next corollary shows how the speed of the convergence of a#n and ana
#
n depends

on three items: (a) ∥a†n∥ and ∥a†∥; (b) ψ(ana†n, a†nan) and ψ(aa†, a†a); (c) ∥a−an∥.
Also it shows that the closer is ψ(ana

†
n, a

†
nan) to π/2, the worst is the convergence

a#n and ana
#
n .

Let aπn and aπ be the spectral idempotents of an and a defined by aπn = 1−ana#n
and aπ = 1− aa#, respectively.

Corollary 2.8. Let A be a C∗-algebra. Let {an}∞n=1 be a sequence of nonzero ele-
ments in A# that converges to a ∈ A†. If exists ψ < π/2 such that ψ(ana

†
n, a

†
nan) ≤

ψ for any n ∈ N and ψ(aa†, a†a) ≤ ψ, then

∥a#n − a#∥ ≤
[
∥a†n∥∥a†∥
cos2 ψ

+
∥a†n∥2 + ∥a†∥2

cos3 ψ

]
∥an − a∥ (2.6)

and

∥ana#n − aa#∥ ≤
[
∥a†n∥+ ∥a†∥

cos2 ψ

]
∥an − a∥. (2.7)

Proof. Let p = aa†, q = a†a, pn = ana
†
n, and qn = a†nan. By [13, Prop. 4.2], [2,

Cor. 2.1], and Theorem 2.4, one gets

∥aπ∥ = ∥1−aa#∥ = ∥aa#+(aa#)∗−1∥ = ∥(p+q−1)−1∥ =
1

cosψ(p, q)
≤ 1

cosψ
.

(2.8)
The proof of Theorem 2.7 (see (2.5)) enables us to get

∥a#∥ ≤ ∥a†∥
cos2 ψ(p, q)

≤ ∥a†∥
cos2 ψ

. (2.9)
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Similar expressions as in (2.8), (2.9) can be obtained by changing a by an. Observe
that

a#n − a# = a#n − a# + a#n (an − a)a# − a#n (an − a)a#

= a#n (1− a#a)− (1− a#n an)a
# − a#n (an − a)a#

= (a#n )
2ana

π − aπna(a
#)2 − a#n (an − a)a#

= (a#n )
2(an − a)aπ − aπn(a− an)(a

#)2 − a#n (an − a)a#,

hence we have

∥a#n − a#∥ ≤
[
∥a#n ∥∥a#∥+ ∥a#n ∥2∥aπ∥+ ∥aπn∥∥a#∥2

]
∥an − a∥. (2.10)

Now (2.6) follows from (2.8), (2.9), and (2.10). The identity ana
#
n − aa# =

a#n (an − a)aπ + aπn(an − a)a# is trivial to check. Hence

∥ana#n − aa#∥ ≤
[
∥a#n ∥∥aπ∥+ ∥aπn∥∥a#∥

]
∥an − a∥.

Now (2.7) follows again from (2.8) and (2.9). □
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