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Abstract. Let D be the open unit disk with its boundary ∂D in the complex
plane C and dA(z) = 1

π dxdy, the normalized area measure on D. Let L2
a(D, dA)

be the Bergman space consisting of analytic functions on D that are also in
L2(D, dA). In this paper we obtain certain distance estimates for bounded
linear operators defined on the Bergman space.

1. Introduction

Let dA denote Lebesgue area measure on the unit disk D, normalized so that the
measure of D equals 1. The Bergman space L2

a(D) is the Hilbert space consisting
of the analytic functions on D that are also in L2(D, dA). Since point evaluation
at z ∈ D is a bounded linear functional on the Hilbert space L2

a(D), the Riesz
representation theorem implies that there exists a unique function Kz in L2

a(D)
such that

f(z) =

∫
D
f(w)Kz(w)dA(w)

for all f ∈ L2
a(D). Let K(z, w) be the function on D × D defined by K(z, w) =

Kz(w) = 1
(1−zw)2

. The function K(z, w) is called the Bergman kernel of D or the
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reproducing kernel of L2
a(D) because the formula

f(z) =

∫
D
f(w)K(z, w)dA(w)

reproduces each f ∈ L2
a(D). The sequence of functions en(z) =

√
n+ 1zn, n =

0, 1, 2, . . . form an orthonormal basis for L2
a(D) and K(z, w) =

∞∑
n=0

en(z)en(w).

For a ∈ D, let φa be the analytic map from D onto D defined by

φa(z) =
a− z

1− az
, z ∈ D.

Let L(L2
a(D)) be the set of all bounded linear operators from L2

a(D) into itself.
Let LC(L2

a(D)) denote the ideal of compact operators in L(L2
a(D)). Let L∞(D)

denote the usual space of bounded measurable functions f on the unit disk D in
the complex plane with ‖f‖∞ = ess sup{|f(z)| : z ∈ D} <∞. Let H∞(D) be the
space of bounded analytic functions on D and h∞(D) be the space of all bounded
harmonic functions on D.

For T ∈ L(L2
a(D)), the Berezin transform of T is the function T̃ on D defined

by

T̃ (z) = 〈Tkz, kz〉

where kz(w) = K(w,z)√
K(z,z)

= 1−|z|2
(1−zw)2

. These functions are called normalized repro-

ducing kernels of L2
a(D); it is clear that they are unit vectors in L2

a(D). For
φ ∈ L∞(D), the Toeplitz operator with symbol φ is the operator Tφ on L2

a(D)
defined by Tφf = P (φf), where P is the orthogonal projection of L2(D, dA) onto

L2
a(D). The Berezin transform of the function φ, denoted by φ̃, is defined to be

the Berezin transform of the Toeplitz operator Tφ. This definition easily leads to
the formula

φ̃(z) = (1− |z|2)2

∫
D

φ(w)

|1− zw|4
dA(w).

If φ ∈ h∞(D), then T̃φ = φ̃ = φ. Let φ : D −→ D be analytic. Then φ induces
a composition operator Cφ on L2

a(D) defined by Cφf = f ◦ φ, for all f ∈ L2
a(D).

An operator A ∈ L(L2
a(D)) is positive if 〈Af, f〉 ≥ 0, for every f ∈ L2

a(D). In
this case we write A ≥ 0. Let σ(A) denote the spectrum of A ∈ L(L2

a(D)). In
section 2, we introduce the operator Ua ∈ L(L2

a(D)), a ∈ D and discuss certain
algebraic properties of these classes of operators. In section 3, we propose some
distance estimates for operators defined on the Bergman space. In section 4, we
are concerned only with Toeplitz operators with bounded harmonic symbols and
obtained certain distance estimates between Toeplitz operators.

2. Preliminaries

In this section we introduce the operator Ua ∈ L(L2
a(D)), a ∈ D and discuss

certain algebraic properties of these classes of operators. Given a ∈ D, we define
the operator Ua from L2

a(D) into itself as Uaf = (f ◦ φa)ka. The Proposition 2.1
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is well known. For example see [11]. To make the presentation self-contained, we
give a proof of the proposition.

Proposition 2.1. Let a ∈ D. The following hold:

(i) Ua is self-adjoint unitary operator.

(ii) UaKz = ka(z)Kφa(z).
(iii) Uakz = αkφa(z) where α = αa(z) ∈ ∂D.

Proof. (i). Let f, g ∈ L2
a(D) and let φa be the Möbius transformation for a ∈ D.

Then
〈f ◦ φa, g ◦ φa〉 = 〈kaf, kag〉 .

First we will prove Ua is self-adjoint. If f, g ∈ L2
a(D) then

〈U∗
af, g〉 = 〈f, Uag〉 = 〈f, ka(g◦φa)〉 = 〈kaf◦φa, ka(ka◦φa)g〉 = 〈Uaf, (ka(ka◦φa)g)〉

where we have used the above change of variable and the identity φa ◦φa(w) = w.
Since (ka(ka◦φa)) = 1, so 〈U∗

af, g〉 = 〈Uaf, g〉. That Ua is unitary follows similarly.
Simply rewrite the change of variable replacing f by f◦φa, simplify the result with
the identity kz ◦φz(w) = kz(w)−1. Combining these result yields U−1

a = U∗
a = Ua.

This proves (i). For (ii), let f ∈ L2
a(D). Now

〈f, UaKz〉 = 〈Uaf,Kz〉 = Uaf(z) = ka(z)f(φa(z))

= ka(z)〈f,Kφa(z)〉 = 〈f, ka(z)Kφa(z)〉.
This proves (ii). We shall now prove (iii). Notice that

Uakz =
1

‖Kz‖
UaKz =

1

‖Kz‖
ka(z)Kφa(z) =

(
‖Kφa(z)‖
‖Kz‖

ka(z)

)
kφa(z).

Setting α = αa(z) = ‖Kφa(z)‖‖Kz‖−1ka(z) we get the desired identity. Since

1− |φa(z)|2 =
(1− |a|2)(1− |z|2)

|1− az|2
.

To prove αa(z) ∈ ∂D we calculate

αa(z) =
1− |z|2

1− |φa(z)|2
1− |a|2

(1− az)2
=
|1− az|2

(1− az)2
.

�

Now since ka(z)ka(φa(z)) = 1 for each a ∈ D, hence Uaka = 1 and Uakma =
kma where ma is the geodesic midpoint between 0 and a (see [6]), i.e, ma =

1−
√

1− |a|2
|a|2

a. Further Uakz = kφa(z).

Lemma 2.2. Let T ∈ L(L2
a(D)). The following hold:

(i) If TUa = UaT for all a ∈ D, then T = αI for some α ∈ C.
(ii) If TUφa = UφaT for all a ∈ D, then T = βI for some β ∈ C.
(iii) If TUa = UaT for some a ∈ D, then Ma = {kma(g ◦ φma) : g even} is a

reducing subspace of T .

Proof. For proof see [8]. �
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Lemma 2.3. Let T ∈ L(L2
a(D)), T ≥ 0. Then T =

∞∑
n=1

√
Ten ⊗ (

√
Ten)

∗, where

{en} is an orthonormal basis for L2
a(D), and the infinite sum means the limit of

partial sums in the strong operator topology.

Proof. Define PN =
N∑
n=1

en ⊗ e∗n. Clearly PN ↑ I strongly. Thus
√
TPN

√
T −→ T

strongly and
√
TPN

√
T =

N∑
n=1

√
Ten ⊗ (

√
Ten)

∗. �

3. The operator Ua and certain distance estimates

In this section we propose some distance estimates for operators defined on the
Bergman space. Such inequalities are useful in the theory of best approximation
in C∗-algebras [5], complex interpolation [3], the theory of generalized inverses
and operator approximation (see, [9], [10] and [1]). We obtain estimates for
‖Ua − T‖ where T ∈ L(L2

a(D)), T ≥ 0 and a ∈ D.
It is well known [7] that if T ∈ L(L2

a(D)) and there exists δ, 0 < δ < 1 such
that ‖I − T n‖ ≤ δ < 1 for all n ∈ N, then T = I, the identity operator. Thus it
follows from this that ‖I−Ua‖ ≥ 1 since Ua 6= I and U2

a = I. Further, since Ua is
not positive, it follows from [7] that there exists no positive integer N such that∥∥∥∥∥I − 1

n+1

k+n∑
j=k

U j
a

∥∥∥∥∥ ≤ 1 for all n ≥ N and k ∈ N ∪ {0}. But the following holds:

Theorem 3.1. Let A be a positive operator in L(L2
a(D)). Suppose for some a ∈

D, ‖Ua−A‖ < 1. Then A is invertible. Further, ‖I −A‖ ≤ ‖Ua−A‖ ≤ ‖I +A‖.

Proof. If f ∈ L2
a(D) and ‖f‖ = 1 then

‖(Ua − A)f‖2 = 〈(Ua − A)f, (Ua − A)f〉
= ‖Uaf‖2 + ‖Af‖2 − 〈Uaf, Af〉 − 〈Af, Uaf〉
= ‖f‖2 + ‖Af‖2 − 〈f, U∗

aAf〉 − 〈U∗
aAf, f〉

= 1 + ‖Af‖2 − 〈f, UaAf〉 − 〈UaAf, f〉

= 1 + ‖Af‖2 − 〈UaAf, f〉 − 〈UaAf, f〉
= 1 + ‖Af‖2 − 2 Re〈UaAf, f〉
≥ 1 + ‖Af‖2 − 2|〈UaAf, f〉|
≥ 1 + ‖Af‖2 − 2‖UaAf‖‖f‖
= 1 + ‖Af‖2 − 2‖Af‖‖f‖
= 1 + ‖Af‖2 − 2‖Af‖ = (1− ‖Af‖)2.
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Now since A is positive, inf
‖f‖=1

〈Af, f〉 = inf
‖f‖=1

‖Af‖ and sup
‖f‖=1

〈Af, f〉 = sup
‖f‖=1

‖Af‖

and we have

‖Ua − A‖ = sup
‖f‖=1

‖(Ua − A)f‖

≥ sup
‖f‖=1

|1− ‖Af‖|

= sup
‖f‖=1

|1− 〈Af, f〉|

= sup
‖f‖=1

|〈(I − A)f, f〉| = ‖I − A‖.

Thus if ‖Ua − A‖ < 1 then ‖I − A‖ < 1 and this implies A is invertible [4].
Further,

‖Ua − A‖ = sup
‖f‖=1

‖Uaf − Af‖

≤ sup
‖f‖=1

(1 + ‖Af‖)

= sup
‖f‖=1

〈(I + A)f, f〉 = ‖I + A‖.

�

Theorem 3.2. Let T ∈ L(L2
a(D)). The following hold:

(i): If for some a ∈ D, ‖Ua − T‖ < 1, then T is invertible.
(ii): If T is invertible and ‖Ua − rT‖ = 1 for some real number r > 1 and
a ∈ D, then ‖Ua − T‖ < 1.

Proof. (i) The operator Ua is a unitary operator and U2
a = I, U∗

a = Ua. Since

‖I − UaT‖ = ‖Ua − T‖ < 1,

the operator UaT is invertible. Hence T is invertible as T = Ua(UaT ). This
completes the proof of (i). To prove (ii), we first show that if S,R ∈ L(L2

a(D))
and ‖S − R‖ = ‖S‖ + ‖R‖ then there exists a sequence {fn} of unit vectors in
L(L2

a(D)) such that lim
n→∞

‖(‖R‖S + ‖S‖R) fn‖ = 0. The converse holds if one of S

and R is an isometric operator. To prove this we use the well known fact that if f
and g are two vectors in a normed linear space such that ‖f+g‖ = ‖f‖+‖g‖ then
‖af + bg‖ = a‖f‖ + b‖g‖ for any nonnegative real numbers a and b. Suppose
S 6= 0, R 6= 0, ‖S − R‖ = ‖S‖ + ‖R‖. Let K = S

‖S‖ and L = −R
‖R‖ . Since

‖S−R‖ = ‖S‖+‖R‖ we have ‖K+L‖ = 2. So there exists a sequence {fn} of unit
vectors such that lim

n→∞
‖Kfn+Lfn‖ = 2. This implies that lim

n→∞
‖Kfn−Lfn‖ = 0

as ‖Kfn‖ ≤ 1, ‖Lfn‖ ≤ 1 for all n and by Parallelogram law

‖Kfn + Lfn‖2 + ‖Kfn − Lfn‖2 = 2‖Kfn‖2 + 2‖Lfn‖2.

It thus follows that lim
n→∞

‖(‖R‖S + ‖S‖R) fn‖ = 0. Conversely, let S be an iso-

metric operator and lim
n→∞

‖(‖R‖S +R) fn‖ = 0 for some sequence {fn} ∈ L2
a(D)
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of unit vectors. Then we have

2‖R‖ ≥ ‖(‖R‖S −R) fn‖ ≥ 2‖R‖‖Sfn‖ − ‖(‖R‖S +R) fn‖ → 2‖R‖ as n→∞.

Hence, ‖(‖R‖S −R)‖ = 2‖R‖, equivalently, ‖S−R‖ = 1 + ‖R‖. Thus we obtain
that if S,R ∈ L(L2

a(D)) and S is an isometric operator then ‖S −R‖ = 1 + ‖R‖
if and only if there exists a sequence {fn} of unit vectors in L2

a(D) such that
lim
n→∞

‖(‖R‖S +R) fn‖ = 0. Notice that

‖(‖T‖(r − 1)S + ‖(r − 1)S‖T ) fn‖ = ‖(‖T‖(r − 1)S + (r − 1)‖S‖T ) fn‖
= (r − 1) ‖(‖T‖S + T ) fn‖ .

It thus follows that ‖(r− 1)S − T‖ < (r− 1) + ‖T‖ if and only if there exists no
sequence {fn} ∈ L2

a(D) of unit vectors such that lim
n→∞

‖(‖T‖S + T )fn‖ = 0. Now

we shall establish (ii). Suppose T is invertible and ‖Ua − rT‖ = 1 for some real
number r > 1. From the above argument it follows that there exists no sequence
{fn} ∈ L2

a(D) of unit vectors such that

lim
n→∞

‖(‖Ua − rT‖Ua + (rT − Ua)) fn‖ = 0

if and only if

‖(r − 1)Ua − (rT − Ua)‖ < (r − 1) + ‖rT − Ua‖ = r.

We thus show that if there exists no sequence {fn} ∈ L2
a(D) of unit vectors such

that lim
n→∞

‖Tfn‖ = 0 then

r‖Ua − T‖ = ‖rUa − rT‖ = ‖(r − 1)Ua − (rT − Ua)‖ < r.

That is, ‖Ua−T‖ < 1. Hence if T is invertible and ‖Ua− rT‖ = 1 for some a ∈ D
and some real number r > 1 then ‖Ua − T‖ < 1. �

Corollary 3.3. Let T ∈ L(L2
a(D)). Then ‖Ua − T‖ = 1 + ‖T‖ for some a ∈ D if

and only if the operator ‖T‖Ua + T is not invertible.

Proof. Suppose r > 1 = ‖T‖ and V1 = Ua+T
r
. Then T = rV1−Ua and ‖Ua−rV1‖ =

‖T‖ = 1. Thus V1 = Ua+T
r

is not invertible if and only if ‖Ua − Ua+T
r
‖ ≥ 1. But

‖(r − 1)Ua − T‖ ≤ (r − 1)‖Ua‖+ ‖T‖ = r.

Thus V1 is not invertible if and only if ‖(r − 1)Ua − T‖ = r. That is, if and
only if, ‖Ua − T‖ = 1 + ‖T‖. That is, rV1 = Ua + T is not invertible if and
only if ‖Ua − T‖ = 1 + ‖T‖. For the general case, suppose T ∈ L(L2

a(D)). Then∥∥∥ T
‖T‖

∥∥∥ = 1. From the first part we obtain Ua + T
‖T‖ is not invertible if and only if∥∥∥∥Ua − T

‖T‖

∥∥∥∥ = 1 +

∥∥∥∥ T

‖T‖

∥∥∥∥ = 2.

Thus ‖T‖Ua + T is not invertible if and only if ‖‖T‖Ua − T‖ = 2‖T‖. That is, if
and only if ‖Ua − T‖ = 1 + ‖T‖. This completes the proof. �

Corollary 3.4. Let T ∈ L(L2
a(D)). Let R = UaT − TUa for some a ∈ D. Then

‖I −R‖ ≥ 1.
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Proof. Notice that ‖Ua‖ = 1 and the spectral radius of Ua = r(Ua) = 1. In fact
the spectrum of Ua = σ(Ua) = {−1, 1}. Hence there is a sequence of unit vectors
fn ∈ L2

a(D), (n = 1, 2, 3, · · · ) such that (Ua − I)fn → 0. Now

‖I −R‖ ≥ |〈(I −R)fn, fn〉| = |1− 〈Rfn, fn〉| ≥ 1− |〈Rfn, fn〉|.
The result follows if we can show that 〈Rfn, fn〉 → 0. But

〈Rfn, fn〉 = 〈((Ua − I)T − T (Ua − I))fn, fn〉
= 〈Tfn, (Ua − I)fn〉 − 〈(Ua − I)fn, T

∗fn〉 .
So

|〈Rfn, fn〉| ≤ ‖T‖ (‖(Ua − I)fn‖+ ‖(Ua − I)fn‖) → 0 as n→∞.

�

The Schatten-Von Neumann class Sp = Sp(H), 0 < p < ∞, consists of all
operators T ∈ LC(H) such that

‖T‖Sp =

(
∞∑
n=0

(sn(T ))p

) 1
p

<∞. (3.1)

Corollary 3.5. If A is positive and A ∈ L(L2
a(D)) and Ua−A ∈ Sp, 0 < p <∞

for some a ∈ D, then I − A ∈ Sp.

Proof. Suppose Ua − A ∈ Sp for some a ∈ D. Then

−AUa + UaA = (Ua − A)Ua − Ua(Ua − A) ∈ Sp.
Hence

I − A2 = (Ua − A)(Ua + A) + (AUa − UaA) ∈ Sp.
Since A is positive, hence I +A is invertible and so I −A = (I −A2)(I +A)−1 ∈
Sp. �

4. Toeplitz operators with bounded harmonic
symbols

For T ∈ L(L2
a(D)), T ≥ 0, let W (T ) = {〈Tf, f〉 : ‖f‖ = 1}, the numerical

range of T and w(T ) = sup{|〈Tf, f〉| : ‖f‖ = 1}, the numerical radius of T. It is
well known that W (T ) is convex and its closure contains σ(T ). There are certain
standard norm estimates like (see [1]), w(T ) ≤ ‖T‖ ≤ 2w(T ) and w(T n) ≤
w(T )n, n ∈ N. It is not hard to check that for T ∈ L(L2

a(D)), the range of T̃

is contained in W (T ) and ‖T̃‖∞ ≤ w(T ). Thus if φ ∈ L∞(D), then ‖φ̃‖∞ =

‖T̃φ‖∞ ≤ w(Tφ) ≤ ‖Tφ‖ ≤ ‖φ‖∞. The natural question that arises at this point

is the following: Is there a real number M > 0 with ‖Tφ‖ ≤ M‖φ̃‖∞ for all
φ ∈ L∞(D) and if so what are the distance estimates for ‖Tφ−Tψ‖ and ‖Ua−Tφ‖
where, φ, ψ ∈ L∞(D) ? In this section, we are concerned only with Toeplitz
operators with bounded harmonic symbols and obtained such distance estimates.

Theorem 4.1. If φ, ψ ∈ h∞(D) and Tφ, Tψ ≥ 0, then

(i): For all a ∈ D, ‖Tψ◦φa − Tφ‖ ≤ max {‖φ‖∞, ‖ψ‖∞} .
(ii): ‖TφTψ − TψTφ‖ ≤ (max{‖φ‖∞, ‖ψ‖∞})2 .
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(iii): If r > 0 and Tφ+ψ ≥ rI ≥ 0, then ‖TφUa + UaTψ‖ ≥ r.

Proof. (i) Let φ̃(z) = 〈Tφkz, kz〉, where kz is the normalized reproducing kernel

for the Hilbert space L2
a(D). Hence φ̃(z) =

∫
D
φ(w)|kz(w)|2dA(w), z ∈ D. Since

φ′z = −kz, making a change of variable we also have φ̃(z) =

∫
D
φ(φz(w))dA(w) =

φ(φz(0)) = φ(z), z ∈ D. Thus |φ(z)| = |φ̃(z)| = |〈Tφkz, kz〉| ≤ ‖Tφ‖ for all z ∈ D.
Hence ‖φ‖∞ ≤ ‖Tφ‖. Now since the Bergman projection has norm 1, we have
‖Tφ‖ = ‖φ‖∞.

Suppose a ∈ D. Now on L2
a(D)⊕ L2

a(D), let

M =

(
Tφ 0
0 Tψ

)
and N =

(
0 Ua
0 0

)
.

Then M ≥ 0 and MN −NM =

(
0 TφUa − UaTψ
0 0

)
. From [2] we have

‖Tψ◦φa − Tφ‖ = ‖TφUa − UaTψ‖ = ‖MN −NM‖ ≤ ‖M‖‖N‖
= max{‖Tφ‖, ‖Tψ‖}‖Ua‖ = max{‖φ‖∞, ‖ψ‖∞}.

This completes the proof of (i). To prove (ii), observe that

2(TψTφ − TφTψ) = (Tφ + Tψ)(Tφ − Tψ)− (Tφ − Tψ)(Tφ + Tψ)

= Tφ+ψTφ−ψ − Tφ−ψTφ+ψ.

Since Tφ+ψ is positive and ‖Tφ+ψ‖ = ‖φ+ ψ‖∞, we have from [2] that

2‖TψTφ − TφTψ‖ ≤ ‖Tφ+ψ‖‖Tφ−ψ‖ = ‖φ+ ψ‖∞‖Tφ − Tψ‖
= ‖φ+ ψ‖∞ max{‖φ‖∞, ‖ψ‖∞}.

Thus

‖TψTφ − TφTψ‖ ≤
1

2
{‖φ‖∞ + ‖ψ‖∞}max{‖φ‖∞, ‖ψ‖∞} ≤ (max{‖φ‖∞, ‖ψ‖∞})2 .

This completes the proof of (ii). To prove (iii), notice that the spectral radius
of Ua = r(Ua) = 1 and ‖Ua‖ = 1 and σ(Ua) = {−1, 1}. Hence there is a sequence
of unit vectors {fn} ∈ L2

a(D) such that (Ua − I)fn → 0. Now

‖TφUa + UaTψ‖ ≥ |〈(TφUa + UaTψ)fn, fn〉|
= |〈Tφ(Ua − I)fn, fn〉+ 〈(Ua − I)Tψfn, fn〉+ 〈(Tφ + Tψ)fn, fn〉|
= |〈(Ua − I)fn, Tφfn〉+ 〈Tψfn, (Ua − I)fn〉+ 〈(Tφ + Tψ)fn, fn〉|
≥ |〈(Tφ + Tψ)fn, fn〉| − [‖(Ua − I)fn‖‖Tφfn‖+ ‖Tψfn‖‖(Ua − I)fn‖]
≥ r − rn

where rn is a term depending on n and rn → 0 as n→∞. Hence

‖TφUa + UaTψ‖ ≥ r.

�



CERTAIN DISTANCE ESTIMATES 201

Theorem 4.2. (i): If φ ∈ L∞(D) and T 2
φ + T 2

φ◦φa
= 2Tφ◦φaTφ for some

a ∈ D, then lim
n→∞

‖T n−1
φ (Tφ◦φa−φ)‖
‖T n−1

φ ‖
= 0, Tφ◦φa−φ is not invertible and ‖Ua−

Tφ◦φa−φ‖ ≥ 1.
(ii): If φ ∈ L∞(D) and Tφ is positive, then also ‖Ua − Tφ◦φa−φ‖ ≥ 1.

Proof. (i) Suppose T 2
φ + T 2

φ◦φa
= 2Tφ◦φaTφ for some a ∈ D. Then

Tφ◦φaTφ − T 2
φ = T 2

φ◦φa
− Tφ◦φaTφ.

That is,

UaTφUaTφ − T 2
φ = (UaTφUa)(UaTφUa)− (UaTφUa)Tφ

= UaT
2
φUa − (UaTφUa)Tφ.

Hence TφUaTφ−UaT
2
φ = T 2

φUa− TφUaTφ. That is, (TφUa−UaTφ)Tφ = Tφ(TφUa−
UaTφ). Thus Tφ commutes with TφUa−UaTφ. Suppose there exists a m ∈ Z+ such
that Tmφ = 0. Now since

T nφUa − UaT
n
φ =

n−1∑
i=0

T n−1−i
φ (TφUa − UaTφ)T

i
φ

= nT n−1
φ −

n−1∑
i=0

T n−1−i
φ (I − (TφUa − UaTφ))T

i
φ,

we have 0 = Tmφ Ua − UaT
m
φ = mTm−1

φ (TφUa − UaTφ) and hence

lim
n→∞

‖T n−1
φ (TφUa − UaTφ)‖

‖T n−1
φ ‖

= lim
n→∞

‖T n−1
φ (Tφ◦φa−φ)‖
‖T n−1

φ ‖
= 0.

If there does not exist m ∈ Z+ such that Tmφ = 0 then the inequality

n‖T n−1
φ Tφ◦φa−φ‖ = n‖T n−1

φ (TφUa − UaTφ)‖ = ‖T nφUa − UaT
n
φ ‖

≤ 2‖Tφ‖‖Ua‖‖T n−1
φ ‖ = 2‖Tφ‖‖T n−1

φ ‖

implies that
‖Tn−1

φ (Tφ◦φa−φ)‖
‖Tn−1

φ ‖ → 0 as n→∞. Suppose now that Tφ◦φa−φ is invertible

and ‖T−1
φ◦φa−φ‖ ≤ C for some constant C > 0. Then

1 =
‖T n−1

φ Tφ◦φa−φT
−1
φ◦φa−φ‖

‖T n−1
φ ‖

≤
‖T n−1

φ Tφ◦φa−φ‖‖T−1
φ◦φa−φ‖

‖T n−1
φ ‖

≤
C‖T n−1

φ Tφ◦φa−φ‖
‖T n−1

φ ‖
≤ 2C‖Tφ‖

n
.

Taking limit as n→∞ both the sides we obtain a contradiction. Hence Tφ◦φa−φ
is not invertible. That is, UaTφUa − Tφ = Ua(TφUa − UaTφ) is not invertible.
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Hence TφUa − UaTφ is not invertible and ‖I − (TφUa − UaTφ)‖ ≥ 1. That is,

‖Ua − Tφ◦φa−φ‖ = ‖Ua − Tφ◦φa + Tφ‖ = ‖I − (TφUa − UaTφ)‖ ≥ 1.

This completes the proof of (i). To prove (ii), assume Tφ is positive. Then
‖Tmφ ‖ = ‖Tφ‖m for all m ∈ Z+. Thus it follows that

n‖Tφ‖n−1 = n‖T n−1
φ ‖

≤ ‖T nφUa − UaT
n
φ ‖+

∥∥∥∥∥
n−1∑
i=0

T n−1−i
φ (I − (TφUa − UaTφ))T

i
φ

∥∥∥∥∥
≤ 2‖Tφ‖‖Ua‖‖T n−1

φ ‖+ ‖I − (TφUa − UaTφ)‖
n−1∑
i=0

‖T n−1−i
φ ‖‖T iφ‖

= 2‖Tφ‖‖Tφ‖n−1 + ‖I − (TφUa − UaTφ)‖
n−1∑
i=0

‖Tφ‖n−1−i‖Tφ‖i

= 2‖Tφ‖n + n‖I − (TφUa − UaTφ)‖‖Tφ‖n−1.

Thus

1 ≤ 2

n
‖Tφ‖+ ‖I − (TφUa − UaTφ)‖ for all n ∈ Z+.

If now ‖I − (TφUa − UaTφ)‖ < 1 then we get a contradiction. Hence

‖Ua − Tφ◦φa−φ‖ = ‖I − (TφUa − UaTφ)‖ ≥ 1.

�
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