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DISJOINTNESS PRESERVING LINEAR OPERATORS
BETWEEN BANACH ALGEBRAS OF VECTOR-VALUED

FUNCTIONS

TAHER GHASEMI HONARY∗, AZADEH NIKOU AND AMIR HOSSEIN SANATPOUR

Communicated by K. Jarosz

Abstract. We present vector-valued versions of two theorems due to A.
Jimenez–Vargas, by showing that, if B(X, E) and B(Y, F ) are certain vector-
valued Banach algebras of continuous functions and T : B(X, E) → B(Y, F )
is a separating linear operator, then T̂ : ̂B(X, E) → B̂(Y, F ), defined by
T̂ f̂ = T̂ f , is a weighted composition operator, where T̂ f is the Gelfand trans-
form of Tf .

Furthermore, it is shown that, under some conditions, every bijective sepa-
rating map T : B(X, E) → B(Y, F ) is biseparating and induces a homeomor-
phism between the character spaces M(B(X, E)) and M(B(Y, F )). In particu-
lar, a complete description of all biseparating, or disjointness preserving linear
operators between certain vector-valued Lipschitz algebras is provided. In fact,
under certain conditions, if the bijections T : Lipα(X, E) → Lipα(Y, F ) and
T−1 are both disjointness preserving, then T is a weighted composition oper-
ator in the form Tf(y) = h(y)(f(φ(y))), where φ is a homeomorphism from Y
onto X and h is a map from Y into the set of all linear bijections from E onto
F . Moreover, if T is multiplicative then M(E) and M(F ) are homeomorphic.

1. Introduction and preliminaries

Let X be a compact Hausdorff space, (E, ‖ · ‖) be a Banach algebra over the
scalar field of complex numbers C and C(X,E) be the space of all continuous
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maps from X into E. We define the uniform norm on C(X,E) by

‖f‖X = supx∈X‖f(x)‖, f ∈ C(X,E).

For f, g ∈ C(X,E) and λ ∈ C, the pointwise operations λf , f + g and fg in
C(X,E) are defined as usual. It is easy to see that (C(X,E), ‖ · ‖X) is a Banach
algebra. If E = C we get the ordinary function algebra C(X,C) = C(X) of all
continuous complex-valued functions on X.

Definition 1.1. Let (A, ‖·‖) be a Banach algebra and the character space M(A)
denote the set of all characters (nonzero complex-valued multiplicative linear
functionals) on A.

(i) The Gelfand transform of f ∈ A is the complex-valued function f̂ defined

by f̂(ϕ) = ϕ(f) on M(A). Moreover, Â = {f̂ : f ∈ A}.
(ii) A is regular if M(A) 6= ∅ and for every closed subset F ⊆M(A) and every

ϕ ∈ M(A)\F, there exists f ∈ A such that f̂(ϕ) = 1 and f̂(F ) ⊆ {0}. If in

addition, this f satisfies ‖f̂‖ ≤ 1, then A is called hyper-regular.
(iii) A is normal if M(A) 6= ∅ and for every closed subset F ⊆ M(A) and

every compact subset K ⊆ M(A) with F ∩K = ∅, there exists f ∈ A such that

f̂(K) ⊆ {1} and f̂(F ) ⊆ {0}. If in addition, this f satisfies ‖f̂‖ ≤ 1, then A is
called hyper-normal.

Remark 1.2. (i) A commutative Banach algebra is regular if and only if it is
normal. See, for example, [18, Corollary 4.2.9] or [9, Proposition 4.1.18].

(ii) If A is a regular commutative Banach algebra such that Â is closed under
complex conjugation, then A is hyper-regular [18, Corollary 4.2.10].

(iii) Every commutative C∗ − algebra is regular and hence normal. See, for
example, [18, Example 4.2.2]. Moreover, by (ii) every commutative C∗− algebra
is hyper-regular.

Let X be a compact Hausdorff space and E be a unital commutative Banach
algebra. In the sequel, by B(X,E) we mean a Banach algebra which is contained
in C(X,E). It is clear that if B(X,E) contains the constant functions, then it is
commutative if and only if E is commutative. We also recall that the cozero set
of f : X → E is coz(f) = {x ∈ X : f(x) 6= 0}, and supp(f), the support of f , is
the closure of coz(f) in X.

Definition 1.3. For compact Hausdorff spaces X and Y , and Banach algebras
(E, ‖ · ‖E), (F, ‖ · ‖F ), a linear map T : B(X,E) → B(Y, F ) is called disjointness
preserving if for every f, g ∈ B(X,E) the equality coz(f) ∩ coz(g) = ∅ implies
the equality coz(Tf) ∩ coz(Tg) = ∅.

Remark 1.4. It is easy to check that a linear map T : B(X,E) → B(Y, F )
is disjointness preserving if and only if for every f, g ∈ B(X,E) the equality
‖f(x)‖‖g(x)‖ = 0 for all x ∈ X implies the equality ‖Tf(y)‖‖Tg(y)‖ = 0 for all
y ∈ Y . If T has this latter property it is called a separating map by some authors.
See, for example, [13], [17] and [10]. But in this paper, we use separating maps
in the following sense. See, for example, [11] and [12].
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Definition 1.5. If A and B are Banach algebras, a linear map T : A → B is
called separating if for every f, g ∈ A, the equality fg = 0 implies the equality
TfTg = 0. Moreover, T is called biseparating if it is bijective and both T and
T−1 are separating.

Definition 1.6. Let A and B be Banach algebras and let T : A→ B be a linear

map. The map T̂ : Â→ B̂ is defined by T̂ f̂ = T̂ f for every f ∈ A.

If A and B are semisimple commutative Banach algebras, it is easy to check

that the map T : A→ B is separating if and only if T̂ is separating and, moreover,

T is injective (surjective) if and only if T̂ is injective (surjective).
Order bounded disjointness preserving maps are also known as Lamperti oper-

ators [4].
The notion of disjointness preserving or separating operators seems to be used

first in the 40,s [22, 23]. Since then many mathematicians have developed this
concept. For example, Abramovich made some contributions in the context of
Banach lattices and vector lattices in [1, 2]. Separating linear maps for scalar-
valued continuous functions, as well as the notion of automatic continuity, were
studied in [5, 6, 7] and for scalar-valued Lipschitz algebras in [16]. Moreover,
these maps have been studied in [13] for the algebra of continuous vector-valued
functions, as well as the vector-valued Lipschitz algebras. Jarosz has also interest-
ing results on the automatic continuity of separating linear isomorphisms in [15].
Disjointness preserving operators between certain Banach algebras of continuous
functions have been studied in [3, 12]. One can also find interesting results on
norm-preserving maps between Banach function algebras in [14]. Recently, as ex-
amples of weighted composition operators, disjointness preserving maps between
vector-valued Lipschitz function spaces have been studied in [10].

In [16] Jimenez–Vargas has shown that for compact metric spaces X and Y,
every disjointness preserving operator T : `ipα(X) → `ipα(Y ) is essentially a
weighted composition operator. He also proved that every bijective disjointness
preserving operator T : `ipα(X) → `ipα(Y ) is automatically continuous and it is,
in fact, biseparating.

One of the aims of this paper is to extend the results of Jimenez–Vargas in
[16] to Banach algebras of vector-valued continuous functions which are hyper-
normal, semisimple, commutative and unital. First we require some definitions
and notations.

Let A be a unital commutative Banach algebra. The radical of the algebra A
is defined to be the intersection of all maximal ideals of A and it is denoted by
rad(A). The algebra A is semisimple if rad(A) = {0}.

By using a method similar to Jimenez–Vargas in [16, Theorem 2.2], we show
that if B(X,E) and B(Y, F ) are hyper-normal, semisimple, commutative and
unital, and T : B(X,E) → B(Y, F ) is a disjointness preserving linear map, then

T̂ is a weighted composition operator. Furthermore, with the same conditions,
we show that every bijective separating map T : B(X,E) → B(Y, F ) is bisepa-
rating and induces a homeomorphism between the character spaces M(B(X,E))
and M(B(Y, F )). Then by applying the same method as in [13, Theorem 2.3],
we conclude that certain disjointness preserving linear maps T : Lipα(X,E) →
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Lipα(Y, F ) or T : `ipα(X,E) → `ipα(Y, F ) are weighted composition operators,
and moreover, they induce a homeomorphism between X and Y .

Weighted composition operators between certain classes of weighted Frechet
spaces and on some spaces of analytic functions, have been studied in [19].

2. Hyper-normality of vector-valued Lipschitz algebras

In this section we show that, for a compact metric space X and a commutative
unital Banach algebra E, Lipα(X,E) (`ipα(X,E)) is hyper-normal, or (hyper)
regular if and only if E is hyper-normal, or (hyper) regular, respectively. We
also show that E-valued Lipschitz algebras are semisimple if and only if E is
semisimple.

Definition 2.1. Let (X, d) be a compact metric space and E be a unital commu-
tative Banach algebra. For a constant α (0 < α ≤ 1) and a function f : X → E,
the Lipschitz constant of f is defined by

pα(f) := sup
x,y∈X
x6=y

‖f(x)− f(y)‖
d(x, y)α

,

and the vector-valued big Lipschitz algebra (of order α), or simply, the vector-
valued Lipschitz algebra is defined by

Lipα(X,E) = {f : X → E : pα(f) <∞} .
Similarly, for α (0 < α < 1) the vector-valued little Lipschitz algebra (of order
α) is defined by

`ipα(X,E) =

{
f ∈ Lipα(X,E) :

‖f(x)− f(y)‖
d(x, y)α

→ 0 as d(x, y) → 0

}
.

For each f ∈ Lipα(X,E) we define the norm by

‖f‖α = ‖f‖X + pα(f).

If E = C we get the ordinary complex-valued Lipschitz algebras Lipα(X) and
`ipα(X). In [8] it has been shown that (Lipα(X,E), ‖ · ‖α) is complete and it is,
in fact, a Banach subalgebra of C(X,E), and moreover, `ipα(X,E) is a closed
subalgebra of (Lipα(X,E), ‖ · ‖α).
Remark 2.2. For a compact metric space X and a unital commutative Banach
algebra E, we can deduce from [20, Examples 2.1(ii)] and [20, Corollary 2.2], that
the maximal ideal space of Lipα(X,E) is homeomorphic to the cartesian product
X ×M(E) in the product topology, that is,

M(Lipα(X,E)) ∼= X ×M(E).

Moreover, every character φ on Lipα(X,E) is of the form ϕ◦δx for some ϕ ∈M(E)
and for some x ∈ X [20].

We now bring an elementary result for scalar-valued Lipschitz algebras and
then extend it to the vector-valued case.

Lemma 2.3. If X is a compact metric space then Lipα(X) for 0 < α ≤ 1 and
`ipα(X) for 0 < α < 1 are both hyper-normal.
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Proof. Since Lip1(X) is contained in `ipα(X) for all 0 < α < 1, it is enough to
show that for any pair of disjoint compact sets C and K the function

f(x) =
d(x,C)

d(x,C) + d(x,K)

is an element of Lip1(X), which is easy to see. �

Theorem 2.4. Let X be a compact metric space and E be a commutative unital
Banach algebra. Then Lipα(X,E) is hyper-normal if and only if E is hyper-
normal.

Proof. We first suppose that E is hyper-normal. Let K and F be compact sub-
sets of M(Lipα(X,E)) such that K ∩ F = ∅. For every φ ∈ K, there exists a
neighbourhood Uφ such that Uφ ∩ F = ∅. By Remark 2.2, there exist x ∈ X and
ψ ∈ M(E) such that φ = ψ ◦ δx. Hence there exist neighbourhoods Ux and Uψ
of x and ψ, respectively, such that φ ∈ Ux × Uψ ⊆ Uφ. Since X and M(E) are
compact and Hausdorff, there exist neighbourhoods Vx of x and Vψ of ψ such
that x ∈ Vx ⊆ Vx ⊆ Ux and ψ ∈ Vψ ⊆ Vψ ⊆ Uψ. By Lemma 2.3, `ipα(X)
is hyper-normal and hence there exists f ∈ `ipα(X) such that 0 ≤ f(t) ≤ 1
for all t ∈ X, f |Vx = 0 and f |Uxc = 1. Since E is hyper-normal, there exists

b ∈ E such that ‖b̂‖ ≤ 1, b̂|Vψ = 0 and b̂|Uψc = 1. If we take g := b + fe − fb,

where e is the unit element of E, then clearly g ∈ Lipα(X,E) and ĝ|Vx×Vψ = 0.
To show that ‖ĝ‖ ≤ 1 and ĝ|F = 1 let ϕ ∈ M(Lipα(X,E)). By Remark
2.2 there exist γ ∈ M(E) and t ∈ X such that ϕ = γ ◦ δt. Thus we have
|ĝ(ϕ)| = |ϕ(g)| = |γ(g(t))| = |γ(b) + f(t)− f(t)γ(b)| = |1 + (1− f(t))(γ(b)− 1)|.
If we take ζ := 1 − f(t) and β = γ(b) − 1, then 0 ≤ ζ ≤ 1 and |1 + β| ≤ 1 and
hence |1 + ζβ| ≤ 1. This implies that

|ĝ(ϕ)| = |γ(b) + f(t)− f(t)γ(b)| = |1 + (1− f(t))(γ(b)− 1)| = |1 + ζβ| ≤ 1.

Now let ϕ ∈ F . Since Uφ ∩ F = ∅ there exist only five cases as follows:
Case 1: t ∈ Uxc and γ ∈ U c

ψ. Then f(t) = 1 and γ(b) = 1 and hence ĝ(ϕ) = 1.
Case 2: t ∈ Uxc and γ ∈ Vψ. Then f(t) = 1 and γ(b) = 0 and hence ĝ(ϕ) = 1.
Case 3: t ∈ Uxc and γ ∈ Uψ \ Vψ. Then f(t) = 1 and hence

ĝ(ϕ) = γ(b) + 1− (γ(b) · 1) = 1.

Case 4: t ∈ Vx and γ ∈ Uψc. Then f(t) = 0 and γ(b) = 1 and hence ĝ(ϕ) = 1.
Case 5: t ∈ Ux \ Vx and γ ∈ Uψc. Then γ(b) = 1 and hence

ĝ(ϕ) = 1 + f(t)− (1 · f(t)) = 1.

If Wφ := Vx × Vψ, then for every φ ∈ K, there exist a neighbourhood Wφ in
M(Lipα(X,E)) and a function g ∈ Lipα(X,E) such that ĝ|Wφ

= 0 and ĝ|F = 1.
Since K is compact, there exist g1, · · · , gn ∈ Lipα(X,E) such that K ⊆ ∪ni=1Wφi ,
ĝi|Wφi

= 0 and ĝi|F = 1 for i = 1, · · · , n. If we take h = g1 · · · gn, then h ∈
Lipα(X,E), ‖ĥ‖ ≤ 1, ĥ|K = 0 and ĥ|F = 1. From this we now conclude that
Lipα(X,E) is hyper-normal.

Conversely, let Lipα(X,E) be hyper-normal. Let K and F be compact subsets
of M(E) such that K ∩ F = ∅. For a fixed element x in X, we define K

′
:=
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{ψ ◦ δx : ψ ∈ K} and F
′

:= {φ ◦ δx : φ ∈ F}. It is clear that K
′

and F
′

are
compact subsets of M(Lipα(X,E)) and K

′ ∩ F ′
= ∅. Since Lipα(X,E) is hyper-

normal, there exists f ∈ Lipα(X,E) such that ‖f̂‖ ≤ 1, f̂ |K′ = 1 and f̂ |F ′ = 0.

If b := f(x), then b ∈ E, implying that b̂(ψ) = ψ(f(x)) = f̂(ψ ◦ δx) = 1 for every
ψ ∈ K. Similarly,

b̂(φ) = φ(f(x)) = f̂(φ ◦ δx) = 0,

for every φ ∈ F . Since ‖f̂‖ ≤ 1, we conclude that ‖b̂‖ ≤ 1. Therefore, E is
hyper-normal.

�

By modifying the proof of the theorem above, we also obtain the following
result:

Theorem 2.5. Let X be a compact metric space and E be a commutative unital
Banach algebra. Then Lipα(X,E) is (hyper) regular if and only if E is (hyper)
regular.

Theorem 2.6. Let X be a compact Hausdorff space, E be a commutative unital
Banach algebra and B(X,E) contain the constant functions. Let us suppose that
every character on B(X,E) be of the form ψ ◦ δx for some ψ ∈ M(E) and
x ∈ X, where δx is the evaluation homomorphism on B(X,E). Then B(X,E) is
semisimple if and only if E is semisimple.

Proof. Since every character ϕ on B(X,E) is of the form ψ◦δx for some ψ ∈M(E)
and x ∈ X, we have

rad(B(X,E)) = {f ∈ B(X,E) : ψ(f(x)) = 0, ψ ∈M(E), x ∈ X} .

Let E be semisimple and f ∈ rad(B(X,E)). Then for every character ϕ on
B(X,E), we have ϕ(f) = 0. It follows that (ψ ◦ δx)(f) = ψ(f(x)) = 0 for
all x ∈ X and all ψ ∈ M(E) and hence f = 0. This implies that B(X,E) is
semisimple.

Conversely, let B(X,E) be semisimple and b ∈ rad(E). Let f be the constant
element of B(X,E), defined by f(x) = b for all x ∈ X. Then for every character
ϕ on B(X,E), we have

ϕ(f) = (ψ ◦ δx)(f) = ψ(f(x)) = ψ(b) = 0,

for some ψ ∈M(E) and for some x ∈ X. Therefore, f ∈ rad(B(X,E)) and hence
f = 0. This implies that E is semisimple. �

Remark 2.7. Since every character ϕ on Lipα(X,E) (`ipα(X,E)) is of the form
ψ ◦ δx for some ψ ∈ M(E) and for some x ∈ X (see Remark 2.2), by the theo-
rem above the algebra Lipα(X,E)(`ipα(X,E)) is semisimple if and only if E is
semisimple. These results are also valid for the Banach algebra C(X,E). More-
over, it was shown by Sherbert in [21, Proposition 2.1] that the scalar-valued
Lipschitz algebras Lipα(X) and `ipα(X) are regular Banach function algebras.
Therefore, they are normal and semisimple. See, for example, [9, Theorem 4.4.24].
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3. Separating and Disjointness Preserving Linear Operators

In [16] Jimenez–Vargas proved that every disjointness preserving linear map
between scalar-valued little Lipschitz algebras is a weighted composition operator.
We now extend the results of Jimenez–Vargas as follows:

Theorem 3.1. Let X, Y be compact Hausdorff spaces, E,F be unital commuta-
tive Banach algebras, and B(X,E), B(Y, F ) be hyper-normal semisimple commu-
tative unital Banach algebras.

If T : B(X,E) → B(Y, F ) is a separating linear map, then

(i) there exists a disjoint union M(B(Y, F )) = Yc∪Y0∪Yd, where Y0 is closed
and Yd is open in M(B(Y, F )).

(ii) there exists a continuous map h : Yc∪Yd →M(B(X,E)) such that h(ψ) /∈
supp(f̂) implies T̂ f̂(ψ) = 0 for all f ∈ B(X,E).

(iii) there exists a nonvanishing function k : Yc → C such that T̂ f̂(ψ) =

k(ψ)f̂(h(ψ)) for every f ∈ B(X,E) and for all ψ ∈ Yc.
(iv) T̂ f̂(ψ) = 0 for every f ∈ B(X,E) and for all ψ ∈ Y0.
(v) h(Yd) is a finite set of nonisolated points of M(B(X,E)).

(vi) the functional δψ ◦ T̂ is discontinuous on ̂B(X,E) for each ψ ∈ Yd.

Proof. We divide the set M(B(Y, F )) into three disjoint parts: Its null part

Y0 := {ψ ∈M(B(Y, F )) : δψ ◦ T̂ = 0},

its nonnull continuous part

Yc := {ψ ∈M(B(Y, F )) : δψ ◦ T̂ : ̂B(X,E) → C is continuous and nonzero},
and its discontinuous part

Yd := {ψ ∈M(B(Y, F )) : δψ ◦ T̂ : ̂B(X,E) → C is discontinuous}.
The proof of the theorem is set out, step by step. For steps 2, 3, 5 and 6, we

follow the same method as in the proof of [16, Theorem 2.2] for T̂ , instead of T ,
while presenting a different method for the proof of the other steps. We provide
all the details for the sake of completeness.

Step 1. For each ψ ∈ Yc∪Yd, supp(δψ ◦ T̂ ) 6= ∅ and, in fact, it contains exactly
one point.

Proof. Since B(X,E) and B(Y, F ) are hyper-normal and semisimple commutative
unital Banach algebras, by [11, Lemma 1], for every ψ ∈M(B(Y, F )), there exists

fψ ∈ B(X,E) with T̂ (f̂ψ)(ψ) 6= 0. Hence supp(δψ ◦ T̂ ) contains exactly one point
for every ψ ∈ Yc ∪ Yd. �

The map h : Yc ∪ Yd →M(B(X,E)), defined by h(ψ) = supp(δψ ◦ T̂ ), is called

the support map of T̂ .

Step 2. If ψ ∈ Yc ∪ Yd, f ∈ B(X,E) and h(ψ) /∈ supp(f̂), then T̂ f̂(ψ) = 0.

Proof. If h(ψ) /∈ supp(f̂), then there exists Uh(ψ) such that f̂(φ) = 0 if φ ∈ Uh(ψ).

Since h(ψ) = supp(δψ ◦ T̂ ), there is a function g ∈ B(X,E) such that T̂ ĝ(ψ) 6= 0

and ĝ(φ) = 0 if φ /∈ Uh(ψ), implying that f̂(φ)ĝ(φ) = 0 for all φ ∈ M(B(X,E)).
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Since T is separating, T̂ is also separating. This implies that T̂ f̂(ψ)T̂ ĝ(ψ) = 0

and hence T̂ f̂(ψ) = 0. �

Step 3. The map h : Yc ∪ Yd → M(B(X,E)) is continuous in the weak∗-
topology.

Proof. Let ψ be in Yc∪Yd and {ψγ}γ∈I be a net in Yc∪Yd converging to ψ. Towards
a contradiction, suppose that {h(ψγ)}γ∈I does not converge to h(ψ). Then there
exists a neighbourhood Nh(ψ) and a subnet {h(ψλ)}λ∈J of {h(ψγ)}γ∈I such that
{h(ψλ)} /∈ Nh(ψ) for each λ ∈ J .

By the compactness ofM(B(X,E)) there is a subnet {h(ψβ)}β∈K of {h(ψλ)}λ∈J
which is convergent to an element φ ∈ M(B(X,E)). If φ 6= h(ψ), then there
exist neighbourhoods V,W of h(ψ) and φ, respectively, such that V ∩W = ∅.
Since {h(ψβ)}β∈K converges to φ, there exists β0 ∈ K such that h(ψβ) ∈ W if

β ≥ β0. Since h(ψ) = supp(δψ ◦ T̂ ), there exists a function f ∈ B(X,E) such

that f̂(λ) = 0 for all λ /∈ V and T̂ f̂(ψ) 6= 0. Thus f̂(λ) = 0 for every λ ∈ W .

In particular, h(ψβ) /∈ supp(f̂) and hence T̂ f̂(ψβ) = 0 for all β ≥ β0, by Step

2. Thus T̂ f̂(ψ) = 0, which is a contradiction. Consequently, h(ψβ) →β∈K h(ψ).
Since {h(ψ)}β∈K is a subnet of {h(ψλ)}λ∈J , it follows that h(ψβ) /∈ Nh(ψ) for all
β ∈ K, which is impossible. Therefore, {h(ψγ)}γ∈I converges to h(ψ), implying
that h is continuous. �

Step 4. For ψ ∈ Yc ∪ Yd, let

Mψ :=
{
f̂ ∈ ̂B(X,E) : f̂(h(ψ)) = 0

}
, Jψ :=

{
f̂ ∈ ̂B(X,E) : h(ψ) /∈ supp(f̂)

}
.

Then Jψ is a dense subspace of Mψ.

Proof. Note that Jψ is, in fact, the set all functions in ̂B(X,E) vanishing on a

neighbourhood of h(ψ). Clearly Jψ and Mψ are vector subspaces of ̂B(X,E) and

Jψ ⊆ Mψ. To show that Jψ is dense in Mψ, let ψ ∈ Yc ∪ Yd, f̂ ∈ Mψ and ε > 0.
Define

Γ1 :=
{
φ ∈M(B(X,E)) : |f̂(φ)| ≤ ε

2

}
, Γ2 :=

{
φ ∈M(B(X,E)) : |f̂(φ)| ≥ ε

}
.

Since B(X,E) is hyper-normal, there exists g ∈ B(X,E) such that ‖ĝ‖ ≤ 1,
ĝ|Γ1 = 0 and ĝ|Γ2 = 1. Since the interior of Γ1 is a neighbourhood of h(ψ) and ĝ

is zero on this neighbourhood, it follows that ĝ ∈ Jψ and hence f̂ ĝ ∈ Jψ.
We now consider the following three cases:
Case 1: If φ ∈ Γ1, then |f̂(φ)(1− ĝ(φ))| ≤ ε

2
(1 + ‖ĝ‖) < ε.

Case 2: If φ ∈ Γ2
c \ Γ1, then |f̂(φ)(1− ĝ(φ))| ≤ ε(1 + ‖ĝ‖) < 2ε.

Case 3: If φ ∈ Γ2, then |f̂(φ)(1− ĝ(φ))| = 0.

Therefore, ‖f̂ − f̂ ĝ‖ < 2ε, implying that Jψ is dense in Mψ. �

Step 5. There exists a nonvanishing function k : Yc → C such that

T̂ f̂(ψ) = k(ψ)f̂(h(ψ)),

for all f ∈ B(X,E) and all ψ ∈ Yc.
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Proof. Let ψ ∈ Yc. Since δψ ◦ T̂ is a nonzero continuous linear functional on
̂B(X,E), it follows that ker(δψ ◦ T̂ ) is a proper closed subspace of ̂B(X,E) and

moreover, Jψ ⊂ ker(δψ ◦ T̂ ) by Step 2. Therefore, kerδh(ψ) = Mψ ⊂ ker(δψ ◦ T̂ )

by Step 4. Hence there exists a nonzero scalar k(ψ) such that δψ ◦ T̂ = k(ψ)δh(ψ),

implying that T̂ f̂(ψ) = k(ψ)f̂(h(ψ)) for all f ∈ B(X,E). �

Step 6. The set Y0 is closed inM(B(Y, F )) and the set Yd is open inM(B(Y, F )).

Proof. Since Y0 = ∩f∈B(X,E)ker(T̂ f̂), it follows that Y0 is closed in M(B(Y, F )).

To show that Yd is open in M(B(Y, F )), let {ψγ}γ∈I be a net in M(B(Y, F ))\Yd,
which converges to a point ψ ∈ M(B(Y, F )). By Step 5, there exists a nonvan-
ishing bounded function k : Yc → C such that

|T̂ f̂(ψγ)| ≤ sup{|T̂ f̂(ψ)| : ψ ∈ Y0 ∪ Yc} ≤ sup{|T̂ f̂(ψ)| : ψ ∈ Yc}
≤ sup{|k(ψ)f̂(h(ψ))| : ψ ∈ Yc} ≤ ‖k‖‖f̂‖,

for all f ∈ B(X,E) and γ ∈ I, where ‖k‖ is the supremum norm of k. However,
for the boundedness of k we may take f = 1E, the unit element of B(X,E), in

T̂ f̂(ψ) = k(ψ)f̂(h(ψ)) and conclude that k is bounded. By the continuity of T̂ f̂ on

M(B(Y, F )), we have |T̂ f̂(ψ)| ≤ ‖k‖‖f̂‖, that is, |δψ ◦ T̂ (f̂)| ≤ ‖k‖‖f̂‖. Thus the

linear functional δψ ◦ T̂ is continuous on ̂B(X,E) and hence ψ ∈M(B(Y, F ))\Yd.
This shows that M(B(Y, F ))\Yd is closed and hence Yd is open in M(B(Y, F )).

�

Step 7. h(Yd) is a finite set of nonisolated points of M(B(X,E)).

Proof. For the finiteness of h(Yd), let (h(ψn))n∈N be a sequence of distinct elements
of M(B(X,E)) such that ψn ∈ Yd for all n ∈ N. Moreover, suppose that there
exist sequences (Vn)n∈N and (Un)n∈N of pairwise disjoint neighbourhoods of h(ψn)
such that Un ⊆ Un ⊆ Vn for all n ∈ N. Since B(X,E) is hyper-normal, for each
n, there exists gn ∈ B(X,E) such that ĝn = 1 on Un and supp(ĝn) ⊆ Vn. On the

other hand, since the linear functional δψn ◦ T̂ is discontinuous on ̂B(X,E), there

exists a function hn ∈ B(X,E) with ‖hn‖ ≤ 1 such that |T̂ ĥn(ψn)| ≥ n3‖gn‖
for all n ∈ N. If fn := gnhn

n2‖gn‖ for n ∈ N, then f̂n − ĥn
n2‖gn‖ = 0 on Un, implying

that h(ψn) /∈ supp(f̂n− ĥn
n2‖gn‖). Hence |T̂ f̂n(ψn)| = 1

n2‖gn‖ |T̂ ĥn(ψn)| by Step 2, so

that |T̂ f̂n(ψn)| ≥ n. Since B(X,E) is complete and ‖fn‖ < 1
n2 for all n ∈ N, we

can define the function f =
∑∞

n=1 fn ∈ B(X,E). From the fact that the Gelfand

transform is a linear continuous mapping, we deduce f̂ =
∑∞

n=1 f̂n. Since the

sequence (Vn)n∈N is pairwise disjoint and coz(f̂n) ⊆ Vn for all n ∈ N, it follows

that h(ψm) /∈ supp(f̂n) for all n 6= m.

We now show that h(ψm) /∈ supp(
∑∞

n=1,n6=m f̂n). If h(ψm) ∈ supp(
∑∞

n=1,n6=m f̂n)
then

h(ψm) ∈ coz(
∞∑

n=1,n6=m

f̂n) ⊆ ∪∞n=1,n6=mcoz(f̂n).
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Since Vm is an open neighbourhood of h(ψm), there exists an element ϕm ∈
∪∞n=1,n6=mcoz(f̂n) such that ϕm ∈ Vm. On the other hand, there exists n 6= m such

that ϕm ∈ coz(f̂n) ⊆ Vn, which is a contradiction, since Vn ∩ Vm = ∅.
By Step 2 we conclude that δψm ◦ T̂ (

∑∞
n=1,n6=m f̂n) = 0. Since

f̂ = f̂m +
∞∑

n=1,n6=m

f̂n,

it follows that δψm ◦ T̂ (f̂) = δψm ◦ T̂ (f̂m). Therefore,

|T̂ f̂(ψm)| = |T̂ f̂m(ψm)| ≥ m,

for all m ∈ N, which is a contradiction, since T̂ f̂ ∈ B̂(Y, F ) is bounded. This
proves that h(Yd) is finite.

We now show that each point of h(Yd) is a nonisolated point of M(B(X,E)).
Let h(ψ) be an isolated point of M(B(X,E)) for some ψ ∈ Yd. Then there exists

a neighbourhood Uh(ψ) such that Uh(ψ) = {h(ψ)}. If f̂(h(ψ)) = 0, then h(ψ) /∈
supp(f̂) and hence T̂ f̂(ψ) = 0, by Step 2. In other words, ker(δh(ψ)) ⊆ ker(δψ◦T̂ )

and therefore, δψ ◦ T̂ = βψδh(ψ) for some nonzero scalar βψ. Consequently, the

nonzero linear functional δψ ◦ T̂ is continuous on ̂B(X,E) and hence ψ ∈ Yc,
which is a contradiction. �

The proof of the theorem is now complete. �

Note that the method of Jimenez–Vargas in [16] is only valid for the Lipschitz
algebras, whereas by our method, the same results are valid for more general
classes of vector-valued Banach algebras. We are now ready to prove that, under
the same conditions as in the theorem above, every separating linear bijection
between certain Banach algebras of vector-valued functions is biseparating. This
is the most important part of the following theorem:

Theorem 3.2. Let X, Y be compact Hausdorff spaces, E,F be unital commuta-
tive Banach algebras and B(X,E), B(Y, F ) be hyper-normal semisimple commu-
tative unital Banach algebras. Let T be a separating linear bijection from B(X,E)

onto B(Y, F ). Then T̂ is a weighted composition operator in the form T̂ f̂(ψ) =

k(ψ)f̂(h(ψ)) for all f ∈ B(X,E) and for all ψ ∈M(B(Y, F )), where k ∈ B̂(Y, F )
is a nonvanishing function and h is a homeomorphism from M(B(Y, F )) onto
M(B(X,E)). In particular, T is biseparating.

Proof. We adopt the same notations as in the previous theorem and divide the
proof into several parts.

Part 1. Y0 = ∅ and Yc is compact.

Proof. Let ψ ∈ Y0. Then δψ ◦ T̂ = 0 and δψ(T̂ f̂) = 0 for every f ∈ B(X,E).

Since T is surjective, T̂ is also surjective and hence for every g ∈ B, there exists

f ∈ B(X,E) such that ĝ = T̂ f̂ . Thus δψ(ĝ) = ψ(g) = 0 for all g ∈ B and hence
ψ = 0, which is impossible. Therefore, Y0 = ∅.
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Since by Theorem 3.1, the set Yd is open in M(B(Y, F )), it follows that Yc =
M(B(Y, F ))\Yd is closed and hence it is compact in M(B). �

Part 2. The set h(Yc) is dense in M(B(X,E)).

Proof. We first prove that h(Yc ∪ Yd) is dense in M(B(X,E)). Suppose, on the
contrary, that there exists a point φ ∈M(B(X,E)) such that Vφ∩h(Yc∪Yd) = ∅,
where Vφ is a neighbourhood of φ. Let Uφ be a neighbourhood of φ such that

Uφ ⊆ Uφ ⊆ Vφ and hφ be a nonzero function in B(X,E) such that supp(ĥφ) ⊆ Uφ.

Hence h(ψ) /∈ supp(ĥφ) for all ψ ∈ Yc ∪ Yd, implying that T̂ ĥφ(ψ) = 0 for all

ψ ∈ Yc ∪ Yd, by Theorem 3.1. Since Y0 is empty, T̂ ĥφ = 0. By the linearity and

injectivity of T̂ , it follows that ĥφ = 0. Since B(X,E) is semisimple, hφ = 0,
which is impossible.

We now show that h(Yc ∪ Yd) = h(Yc). It suffices to prove that h(Yd) ⊆ h(Yc).
Let φ ∈ h(Yd) and there exist a neighbourhood Uφ of φ such that Uφ ∩ h(Yc) = ∅.
Since h(Yd) is finite, there exists a neighbourhood Vφ of φ such that

Vφ\{φ} ∩ h(Yc ∪ Yd) = ∅.

Since by Theorem 3.1, φ is a nonisolated point of M(B(X,E)), there is a point
ψ in Vφ\{φ}. Let Vψ be a neighbourhood of ψ such that Vψ ⊆ Vφ\{φ}. Then
Vψ ∩h(Yc∪Yd) = ∅ and this contradicts the density of h(Yc∪Yd) in M(B(X,E)).

Hence h(Yc ∪ Yd) = h(Yc). �

Part 3. Yd is empty.

Proof. Let φ ∈ Yd. Since Yc is closed, there exists a neighbourhood Vφ such
that Vφ ∩ Yc = ∅. By the normality of B(X,E), there exists a function hφ in

B(Y, F ) such that ĥφ(φ) = 1 and coz(ĥφ) ⊆ Vφ. By the surjectivity of T̂ , there

exists some f in B(X,E) such that T̂ f̂ = ĥφ. Then T̂ f̂(ψ) = ĥφ(ψ) = 0 for

all ψ ∈ Yc. By Theorem 3.1, T̂ f̂(ψ) = k(ψ)f̂(h(ψ)) for all ψ ∈ Yc. Since T is

surjective, k(ψ) 6= 0 for all ψ ∈ Yc. Hence f̂(λ) = 0 for all λ ∈ M(B(X,E)),

since h(Yc) = M(B(X,E)) by Part 2. Therefore, f̂ = 0 and T̂ f̂ = 0, but

T̂ f̂(φ) = ĥφ(φ) = 1, which is a contradiction. �

Part 4. M(B(Y, F )) = Yc and T̂ f̂(ψ) = k(ψ)f̂(h(ψ)) for all f ∈ B(X,E) and
ψ ∈M(B(Y, F )).

Proof. By Parts 1 and 3, Y0 = Yd = ∅. Hence M(B(Y, F )) = Yc and the result
follows from Theorem 3.1. �

Part 5. T−1 is separating and hence T is biseparating.

Proof. Let g1, g2 ∈ B(Y, F ) such that ĝ1ĝ2 = 0. Then there exist f1, f2 ∈ B(X,E)

such that ĝ1 = T̂ f̂1 = k(f̂1◦h), ĝ2 = T̂ f̂2 = k(f̂2◦h) and hence k2(f̂1◦h)(f̂2◦h) = 0.

Since k(ψ) 6= 0 for every ψ ∈M(B(Y, F )), we have (f̂1f̂2) ◦ h = 0. By Parts 2, 4

and the density of h(M(B(Y, F ))) in M(B(X,E)), it follows that f̂1f̂2 = 0 and

hence T̂−1 is separating. Since B(X,E) and B(Y, F ) are semisimple commutative
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Banach algebras, T−1 : B(Y, F ) → B(X,E) is separating if and only if T̂−1 :

B̂(Y, F ) → ̂B(X,E) is separating. Consequently, T−1 is separating. �

Part 6. The map h is a homeomorphism from M(B(Y, F )) onto M(B(X,E)).

Proof. For the injectivity of h : M(B(Y, F )) →M(B(X,E)), let φ, ψ be elements
of M(B(Y, F )) with φ 6= ψ and h(φ) = h(ψ). Let Uψ be a neighbourhood of ψ

such that φ /∈ Uψ. Consider hψ ∈ B(Y, F ) such that ĥψ(ψ) = 1 and coz(ĥψ) ⊆ Uψ.

Since hψ ∈ B(Y, F ) and T̂ is surjective, T̂ f̂ = ĥψ for some f ∈ B(X,E). By Part
4 we have

ĥψ(λ) = T̂ f̂(λ) = k(λ)f̂(h(λ)) (λ ∈M(B(Y, F ))).

In particular, 1 = ĥψ(ψ) = k(ψ)f̂(h(ψ)) and 0 = ĥψ(φ) = k(φ)f̂(h(φ)). Hence

f̂(h(ψ)) = 1/k(ψ) and f̂(h(φ)) = 0. Since h(ψ) = h(φ), we get a contradiction.

On the other hand, by Parts 2 and 4, h(M(B(Y, F ))) = M(B(X,E)) and hence
h is continuous by Theorem 3.1. Since M(B(Y, F )) is compact, it follows that
h(M(B(Y, F ))) = M(B(X,E)). Therefore, h : M(B(Y, F )) → M(B(X,E)) is
surjective. �

The proof of the theorem is now complete. �

We should mention here that the proof of the theorem above follows closely
[16, Theorem 3.1], except for the continuity of T . One may also compare this
theorem with [13, Theorem 2.3].

Remark 3.3. By applying the results of Section 2, we conclude that if E and
F are semisimple hyper-normal unital commutative Banach algebras, then the
Lipschitz algebras Lipα(X,E) and `ipα(X,E) possess the same properties. Hence
in this case big and little Lipschitz algebras are interesting examples satisfying
the hypotheses of Theorems 3.1 and 3.2.

In [10] Esmaeili and Mahyar characterized disjointness preserving bounded lin-
ear operators between spaces of vector-valued little Lipschitz functions on com-
pact metric spaces. In fact, they have shown that every disjointness preserving
bounded linear operator between spaces of vector-valued little Lipschitz functions
is a weighted composition operator.

In the following, disjointness preserving linear operators between big and lit-
tle vector-valued Lipschitz algebras are characterized, without the boundedness
condition.

Theorem 3.4. [17, Theorems 3.1 and 4.1] Let X, Y be compact metric spaces
and E,F be Banach algebras. Let T be a bijection from Lipα(X,E) (`ipα(X,E))
onto Lipα(Y, F ) (`ipα(Y, F )) such that both T and T−1 are disjointness preserving
maps. Then T is a weighted composition operator in the form

Tf(y) = h(y)(f(φ(y))), (y ∈ Y, f ∈ Lipα(X,E)(`ipα(X,E))),

where φ is a homeomorphism from Y onto X and h(y) is an invertible linear
map from E onto F for each y ∈ Y. Moreover, T is bounded if and only if h(y)
is bounded for all y ∈ Y.
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Corollary 3.5. Let X, Y be compact metric spaces and E,F be Banach algebras.
If T is a bijection from Lipα(X,E) (`ipα(X,E)) onto Lipα(Y, F ) (`ipα(Y, F )),
such that both T and T−1 are disjointness preserving, then X is homeomorphic
to Y. In particular, if T is multiplicative then M(E) is homeomorphic to M(F ).

Proof. By Theorem 3.4, X is homeomorphic to Y . In the case that T is multiplica-
tive we actually show that M(E) is homeomorphic to M(F ). For this purpose,
let y0 be a fixed element of Y and define λ : M(F ) →M(E) by λ(ψ) = ψ ◦h(y0).
We first show that λ is well-defined.

By Theorem 3.4, T is a weighted composition operator in the form

Tf(y0) = h(y0)(f(φ(y0))), (f ∈ Lipα(X,E)(`ipα(X,E))),

where φ is a homeomorphism from Y onto X and h(y) is an invertible linear
map from E onto F for each y ∈ Y . First we show that h(y0) is, in fact,
a homomorphism. To this end, let a, b ∈ E and take the constants functions
f = a, g = b in Lipα(X,E). Since T is multiplicative, we have

h(y0)(ab) = h(y0)(f(φ(y0))g(φ(y0))) = h(y0)(fg(φ(y0))) = Tfg(y0)
= Tf(y0)Tg(y0) = h(y0)(f(φ(y0)))h(y0)(g(φ(y0)))
= h(y0)(a)h(y0)(b).

Therefore, h(y0) is a homomorphism and since h(y0) is a linear map, it follows
that ψ ◦h(y0) is a homomorphism for all ψ ∈M(F ). Since ψ is a character, there
exists b ∈ F such that ψ(b) 6= 0 and since h(y0) is onto, we have h(y0)(a) = b,
for some a ∈ E. Therefore, ψ ◦ h(y0)(a) 6= 0 and hence ψ ◦ h(y0) ∈M(E), which
implies that λ is well defined.

For the injectivity of λ, let λ(ψ1) = λ(ψ2). Then ψ1◦h(y0) = ψ2◦h(y0) and hence
for every a ∈ E,ψ1(h(y0)(a)) = ψ2(h(y0)(a)). Thus for every b ∈ F, ψ1(b) = ψ2(b),
since h(y0) is onto. Therefore, ψ1 = ψ2. For the surjectivity of λ, let ϕ ∈ M(E)
and note that ϕ ◦ h(y0)

−1 ∈M(F ). Then

λ(ϕ ◦ h(y0)
−1) = ϕ ◦ h(y0)

−1 ◦ h(y0) = ϕ.

Hence λ is onto and moreover, since M(E) and M(F ) are compact Hausdorff
spaces, λ−1 is continuous. Therefore, λ is a homeomorphism and hence M(E) is
homeomorphic to M(F ). �
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