

Banach J. Math. Anal. 8 (2014), no. 2, 93–106

${f B}$ anach ${f J}$ ournal of ${f M}$ athematical ${f A}$ nalysis

ISSN: 1735-8787 (electronic)

www.emis.de/journals/BJMA/

DISJOINTNESS PRESERVING LINEAR OPERATORS BETWEEN BANACH ALGEBRAS OF VECTOR-VALUED FUNCTIONS

TAHER GHASEMI HONARY*, AZADEH NIKOU AND AMIR HOSSEIN SANATPOUR

Communicated by K. Jarosz

ABSTRACT. We present vector-valued versions of two theorems due to A. Jimenez–Vargas, by showing that, if B(X,E) and B(Y,F) are certain vector-valued Banach algebras of continuous functions and $T:B(X,E)\to B(Y,F)$ is a separating linear operator, then $\widehat{T}:B(\widehat{X},E)\to B(\widehat{Y},F)$, defined by $\widehat{T}\widehat{f}=\widehat{Tf}$, is a weighted composition operator, where \widehat{Tf} is the Gelfand transform of Tf.

Furthermore, it is shown that, under some conditions, every bijective separating map $T: B(X,E) \to B(Y,F)$ is biseparating and induces a homeomorphism between the character spaces M(B(X,E)) and M(B(Y,F)). In particular, a complete description of all biseparating, or disjointness preserving linear operators between certain vector-valued Lipschitz algebras is provided. In fact, under certain conditions, if the bijections $T: Lip^{\alpha}(X,E) \to Lip^{\alpha}(Y,F)$ and T^{-1} are both disjointness preserving, then T is a weighted composition operator in the form $Tf(y) = h(y)(f(\phi(y)))$, where ϕ is a homeomorphism from Y onto X and h is a map from Y into the set of all linear bijections from E onto F. Moreover, if T is multiplicative then M(E) and M(F) are homeomorphic.

1. Introduction and preliminaries

Let X be a compact Hausdorff space, $(E, \|\cdot\|)$ be a Banach algebra over the scalar field of complex numbers \mathbb{C} and C(X, E) be the space of all continuous

Date: Received: Jun. 5, 2012; Accepted: Sep. 28, 2013.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B38; Secondary 47B33, 47B48, 46J10.

Key words and phrases. Vector-valued Banach algebra, vector-valued Lipschitz algebra, maximal ideal space, disjointness preserving, separating, biseparating.

maps from X into E. We define the uniform norm on C(X, E) by

$$||f||_X = \sup_{x \in X} ||f(x)||, \quad f \in C(X, E).$$

For $f,g \in C(X,E)$ and $\lambda \in \mathbb{C}$, the pointwise operations λf , f+g and fg in C(X,E) are defined as usual. It is easy to see that $(C(X,E),\|\cdot\|_X)$ is a Banach algebra. If $E=\mathbb{C}$ we get the ordinary function algebra $C(X,\mathbb{C})=C(X)$ of all continuous complex-valued functions on X.

Definition 1.1. Let $(A, \|\cdot\|)$ be a Banach algebra and the character space M(A) denote the set of all characters (nonzero complex-valued multiplicative linear functionals) on A.

- (i) The Gelfand transform of $f \in A$ is the complex-valued function \hat{f} defined by $\hat{f}(\varphi) = \varphi(f)$ on M(A). Moreover, $\hat{A} = \{\hat{f} : f \in A\}$.
- (ii) A is regular if $M(A) \neq \emptyset$ and for every closed subset $F \subseteq M(A)$ and every $\varphi \in M(A) \backslash F$, there exists $f \in A$ such that $\hat{f}(\varphi) = 1$ and $\hat{f}(F) \subseteq \{0\}$. If in addition, this f satisfies $||\hat{f}|| \leq 1$, then A is called hyper-regular.
- (iii) A is normal if $M(A) \neq \emptyset$ and for every closed subset $F \subseteq M(A)$ and every compact subset $K \subseteq M(A)$ with $F \cap K = \emptyset$, there exists $f \in A$ such that $\hat{f}(K) \subseteq \{1\}$ and $\hat{f}(F) \subseteq \{0\}$. If in addition, this f satisfies $||\hat{f}|| \leq 1$, then A is called hyper-normal.
- Remark 1.2. (i) A commutative Banach algebra is regular if and only if it is normal. See, for example, [18, Corollary 4.2.9] or [9, Proposition 4.1.18].
- (ii) If A is a regular commutative Banach algebra such that \hat{A} is closed under complex conjugation, then A is hyper-regular [18, Corollary 4.2.10].
- (iii) Every commutative $C^* algebra$ is regular and hence normal. See, for example, [18, Example 4.2.2]. Moreover, by (ii) every commutative $C^* algebra$ is hyper-regular.

Let X be a compact Hausdorff space and E be a unital commutative Banach algebra. In the sequel, by B(X,E) we mean a Banach algebra which is contained in C(X,E). It is clear that if B(X,E) contains the constant functions, then it is commutative if and only if E is commutative. We also recall that the cozero set of $f: X \to E$ is $coz(f) = \{x \in X : f(x) \neq 0\}$, and supp(f), the support of f, is the closure of coz(f) in X.

Definition 1.3. For compact Hausdorff spaces X and Y, and Banach algebras $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$, a linear map $T: B(X, E) \to B(Y, F)$ is called disjointness preserving if for every $f, g \in B(X, E)$ the equality $coz(f) \cap coz(g) = \emptyset$ implies the equality $coz(Tf) \cap coz(Tg) = \emptyset$.

Remark 1.4. It is easy to check that a linear map $T: B(X, E) \to B(Y, F)$ is disjointness preserving if and only if for every $f, g \in B(X, E)$ the equality ||f(x)|| ||g(x)|| = 0 for all $x \in X$ implies the equality ||Tf(y)|| ||Tg(y)|| = 0 for all $y \in Y$. If T has this latter property it is called a separating map by some authors. See, for example, [13], [17] and [10]. But in this paper, we use separating maps in the following sense. See, for example, [11] and [12].

Definition 1.5. If A and B are Banach algebras, a linear map $T: A \to B$ is called separating if for every $f, g \in A$, the equality fg = 0 implies the equality TfTg = 0. Moreover, T is called *biseparating* if it is bijective and both T and T^{-1} are separating.

Definition 1.6. Let A and B be Banach algebras and let $T: A \to B$ be a linear map. The map $\widehat{T}: \widehat{A} \to \widehat{B}$ is defined by $\widehat{T}\widehat{f} = \widehat{Tf}$ for every $f \in A$.

If A and B are semisimple commutative Banach algebras, it is easy to check that the map $T: A \to B$ is separating if and only if \widehat{T} is separating and, moreover, T is injective (surjective) if and only if \widehat{T} is injective (surjective).

Order bounded disjointness preserving maps are also known as Lamperti operators [4].

The notion of disjointness preserving or separating operators seems to be used first in the 40's [22, 23]. Since then many mathematicians have developed this concept. For example, Abramovich made some contributions in the context of Banach lattices and vector lattices in [1, 2]. Separating linear maps for scalar-valued continuous functions, as well as the notion of automatic continuity, were studied in [5, 6, 7] and for scalar-valued Lipschitz algebras in [16]. Moreover, these maps have been studied in [13] for the algebra of continuous vector-valued functions, as well as the vector-valued Lipschitz algebras. Jarosz has also interesting results on the automatic continuity of separating linear isomorphisms in [15]. Disjointness preserving operators between certain Banach algebras of continuous functions have been studied in [3, 12]. One can also find interesting results on norm-preserving maps between Banach function algebras in [14]. Recently, as examples of weighted composition operators, disjointness preserving maps between vector-valued Lipschitz function spaces have been studied in [10].

In [16] Jimenez–Vargas has shown that for compact metric spaces X and Y, every disjointness preserving operator $T: \ell ip^{\alpha}(X) \to \ell ip^{\alpha}(Y)$ is essentially a weighted composition operator. He also proved that every bijective disjointness preserving operator $T: \ell ip^{\alpha}(X) \to \ell ip^{\alpha}(Y)$ is automatically continuous and it is, in fact, biseparating.

One of the aims of this paper is to extend the results of Jimenez–Vargas in [16] to Banach algebras of vector-valued continuous functions which are hypernormal, semisimple, commutative and unital. First we require some definitions and notations.

Let A be a unital commutative Banach algebra. The radical of the algebra A is defined to be the intersection of all maximal ideals of A and it is denoted by rad(A). The algebra A is semisimple if $rad(A) = \{0\}$.

By using a method similar to Jimenez-Vargas in [16, Theorem 2.2], we show that if B(X, E) and B(Y, F) are hyper-normal, semisimple, commutative and unital, and $T: B(X, E) \to B(Y, F)$ is a disjointness preserving linear map, then \widehat{T} is a weighted composition operator. Furthermore, with the same conditions, we show that every bijective separating map $T: B(X, E) \to B(Y, F)$ is biseparating and induces a homeomorphism between the character spaces M(B(X, E)) and M(B(Y, F)). Then by applying the same method as in [13, Theorem 2.3], we conclude that certain disjointness preserving linear maps $T: Lip^{\alpha}(X, E) \to B(Y, F)$

 $Lip^{\alpha}(Y,F)$ or $T: \ell ip^{\alpha}(X,E) \to \ell ip^{\alpha}(Y,F)$ are weighted composition operators, and moreover, they induce a homeomorphism between X and Y.

Weighted composition operators between certain classes of weighted Frechet spaces and on some spaces of analytic functions, have been studied in [19].

2. Hyper-normality of vector-valued Lipschitz algebras

In this section we show that, for a compact metric space X and a commutative unital Banach algebra E, $Lip^{\alpha}(X, E)$ ($\ell ip^{\alpha}(X, E)$) is hyper-normal, or (hyper) regular if and only if E is hyper-normal, or (hyper) regular, respectively. We also show that E-valued Lipschitz algebras are semisimple if and only if E is semisimple.

Definition 2.1. Let (X, d) be a compact metric space and E be a unital commutative Banach algebra. For a constant α $(0 < \alpha \le 1)$ and a function $f: X \to E$, the Lipschitz constant of f is defined by

$$p_{\alpha}(f) := \sup_{\substack{x,y \in X \\ x \neq y}} \frac{\|f(x) - f(y)\|}{d(x,y)^{\alpha}},$$

and the vector-valued big Lipschitz algebra (of order α), or simply, the vector-valued Lipschitz algebra is defined by

$$Lip^{\alpha}(X, E) = \{f : X \to E : p_{\alpha}(f) < \infty\}.$$

Similarly, for α (0 < α < 1) the vector-valued little Lipschitz algebra (of order α) is defined by

$$\ell ip^{\alpha}(X,E) = \left\{ f \in Lip^{\alpha}(X,E) : \frac{\|f(x) - f(y)\|}{d(x,y)^{\alpha}} \to 0 \quad as \quad d(x,y) \to 0 \right\}.$$

For each $f \in Lip^{\alpha}(X, E)$ we define the norm by

$$||f||_{\alpha} = ||f||_{X} + p_{\alpha}(f).$$

If $E = \mathbb{C}$ we get the ordinary complex-valued Lipschitz algebras $Lip^{\alpha}(X)$ and $\ell ip^{\alpha}(X)$. In [8] it has been shown that $(Lip^{\alpha}(X, E), \|\cdot\|_{\alpha})$ is complete and it is, in fact, a Banach subalgebra of C(X, E), and moreover, $\ell ip^{\alpha}(X, E)$ is a closed subalgebra of $(Lip^{\alpha}(X, E), \|\cdot\|_{\alpha})$.

Remark 2.2. For a compact metric space X and a unital commutative Banach algebra E, we can deduce from [20, Examples 2.1(ii)] and [20, Corollary 2.2], that the maximal ideal space of $Lip^{\alpha}(X, E)$ is homeomorphic to the cartesian product $X \times M(E)$ in the product topology, that is,

$$M(Lip^{\alpha}(X, E)) \cong X \times M(E).$$

Moreover, every character ϕ on $Lip^{\alpha}(X, E)$ is of the form $\varphi \circ \delta_x$ for some $\varphi \in M(E)$ and for some $x \in X$ [20].

We now bring an elementary result for scalar-valued Lipschitz algebras and then extend it to the vector-valued case.

Lemma 2.3. If X is a compact metric space then $Lip^{\alpha}(X)$ for $0 < \alpha \le 1$ and $\ell ip^{\alpha}(X)$ for $0 < \alpha < 1$ are both hyper-normal.

Proof. Since $Lip^1(X)$ is contained in $\ell ip^{\alpha}(X)$ for all $0 < \alpha < 1$, it is enough to show that for any pair of disjoint compact sets C and K the function

$$f(x) = \frac{d(x,C)}{d(x,C) + d(x,K)}$$

is an element of $Lip^1(X)$, which is easy to see.

Theorem 2.4. Let X be a compact metric space and E be a commutative unital Banach algebra. Then $Lip^{\alpha}(X, E)$ is hyper-normal if and only if E is hypernormal.

Proof. We first suppose that E is hyper-normal. Let K and F be compact subsets of $M(Lip^{\alpha}(X,E))$ such that $K \cap F = \emptyset$. For every $\phi \in K$, there exists a neighbourhood U_{ϕ} such that $U_{\phi} \cap F = \emptyset$. By Remark 2.2, there exist $x \in X$ and $\psi \in M(E)$ such that $\phi = \psi \circ \delta_x$. Hence there exist neighbourhoods U_x and U_{ψ} of x and ψ , respectively, such that $\phi \in U_x \times U_\psi \subseteq U_\phi$. Since X and M(E) are compact and Hausdorff, there exist neighbourhoods V_x of x and V_{ψ} of ψ such that $x \in V_x \subseteq \overline{V_x} \subseteq U_x$ and $\psi \in V_\psi \subseteq \overline{V_\psi} \subseteq U_\psi$. By Lemma 2.3, $\ell ip^{\alpha}(X)$ is hyper-normal and hence there exists $f \in \ell ip^{\alpha}(X)$ such that $0 \leq f(t) \leq 1$ for all $t \in X$, $f|_{\overline{V_x}} = 0$ and $f|_{U_x{}^c} = 1$. Since E is hyper-normal, there exists $b \in E \text{ such that } \|\hat{b}\| \leq 1, \hat{b}|_{V_{b}} = 0 \text{ and } \hat{b}|_{U_{\psi}^{c}} = 1. \text{ If we take } g := b + fe - fb,$ where e is the unit element of E, then clearly $g \in Lip^{\alpha}(X, E)$ and $\hat{g}|_{V_x \times V_{\psi}} = 0$. To show that $\|\hat{g}\| \leq 1$ and $\hat{g}|_F = 1$ let $\varphi \in M(Lip^{\alpha}(X, E))$. By Remark 2.2 there exist $\gamma \in M(E)$ and $t \in X$ such that $\varphi = \gamma \circ \delta_t$. Thus we have $|\hat{g}(\varphi)| = |\varphi(g)| = |\gamma(g(t))| = |\gamma(b) + f(t) - f(t)\gamma(b)| = |1 + (1 - f(t))(\gamma(b) - 1)|.$ If we take $\zeta := 1 - f(t)$ and $\beta = \gamma(b) - 1$, then $0 \le \zeta \le 1$ and $|1 + \beta| \le 1$ and hence $|1 + \zeta \beta| \le 1$. This implies that

$$|\hat{g}(\varphi)| = |\gamma(b) + f(t) - f(t)\gamma(b)| = |1 + (1 - f(t))(\gamma(b) - 1)| = |1 + \zeta\beta| \le 1.$$

Now let $\varphi \in F$. Since $U_{\phi} \cap F = \emptyset$ there exist only five cases as follows:

Case 1: $t \in U_x^c$ and $\gamma \in U_\psi^c$. Then f(t) = 1 and $\gamma(b) = 1$ and hence $\hat{g}(\varphi) = 1$.

Case 2: $t \in U_x^c$ and $\gamma \in V_{\psi}$. Then f(t) = 1 and $\gamma(b) = 0$ and hence $\hat{g}(\varphi) = 1$.

Case 3: $t \in U_x^c$ and $\gamma \in U_\psi \setminus V_\psi$. Then f(t) = 1 and hence

$$\hat{g}(\varphi) = \gamma(b) + 1 - (\gamma(b) \cdot 1) = 1.$$

Case 4: $t \in V_x$ and $\gamma \in U_{\psi}^c$. Then f(t) = 0 and $\gamma(b) = 1$ and hence $\hat{g}(\varphi) = 1$. Case 5: $t \in U_x \setminus V_x$ and $\gamma \in U_{\psi}^c$. Then $\gamma(b) = 1$ and hence

$$\hat{g}(\varphi) = 1 + f(t) - (1 \cdot f(t)) = 1.$$

If $W_{\phi} := V_x \times V_{\psi}$, then for every $\phi \in K$, there exist a neighbourhood W_{ϕ} in $M(Lip^{\alpha}(X, E))$ and a function $g \in Lip^{\alpha}(X, E)$ such that $\hat{g}|_{W_{\phi}} = 0$ and $\hat{g}|_{F} = 1$. Since K is compact, there exist $g_1, \dots, g_n \in Lip^{\alpha}(X, E)$ such that $K \subseteq \bigcup_{i=1}^n W_{\phi_i}$, $\hat{g}_i|_{W_{\phi_i}} = 0$ and $\hat{g}_i|_{F} = 1$ for $i = 1, \dots, n$. If we take $h = g_1 \dots g_n$, then $h \in Lip^{\alpha}(X, E)$, $\|\hat{h}\| \leq 1$, $\hat{h}|_{K} = 0$ and $\hat{h}|_{F} = 1$. From this we now conclude that $Lip^{\alpha}(X, E)$ is hyper-normal.

Conversely, let $Lip^{\alpha}(X, E)$ be hyper-normal. Let K and F be compact subsets of M(E) such that $K \cap F = \emptyset$. For a fixed element x in X, we define $K' := \emptyset$

 $\{\psi \circ \delta_x : \psi \in K\}$ and $F' := \{\phi \circ \delta_x : \phi \in F\}$. It is clear that K' and F' are compact subsets of $M(Lip^{\alpha}(X, E))$ and $K' \cap F' = \emptyset$. Since $Lip^{\alpha}(X, E)$ is hypernormal, there exists $f \in Lip^{\alpha}(X, E)$ such that $\|\hat{f}\| \leq 1$, $\hat{f}|_{K'} = 1$ and $\hat{f}|_{F'} = 0$. If b := f(x), then $b \in E$, implying that $\hat{b}(\psi) = \psi(f(x)) = \hat{f}(\psi \circ \delta_x) = 1$ for every $\psi \in K$. Similarly,

$$\hat{b}(\phi) = \phi(f(x)) = \hat{f}(\phi \circ \delta_x) = 0,$$

for every $\phi \in F$. Since $\|\hat{f}\| \le 1$, we conclude that $\|\hat{b}\| \le 1$. Therefore, E is hyper-normal.

By modifying the proof of the theorem above, we also obtain the following result:

Theorem 2.5. Let X be a compact metric space and E be a commutative unital Banach algebra. Then $Lip^{\alpha}(X, E)$ is (hyper) regular if and only if E is (hyper) regular.

Theorem 2.6. Let X be a compact Hausdorff space, E be a commutative unital Banach algebra and B(X, E) contain the constant functions. Let us suppose that every character on B(X, E) be of the form $\psi \circ \delta_x$ for some $\psi \in M(E)$ and $x \in X$, where δ_x is the evaluation homomorphism on B(X, E). Then B(X, E) is semisimple if and only if E is semisimple.

Proof. Since every character φ on B(X, E) is of the form $\psi \circ \delta_x$ for some $\psi \in M(E)$ and $x \in X$, we have

$$rad(B(X, E)) = \{ f \in B(X, E) : \psi(f(x)) = 0, \psi \in M(E), x \in X \}.$$

Let E be semisimple and $f \in rad(B(X, E))$. Then for every character φ on B(X, E), we have $\varphi(f) = 0$. It follows that $(\psi \circ \delta_x)(f) = \psi(f(x)) = 0$ for all $x \in X$ and all $\psi \in M(E)$ and hence f = 0. This implies that B(X, E) is semisimple.

Conversely, let B(X, E) be semisimple and $b \in rad(E)$. Let f be the constant element of B(X, E), defined by f(x) = b for all $x \in X$. Then for every character φ on B(X, E), we have

$$\varphi(f) = (\psi \circ \delta_x)(f) = \psi(f(x)) = \psi(b) = 0,$$

for some $\psi \in M(E)$ and for some $x \in X$. Therefore, $f \in rad(B(X, E))$ and hence f = 0. This implies that E is semisimple.

Remark 2.7. Since every character φ on $Lip^{\alpha}(X, E)$ ($\ell ip^{\alpha}(X, E)$) is of the form $\psi \circ \delta_x$ for some $\psi \in M(E)$ and for some $x \in X$ (see Remark 2.2), by the theorem above the algebra $Lip^{\alpha}(X, E)(\ell ip^{\alpha}(X, E))$ is semisimple if and only if E is semisimple. These results are also valid for the Banach algebra C(X, E). Moreover, it was shown by Sherbert in [21, Proposition 2.1] that the scalar-valued Lipschitz algebras $Lip^{\alpha}(X)$ and $\ell ip^{\alpha}(X)$ are regular Banach function algebras. Therefore, they are normal and semisimple. See, for example, [9, Theorem 4.4.24].

3. Separating and Disjointness Preserving Linear Operators

In [16] Jimenez-Vargas proved that every disjointness preserving linear map between scalar-valued little Lipschitz algebras is a weighted composition operator. We now extend the results of Jimenez-Vargas as follows:

Theorem 3.1. Let X, Y be compact Hausdorff spaces, E, F be unital commutative Banach algebras, and B(X, E), B(Y, F) be hyper-normal semisimple commutative unital Banach algebras.

If $T: B(X, E) \to B(Y, F)$ is a separating linear map, then

- (i) there exists a disjoint union $M(B(Y, F)) = Y_c \cup Y_0 \cup Y_d$, where Y_0 is closed and Y_d is open in M(B(Y, F)).
- (ii) there exists a continuous map $h: Y_c \cup Y_d \to M(B(X, E))$ such that $h(\psi) \notin supp(\hat{f})$ implies $\widehat{T}\hat{f}(\psi) = 0$ for all $f \in B(X, E)$.
- (iii) there exists a nonvanishing function $k: Y_c \to \mathbb{C}$ such that $\widehat{T}\widehat{f}(\psi) = k(\psi)\widehat{f}(h(\psi))$ for every $f \in B(X, E)$ and for all $\psi \in Y_c$.
- (iv) $\widehat{T}\widehat{f}(\psi) = 0$ for every $f \in B(X, E)$ and for all $\psi \in Y_0$.
- (v) $h(Y_d)$ is a finite set of nonisolated points of M(B(X, E)).
- (vi) the functional $\delta_{\psi} \circ \widehat{T}$ is discontinuous on B(X, E) for each $\psi \in Y_d$.

Proof. We divide the set M(B(Y,F)) into three disjoint parts: Its null part

$$Y_0 := \{ \psi \in M(B(Y, F)) : \delta_{\psi} \circ \widehat{T} = 0 \},$$

its nonnull continuous part

 $Y_c := \{ \psi \in M(B(Y,F)) : \delta_{\psi} \circ \widehat{T} : \widehat{B(X,E)} \to \mathbb{C} \text{ is continuous and nonzero} \},$ and its discontinuous part

$$Y_d := \{ \psi \in M(B(Y, F)) : \delta_{\psi} \circ \widehat{T} : \widehat{B(X, E)} \to \mathbb{C} \text{ is discontinuous} \}.$$

The proof of the theorem is set out, step by step. For steps 2, 3, 5 and 6, we follow the same method as in the proof of [16, Theorem 2.2] for \widehat{T} , instead of T, while presenting a different method for the proof of the other steps. We provide all the details for the sake of completeness.

Step 1. For each $\psi \in Y_c \cup Y_d$, $supp(\delta_{\psi} \circ \widehat{T}) \neq \emptyset$ and, in fact, it contains exactly one point.

Proof. Since B(X, E) and B(Y, F) are hyper-normal and semisimple commutative unital Banach algebras, by [11, Lemma 1], for every $\psi \in M(B(Y, F))$, there exists $f_{\psi} \in B(X, E)$ with $\widehat{T}(\widehat{f}_{\psi})(\psi) \neq 0$. Hence $supp(\delta_{\psi} \circ \widehat{T})$ contains exactly one point for every $\psi \in Y_c \cup Y_d$.

The map $h: Y_c \cup Y_d \to M(B(X, E))$, defined by $h(\psi) = supp(\delta_{\psi} \circ \widehat{T})$, is called the **support map** of \widehat{T} .

Step 2. If
$$\psi \in Y_c \cup Y_d$$
, $f \in B(X, E)$ and $h(\psi) \notin supp(\hat{f})$, then $\widehat{T}\widehat{f}(\psi) = 0$.

Proof. If $h(\psi) \notin supp(\hat{f})$, then there exists $U_{h(\psi)}$ such that $\hat{f}(\phi) = 0$ if $\phi \in U_{h(\psi)}$. Since $h(\psi) = supp(\delta_{\psi} \circ \hat{T})$, there is a function $g \in B(X, E)$ such that $\hat{T}\hat{g}(\psi) \neq 0$ and $\hat{g}(\phi) = 0$ if $\phi \notin U_{h(\psi)}$, implying that $\hat{f}(\phi)\hat{g}(\phi) = 0$ for all $\phi \in M(B(X, E))$. Since T is separating, \widehat{T} is also separating. This implies that $\widehat{T}\widehat{f}(\psi)\widehat{T}\widehat{g}(\psi) = 0$ and hence $\widehat{T}\widehat{f}(\psi) = 0$.

Step 3. The map $h: Y_c \cup Y_d \to M(B(X, E))$ is continuous in the weak*-topology.

Proof. Let ψ be in $Y_c \cup Y_d$ and $\{\psi_\gamma\}_{\gamma \in I}$ be a net in $Y_c \cup Y_d$ converging to ψ . Towards a contradiction, suppose that $\{h(\psi_\gamma)\}_{\gamma \in I}$ does not converge to $h(\psi)$. Then there exists a neighbourhood $N_{h(\psi)}$ and a subnet $\{h(\psi_\lambda)\}_{\lambda \in J}$ of $\{h(\psi_\gamma)\}_{\gamma \in I}$ such that $\{h(\psi_\lambda)\} \notin N_{h(\psi)}$ for each $\lambda \in J$.

By the compactness of M(B(X,E)) there is a subnet $\{h(\psi_{\beta})\}_{\beta\in K}$ of $\{h(\psi_{\lambda})\}_{\lambda\in J}$ which is convergent to an element $\phi\in M(B(X,E))$. If $\phi\neq h(\psi)$, then there exist neighbourhoods V,W of $h(\psi)$ and ϕ , respectively, such that $V\cap W=\emptyset$. Since $\{h(\psi_{\beta})\}_{\beta\in K}$ converges to ϕ , there exists $\beta_0\in K$ such that $h(\psi_{\beta})\in W$ if $\beta\geq \beta_0$. Since $h(\psi)=supp(\delta_{\psi}\circ\widehat{T})$, there exists a function $f\in B(X,E)$ such that $\hat{f}(\lambda)=0$ for all $\lambda\notin V$ and $\hat{T}\hat{f}(\psi)\neq 0$. Thus $\hat{f}(\lambda)=0$ for every $\lambda\in W$. In particular, $h(\psi_{\beta})\notin supp(\hat{f})$ and hence $\hat{T}\hat{f}(\psi_{\beta})=0$ for all $\beta\geq \beta_0$, by Step 2. Thus $\hat{T}\hat{f}(\psi)=0$, which is a contradiction. Consequently, $h(\psi_{\beta})\to_{\beta\in K}h(\psi)$. Since $\{h(\psi)\}_{\beta\in K}$ is a subnet of $\{h(\psi_{\lambda})\}_{\lambda\in J}$, it follows that $h(\psi_{\beta})\notin N_{h(\psi)}$ for all $\beta\in K$, which is impossible. Therefore, $\{h(\psi_{\gamma})\}_{\gamma\in I}$ converges to $h(\psi)$, implying that h is continuous.

Step 4. For $\psi \in Y_c \cup Y_d$, let

$$M_{\psi} := \left\{ \widehat{f} \in \widehat{B(X, E)} : \widehat{f}(h(\psi)) = 0 \right\}, \quad J_{\psi} := \left\{ \widehat{f} \in \widehat{B(X, E)} : h(\psi) \notin supp(\widehat{f}) \right\}.$$

Then J_{ψ} is a dense subspace of M_{ψ} .

Proof. Note that J_{ψ} is, in fact, the set all functions in $\widehat{B(X,E)}$ vanishing on a neighbourhood of $h(\psi)$. Clearly J_{ψ} and M_{ψ} are vector subspaces of $\widehat{B(X,E)}$ and $J_{\psi} \subseteq M_{\psi}$. To show that J_{ψ} is dense in M_{ψ} , let $\psi \in Y_c \cup Y_d$, $\widehat{f} \in M_{\psi}$ and $\epsilon > 0$. Define

$$\Gamma_1 := \left\{ \phi \in M(B(X, E)) : |\hat{f}(\phi)| \le \frac{\epsilon}{2} \right\}, \quad \Gamma_2 := \left\{ \phi \in M(B(X, E)) : |\hat{f}(\phi)| \ge \epsilon \right\}.$$

Since B(X, E) is hyper-normal, there exists $g \in B(X, E)$ such that $\|\hat{g}\| \leq 1$, $\hat{g}|_{\Gamma_1} = 0$ and $\hat{g}|_{\Gamma_2} = 1$. Since the interior of Γ_1 is a neighbourhood of $h(\psi)$ and \hat{g} is zero on this neighbourhood, it follows that $\hat{g} \in J_{\psi}$ and hence $\hat{f}\hat{g} \in J_{\psi}$.

We now consider the following three cases:

Case 1: If $\phi \in \Gamma_1$, then $|\hat{f}(\phi)(1-\hat{g}(\phi))| \leq \frac{\epsilon}{2}(1+||\hat{g}||) < \epsilon$.

Case 2: If $\phi \in \Gamma_2^c \setminus \Gamma_1$, then $|\hat{f}(\phi)(1 - \hat{g}(\phi))| \le \epsilon(1 + ||\hat{g}||) < 2\epsilon$.

Case 3: If $\phi \in \Gamma_2$, then $|\hat{f}(\phi)(1 - \hat{g}(\phi))| = 0$.

Therefore, $\|\hat{f} - \hat{f}\hat{g}\| < 2\epsilon$, implying that J_{ψ} is dense in M_{ψ} .

Step 5. There exists a nonvanishing function $k: Y_c \to \mathbb{C}$ such that

$$\widehat{T}\widehat{f}(\psi) = k(\psi)\widehat{f}(h(\psi)),$$

for all $f \in B(X, E)$ and all $\psi \in Y_c$.

Proof. Let $\psi \in Y_c$. Since $\delta_{\psi} \circ \widehat{T}$ is a nonzero continuous linear functional on $\widehat{B(X,E)}$, it follows that $\ker(\delta_{\psi} \circ \widehat{T})$ is a proper closed subspace of $\widehat{B(X,E)}$ and moreover, $J_{\psi} \subset \ker(\delta_{\psi} \circ \widehat{T})$ by Step 2. Therefore, $\ker \delta_{h(\psi)} = M_{\psi} \subset \ker(\delta_{\psi} \circ \widehat{T})$ by Step 4. Hence there exists a nonzero scalar $k(\psi)$ such that $\delta_{\psi} \circ \widehat{T} = k(\psi)\delta_{h(\psi)}$, implying that $\widehat{T}\widehat{f}(\psi) = k(\psi)\widehat{f}(h(\psi))$ for all $f \in B(X,E)$.

Step 6. The set Y_0 is closed in M(B(Y, F)) and the set Y_d is open in M(B(Y, F)).

Proof. Since $Y_0 = \bigcap_{f \in B(X,E)} ker(\widehat{T}\widehat{f})$, it follows that Y_0 is closed in M(B(Y,F)). To show that Y_d is open in M(B(Y,F)), let $\{\psi_\gamma\}_{\gamma \in I}$ be a net in $M(B(Y,F)) \setminus Y_d$, which converges to a point $\psi \in M(B(Y,F))$. By Step 5, there exists a nonvanishing bounded function $k: Y_c \to \mathbb{C}$ such that

$$|\widehat{T}\widehat{f}(\psi_{\gamma})| \leq \sup\{|\widehat{T}\widehat{f}(\psi)| : \psi \in Y_0 \cup Y_c\} \leq \sup\{|\widehat{T}\widehat{f}(\psi)| : \psi \in Y_c\}$$

$$\leq \sup\{|k(\psi)\widehat{f}(h(\psi))| : \psi \in Y_c\} \leq ||k|| ||\widehat{f}||,$$

for all $f \in B(X, E)$ and $\gamma \in I$, where ||k|| is the supremum norm of k. However, for the boundedness of k we may take $f = 1_E$, the unit element of B(X, E), in $\widehat{T}\widehat{f}(\psi) = k(\psi)\widehat{f}(h(\psi))$ and conclude that k is bounded. By the continuity of $\widehat{T}\widehat{f}$ on M(B(Y, F)), we have $|\widehat{T}\widehat{f}(\psi)| \leq ||k|| ||\widehat{f}||$, that is, $|\delta_{\psi} \circ \widehat{T}(\widehat{f})| \leq ||k|| ||\widehat{f}||$. Thus the linear functional $\delta_{\psi} \circ \widehat{T}$ is continuous on $\widehat{B(X, E)}$ and hence $\psi \in M(B(Y, F)) \setminus Y_d$. This shows that $M(B(Y, F)) \setminus Y_d$ is closed and hence Y_d is open in M(B(Y, F)).

Step 7. $h(Y_d)$ is a finite set of nonisolated points of M(B(X, E)).

Proof. For the finiteness of $h(Y_d)$, let $(h(\psi_n))_{n\in\mathbb{N}}$ be a sequence of distinct elements of M(B(X,E)) such that $\psi_n\in Y_d$ for all $n\in\mathbb{N}$. Moreover, suppose that there exist sequences $(V_n)_{n\in\mathbb{N}}$ and $(U_n)_{n\in\mathbb{N}}$ of pairwise disjoint neighbourhoods of $h(\psi_n)$ such that $U_n\subseteq \overline{U_n}\subseteq V_n$ for all $n\in\mathbb{N}$. Since B(X,E) is hyper-normal, for each n, there exists $g_n\in B(X,E)$ such that $\hat{g}_n=1$ on U_n and $supp(\hat{g}_n)\subseteq V_n$. On the other hand, since the linear functional $\delta_{\psi_n}\circ \hat{T}$ is discontinuous on $\widehat{B(X,E)}$, there exists a function $h_n\in B(X,E)$ with $\|h_n\|\leq 1$ such that $|\hat{T}\hat{h}_n(\psi_n)|\geq n^3\|g_n\|$ for all $n\in\mathbb{N}$. If $f_n:=\frac{g_nh_n}{n^2\|g_n\|}$ for $n\in\mathbb{N}$, then $\hat{f}_n-\frac{\hat{h}_n}{n^2\|g_n\|}=0$ on U_n , implying that $h(\psi_n)\notin supp(\hat{f}_n-\frac{\hat{h}_n}{n^2\|g_n\|})$. Hence $|\hat{T}\hat{f}_n(\psi_n)|=\frac{1}{n^2\|g_n\|}|\hat{T}\hat{h}_n(\psi_n)|$ by Step 2, so that $|\hat{T}\hat{f}_n(\psi_n)|\geq n$. Since B(X,E) is complete and $\|f_n\|<\frac{1}{n^2}$ for all $n\in\mathbb{N}$, we can define the function $f=\sum_{n=1}^\infty f_n\in B(X,E)$. From the fact that the Gelfand transform is a linear continuous mapping, we deduce $\hat{f}=\sum_{n=1}^\infty \hat{f}_n$. Since the sequence $(V_n)_{n\in\mathbb{N}}$ is pairwise disjoint and $coz(\hat{f}_n)\subseteq V_n$ for all $n\in\mathbb{N}$, it follows that $h(\psi_m)\notin supp(\hat{f}_n)$ for all $n\neq m$.

We now show that $h(\psi_m) \notin supp(\sum_{n=1, n \neq m}^{\infty} \hat{f}_n)$. If $h(\psi_m) \in supp(\sum_{n=1, n \neq m}^{\infty} \hat{f}_n)$ then

$$h(\psi_m) \in \overline{coz(\sum_{n=1, n \neq m}^{\infty} \hat{f}_n)} \subseteq \overline{\bigcup_{n=1, n \neq m}^{\infty} coz(\hat{f}_n)}.$$

Since V_m is an open neighbourhood of $h(\psi_m)$, there exists an element $\varphi_m \in \bigcup_{n=1, n\neq m}^{\infty} coz(\hat{f}_n)$ such that $\varphi_m \in V_m$. On the other hand, there exists $n \neq m$ such that $\varphi_m \in coz(\hat{f}_n) \subseteq V_n$, which is a contradiction, since $V_n \cap V_m = \emptyset$.

By Step 2 we conclude that $\delta_{\psi_m} \circ \hat{T}(\sum_{n=1,n\neq m}^{\infty} \hat{f}_n) = 0$. Since

$$\hat{f} = \hat{f}_m + \sum_{n=1, n \neq m}^{\infty} \hat{f}_n,$$

it follows that $\delta_{\psi_m} \circ \hat{T}(\hat{f}) = \delta_{\psi_m} \circ \hat{T}(\hat{f}_m)$. Therefore,

$$|\widehat{T}\widehat{f}(\psi_m)| = |\widehat{T}\widehat{f}_m(\psi_m)| \ge m,$$

for all $m \in \mathbb{N}$, which is a contradiction, since $\widehat{T}\widehat{f} \in \widehat{B(Y,F)}$ is bounded. This proves that $h(Y_d)$ is finite.

We now show that each point of $h(Y_d)$ is a nonisolated point of M(B(X, E)). Let $h(\psi)$ be an isolated point of M(B(X, E)) for some $\psi \in Y_d$. Then there exists a neighbourhood $U_{h(\psi)}$ such that $U_{h(\psi)} = \{h(\psi)\}$. If $\hat{f}(h(\psi)) = 0$, then $h(\psi) \notin supp(\hat{f})$ and hence $\hat{T}\hat{f}(\psi) = 0$, by Step 2. In other words, $ker(\delta_{h(\psi)}) \subseteq ker(\delta_{\psi} \circ \hat{T})$ and therefore, $\delta_{\psi} \circ \hat{T} = \beta_{\psi} \delta_{h(\psi)}$ for some nonzero scalar β_{ψ} . Consequently, the nonzero linear functional $\delta_{\psi} \circ \hat{T}$ is continuous on $\widehat{B(X, E)}$ and hence $\psi \in Y_c$, which is a contradiction.

The proof of the theorem is now complete.

Note that the method of Jimenez-Vargas in [16] is only valid for the Lipschitz algebras, whereas by our method, the same results are valid for more general classes of vector-valued Banach algebras. We are now ready to prove that, under the same conditions as in the theorem above, every separating linear bijection between certain Banach algebras of vector-valued functions is biseparating. This is the most important part of the following theorem:

Theorem 3.2. Let X, Y be compact Hausdorff spaces, E, F be unital commutative Banach algebras and B(X, E), B(Y, F) be hyper-normal semisimple commutative unital Banach algebras. Let T be a separating linear bijection from B(X, E) onto B(Y, F). Then \widehat{T} is a weighted composition operator in the form $\widehat{T}\widehat{f}(\psi) = k(\psi)\widehat{f}(h(\psi))$ for all $f \in B(X, E)$ and for all $\psi \in M(B(Y, F))$, where $k \in \widehat{B(Y, F)}$ is a nonvanishing function and h is a homeomorphism from M(B(Y, F)) onto M(B(X, E)). In particular, T is biseparating.

Proof. We adopt the same notations as in the previous theorem and divide the proof into several parts.

Part 1. $Y_0 = \emptyset$ and Y_c is compact.

Proof. Let $\psi \in Y_0$. Then $\delta_{\psi} \circ \widehat{T} = 0$ and $\delta_{\psi}(\widehat{T}\hat{f}) = 0$ for every $f \in B(X, E)$. Since T is surjective, \widehat{T} is also surjective and hence for every $g \in B$, there exists $f \in B(X, E)$ such that $\widehat{g} = \widehat{T}\widehat{f}$. Thus $\delta_{\psi}(\widehat{g}) = \psi(g) = 0$ for all $g \in B$ and hence $\psi = 0$, which is impossible. Therefore, $Y_0 = \emptyset$.

Since by Theorem 3.1, the set Y_d is open in M(B(Y, F)), it follows that $Y_c = M(B(Y, F)) \setminus Y_d$ is closed and hence it is compact in M(B).

Part 2. The set $h(Y_c)$ is dense in M(B(X, E)).

Proof. We first prove that $h(Y_c \cup Y_d)$ is dense in M(B(X, E)). Suppose, on the contrary, that there exists a point $\phi \in M(B(X, E))$ such that $V_\phi \cap h(Y_c \cup Y_d) = \emptyset$, where V_ϕ is a neighbourhood of ϕ . Let U_ϕ be a neighbourhood of ϕ such that $U_\phi \subseteq \overline{U_\phi} \subseteq V_\phi$ and h_ϕ be a nonzero function in B(X, E) such that $supp(\hat{h}_\phi) \subseteq \overline{U_\phi}$. Hence $h(\psi) \notin supp(\hat{h}_\phi)$ for all $\psi \in Y_c \cup Y_d$, implying that $\widehat{T}\hat{h}_\phi(\psi) = 0$ for all $\psi \in Y_c \cup Y_d$, by Theorem 3.1. Since Y_0 is empty, $\widehat{T}\hat{h}_\phi = 0$. By the linearity and injectivity of \widehat{T} , it follows that $\hat{h}_\phi = 0$. Since B(X, E) is semisimple, $h_\phi = 0$, which is impossible.

We now show that $\overline{h(Y_c \cup Y_d)} = \overline{h(Y_c)}$. It suffices to prove that $h(Y_d) \subseteq \overline{h(Y_c)}$. Let $\phi \in h(Y_d)$ and there exist a neighbourhood U_{ϕ} of ϕ such that $U_{\phi} \cap h(Y_c) = \emptyset$. Since $h(Y_d)$ is finite, there exists a neighbourhood V_{ϕ} of ϕ such that

$$V_{\phi} \setminus \{\phi\} \cap h(Y_c \cup Y_d) = \emptyset.$$

Since by Theorem 3.1, ϕ is a nonisolated point of M(B(X, E)), there is a point ψ in $V_{\phi} \setminus \{\phi\}$. Let V_{ψ} be a neighbourhood of ψ such that $V_{\psi} \subseteq V_{\phi} \setminus \{\phi\}$. Then $V_{\psi} \cap h(Y_c \cup Y_d) = \emptyset$ and this contradicts the density of $h(Y_c \cup Y_d)$ in M(B(X, E)). Hence $\overline{h(Y_c \cup Y_d)} = \overline{h(Y_c)}$.

Part 3. Y_d is empty.

Proof. Let $\phi \in Y_d$. Since Y_c is closed, there exists a neighbourhood V_ϕ such that $V_\phi \cap Y_c = \emptyset$. By the normality of B(X, E), there exists a function h_ϕ in B(Y, F) such that $\hat{h}_\phi(\phi) = 1$ and $coz(\hat{h}_\phi) \subseteq V_\phi$. By the surjectivity of \widehat{T} , there exists some f in B(X, E) such that $\widehat{T}\hat{f} = \hat{h}_\phi$. Then $\widehat{T}\hat{f}(\psi) = \hat{h}_\phi(\psi) = 0$ for all $\psi \in Y_c$. By Theorem 3.1, $\widehat{T}\hat{f}(\psi) = k(\psi)\hat{f}(h(\psi))$ for all $\psi \in Y_c$. Since T is surjective, $k(\psi) \neq 0$ for all $\psi \in Y_c$. Hence $\hat{f}(\lambda) = 0$ for all $\lambda \in M(B(X, E))$, since $\overline{h(Y_c)} = M(B(X, E))$ by Part 2. Therefore, $\hat{f} = 0$ and $\widehat{T}\hat{f} = 0$, but $\widehat{T}\hat{f}(\phi) = \hat{h}_\phi(\phi) = 1$, which is a contradiction.

Part 4. $M(B(Y,F)) = Y_c$ and $\widehat{T}\widehat{f}(\psi) = k(\psi)\widehat{f}(h(\psi))$ for all $f \in B(X,E)$ and $\psi \in M(B(Y,F))$.

Proof. By Parts 1 and 3, $Y_0 = Y_d = \emptyset$. Hence $M(B(Y, F)) = Y_c$ and the result follows from Theorem 3.1.

Part 5. T^{-1} is separating and hence T is biseparating.

Proof. Let $g_1, g_2 \in B(Y, F)$ such that $\hat{g}_1 \hat{g}_2 = 0$. Then there exist $f_1, f_2 \in B(X, E)$ such that $\hat{g}_1 = \hat{T}\hat{f}_1 = k(\hat{f}_1 \circ h), \hat{g}_2 = \hat{T}\hat{f}_2 = k(\hat{f}_2 \circ h)$ and hence $k^2(\hat{f}_1 \circ h)(\hat{f}_2 \circ h) = 0$. Since $k(\psi) \neq 0$ for every $\psi \in M(B(Y, F))$, we have $(\hat{f}_1 \hat{f}_2) \circ h = 0$. By Parts 2, 4 and the density of h(M(B(Y, F))) in M(B(X, E)), it follows that $\hat{f}_1 \hat{f}_2 = 0$ and hence $\widehat{T^{-1}}$ is separating. Since B(X, E) and B(Y, F) are semisimple commutative

Banach algebras, $T^{-1}: B(Y,F) \to B(X,E)$ is separating if and only if $\widehat{T^{-1}}: \widehat{B(Y,F)} \to \widehat{B(X,E)}$ is separating. Consequently, T^{-1} is separating.

Part 6. The map h is a homeomorphism from M(B(Y,F)) onto M(B(X,E)).

Proof. For the injectivity of $h: M(B(Y,F)) \to M(B(X,E))$, let ϕ, ψ be elements of M(B(Y,F)) with $\phi \neq \psi$ and $h(\phi) = h(\psi)$. Let U_{ψ} be a neighbourhood of ψ such that $\phi \notin U_{\psi}$. Consider $h_{\psi} \in B(Y,F)$ such that $\hat{h}_{\psi}(\psi) = 1$ and $coz(\hat{h}_{\psi}) \subseteq U_{\psi}$. Since $h_{\psi} \in B(Y,F)$ and \widehat{T} is surjective, $\widehat{T}\hat{f} = \hat{h}_{\psi}$ for some $f \in B(X,E)$. By Part 4 we have

$$\hat{h}_{\psi}(\lambda) = \widehat{T}\hat{f}(\lambda) = k(\lambda)\hat{f}(h(\lambda)) \quad (\lambda \in M(B(Y, F))).$$

In particular, $1 = \hat{h}_{\psi}(\psi) = k(\psi)\hat{f}(h(\psi))$ and $0 = \hat{h}_{\psi}(\phi) = k(\phi)\hat{f}(h(\phi))$. Hence $\hat{f}(h(\psi)) = 1/k(\psi)$ and $\hat{f}(h(\phi)) = 0$. Since $h(\psi) = h(\phi)$, we get a contradiction. On the other hand, by Parts 2 and 4, $\overline{h(M(B(Y,F)))} = M(B(X,E))$ and hence h is continuous by Theorem 3.1. Since M(B(Y,F)) is compact, it follows that h(M(B(Y,F))) = M(B(X,E)). Therefore, $h: M(B(Y,F)) \to M(B(X,E))$ is surjective.

The proof of the theorem is now complete.

We should mention here that the proof of the theorem above follows closely [16, Theorem 3.1], except for the continuity of T. One may also compare this theorem with [13, Theorem 2.3].

Remark 3.3. By applying the results of Section 2, we conclude that if E and F are semisimple hyper-normal unital commutative Banach algebras, then the Lipschitz algebras $Lip^{\alpha}(X, E)$ and $\ell ip^{\alpha}(X, E)$ possess the same properties. Hence in this case big and little Lipschitz algebras are interesting examples satisfying the hypotheses of Theorems 3.1 and 3.2.

In [10] Esmaeili and Mahyar characterized disjointness preserving bounded linear operators between spaces of vector-valued little Lipschitz functions on compact metric spaces. In fact, they have shown that every disjointness preserving bounded linear operator between spaces of vector-valued little Lipschitz functions is a weighted composition operator.

In the following, disjointness preserving linear operators between big and little vector-valued Lipschitz algebras are characterized, without the boundedness condition.

Theorem 3.4. [17, Theorems 3.1 and 4.1] Let X, Y be compact metric spaces and E, F be Banach algebras. Let T be a bijection from $Lip^{\alpha}(X, E)$ ($\ell ip^{\alpha}(X, E)$) onto $Lip^{\alpha}(Y, F)$ ($\ell ip^{\alpha}(Y, F)$) such that both T and T^{-1} are disjointness preserving maps. Then T is a weighted composition operator in the form

$$Tf(y)=h(y)(f(\phi(y))), \quad (y\in Y, f\in Lip^{\alpha}(X,E)(\ell ip^{\alpha}(X,E))),$$

where ϕ is a homeomorphism from Y onto X and h(y) is an invertible linear map from E onto F for each $y \in Y$. Moreover, T is bounded if and only if h(y) is bounded for all $y \in Y$.

Corollary 3.5. Let X, Y be compact metric spaces and E, F be Banach algebras. If T is a bijection from $Lip^{\alpha}(X, E)$ ($\ell ip^{\alpha}(X, E)$) onto $Lip^{\alpha}(Y, F)$ ($\ell ip^{\alpha}(Y, F)$), such that both T and T^{-1} are disjointness preserving, then X is homeomorphic to Y. In particular, if T is multiplicative then M(E) is homeomorphic to M(F).

Proof. By Theorem 3.4, X is homeomorphic to Y. In the case that T is multiplicative we actually show that M(E) is homeomorphic to M(F). For this purpose, let y_0 be a fixed element of Y and define $\lambda: M(F) \to M(E)$ by $\lambda(\psi) = \psi \circ h(y_0)$. We first show that λ is well-defined.

By Theorem 3.4, T is a weighted composition operator in the form

$$Tf(y_0) = h(y_0)(f(\phi(y_0))), \quad (f \in Lip^{\alpha}(X, E)(\ell ip^{\alpha}(X, E))),$$

where ϕ is a homeomorphism from Y onto X and h(y) is an invertible linear map from E onto F for each $y \in Y$. First we show that $h(y_0)$ is, in fact, a homomorphism. To this end, let $a, b \in E$ and take the constants functions f = a, g = b in $Lip^{\alpha}(X, E)$. Since T is multiplicative, we have

$$h(y_0)(ab) = h(y_0)(f(\phi(y_0))g(\phi(y_0))) = h(y_0)(fg(\phi(y_0))) = Tfg(y_0)$$

= $Tf(y_0)Tg(y_0) = h(y_0)(f(\phi(y_0)))h(y_0)(g(\phi(y_0)))$
= $h(y_0)(a)h(y_0)(b)$.

Therefore, $h(y_0)$ is a homomorphism and since $h(y_0)$ is a linear map, it follows that $\psi \circ h(y_0)$ is a homomorphism for all $\psi \in M(F)$. Since ψ is a character, there exists $b \in F$ such that $\psi(b) \neq 0$ and since $h(y_0)$ is onto, we have $h(y_0)(a) = b$, for some $a \in E$. Therefore, $\psi \circ h(y_0)(a) \neq 0$ and hence $\psi \circ h(y_0) \in M(E)$, which implies that λ is well defined.

For the injectivity of λ , let $\lambda(\psi_1) = \lambda(\psi_2)$. Then $\psi_1 \circ h(y_0) = \psi_2 \circ h(y_0)$ and hence for every $a \in E$, $\psi_1(h(y_0)(a)) = \psi_2(h(y_0)(a))$. Thus for every $b \in F$, $\psi_1(b) = \psi_2(b)$, since $h(y_0)$ is onto. Therefore, $\psi_1 = \psi_2$. For the surjectivity of λ , let $\varphi \in M(E)$ and note that $\varphi \circ h(y_0)^{-1} \in M(F)$. Then

$$\lambda(\varphi \circ h(y_0)^{-1}) = \varphi \circ h(y_0)^{-1} \circ h(y_0) = \varphi.$$

Hence λ is onto and moreover, since M(E) and M(F) are compact Hausdorff spaces, λ^{-1} is continuous. Therefore, λ is a homeomorphism and hence M(E) is homeomorphic to M(F).

Acknowledgement. We are grateful to the referee who carefully read the paper and made valuable comments and suggestions, which greatly improved the article.

References

- Y.A. Abramovich and A.K. Kitover, Inverses of disjointness preserving operators, Mem. Amer. Math. Soc., 143 (2000), no. 679, 1–162.
- 2. Y.A. Abramovich, A. I. Veksler and A.V. Koldunov, *Operators preserving disjointness*, Dokl. Akad. Nauk USSR, **248** (1979), 1033–1036.
- J. Araujo and K. Jarosz, Separating maps on spaces of continuous functions, Contemp. Math. 232 (1999), 33–37.
- W. Arendt, Spectral properties of Lamperti operators, Indiana Univ. Math. J. 32 (1983), 199–215.

- E. Beckenstein and L. Narici, A nonarchimedean Stone-Banach theorem, Proc. Amer. Math. Soc. 100 (1987), 242–246.
- 6. E. Beckenstein and L. Narici, Automatic continuity of certain linear isomorphisms, Acad. Roy. Belg. Bull. Cl. Sci. **73** (1987), no. 5, 191–200.
- 7. E. Beckenstein and L. Narici, Automatic continuity of linear maps of spaces of continuous functions, Manuscr. Math. **62** (1988), 257–275.
- H.X. Cao, J. H. Zhang and Z.B. Xu, Characterizations and extensions of Lipschitz-α operators, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 3, 671–678.
- H.G. Dales, Banach Algebras and Automatic Continuity, LMS Monographs 24, Clarendon Press, Oxford, 2000.
- 10. K. Esmaeili and H. Mahyar, Weighted composition operators between vector-valued Lipschitz function spaces, Banach J. Math. Anal. 7 (2013), no. 1, 59-72.
- 11. J.J. Font, Automatic continuity of certain isomorphisms between regular Banach function algebras, Glasg. Math. J. **39** (1997), 333–343.
- 12. J.J. Font and S. Hernandez, On separating maps between locally compact spaces, Arch. Math. (Basel) 63 (1994), 158–165.
- 13. H-L. Gau, J-S. Jeang and N-C. Wong, Biseparating linear maps between continuous vector-valued function spaces, J. Aust. Math. Soc. **74** (2003), 101–109.
- 14. M. Hosseini and F. Sady, Banach function algebras and certain polynomially norm-preserving maps, Banach J. Math. Anal. 6 (2012), no. 2, 1–18.
- 15. K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), 139–144.
- A. Jimenez-Vargas, Disjointness preserving operators between little Lipschitz algebras, J. Math. Anal. Appl. 337 (2008), 984–993.
- 17. A. Jimenez-Vargas and Ya-Shu Wang, Linear biseparating maps between vector-valued little Lipschitz function spaces, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 6, 1005–1018.
- E. Kaniuth, A Course in Commutative Banach Algebras, Springer, Graduate Texts in Mathematics 246, 2009.
- 19. J.S. Manhas, Weighted composition operators and dynamical systems on weighted spaces of holomorphic functions on Banach spaces, Ann. Funct. Anal. 4 (2013), no. 2, 58–71.
- 20. A. Nikou and A.G. O'Farrell, *Banach algebras of vector-valued functions*, Glasgow Math. J., to appear, arXiv:1305.2751.
- 21. D.R. Sherbert, The Structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240–272.
- B.Z. Vulkh, On linear multiplicative operations, Dokl. Akad. Nauk USSR 41 (1943), 148– 151.
- 23. B.Z. Vulkh, Multiplication in linear semi-ordered spaces and its application to the theory of operations, Mat. Sbornik 22 (1948), 267–317.

DEPARTMENT OF MATHEMATICS, KHARAZMI UNIVERSITY (TARBIAT MOALLEM UNIVERSITY), 50 TALEGHANI AVENUE, 15618 TEHRAN, IRAN.

E-mail address: honary@khu.ac.ir
E-mail address: std_nikou@khu.ac.ir
E-mail address: a_sanatpour@khu.ac.ir