

Banach J. Math. Anal. 8 (2014), no. 1, 98–108

 ${f B}$ anach ${f J}$ ournal of ${f M}$ athematical ${f A}$ nalysis

ISSN: 1735-8787 (electronic)

www.emis.de/journals/BJMA/

(P,Q)-OUTER GENERALIZED INVERSE OF BLOCK MATRICES IN BANACH ALGEBRAS

MILICA Z. KOLUNDŽIJA

Communicated by A. R. Villena

ABSTRACT. We investigate additive results for (p,q)-outer generalized inverse of elements in Banach algebra, along with the representation of this inverse in a block matrix in the Banachiewicz–Schur form. Additionally, we investigate the (p,q)-pseudospectrum and (p,q)-condition spectrum of a block matrix $x=\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}_n$ in a Banach algebra.

1. Introduction

Let \mathcal{A} be the complex unital Banach algebra with unit 1. The sets of all idempotents and invertible elements of \mathcal{A} will be denoted by \mathcal{A}^{\bullet} and \mathcal{A}^{-1} , respectively.

An element $a \in \mathcal{A}$ is outer generalized invertible, if there exists some $b \in \mathcal{A}$ satisfying b = bab. Such b is called the outer generalized inverse of a. In this case ba and 1 - ab are idempotents corresponding to a and b. The set of all outer generalized invertible elements of \mathcal{A} will be denoted with $\mathcal{A}^{(2)}$.

Djordjević and Wei introduced outer generalized inverses with prescribed idempotents in [3] (see also [2]):

Definition 1.1. [3] Let $a \in \mathcal{A}$ and $p, q \in \mathcal{A}^{\bullet}$. An element $b \in \mathcal{A}$ satisfying

$$bab = b, ba = p, 1 - ab = q,$$

will be called a (p,q)-outer generalized inverse of a, written $a_{p,q}^{(2)} = b$.

Date: Received: 1 April 2013; Accepted: 28 April 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 15A09; Secondary 47A05, 46H05, 47A10.

 $Key\ words\ and\ phrases.\ (p,q)$ -outer generalized inverse, block matrix, pseudospectrum, condition spectrum.

The uniqueness of $a_{p,q}^{(2)}$ is provided in the following theorem.

Theorem 1.2. [3] Let $a \in A$ and $p, q \in A^{\bullet}$. Then the following statements are equivalent:

- (1) $a_{p,q}^{(2)}$ exists;
- (2) (1-q)a = (1-q)ap, and there exists some $b \in \mathcal{A}$ such that pb = b, bq = 0 and ab = 1 q.

Moreover, if $a_{p,q}^{(2)}$ exists, then it is unique.

The set of all outer generalized invertible elements of \mathcal{A} with prescribed idempotents $p, q \in \mathcal{A}^{\bullet}$ will be denoted with $\mathcal{A}_{p,q}^{(2)}$. Outer generalized inverses in rings can be found in [6]. Also, inner generalized inverses with prescribed idempotents were studied in [5].

Let M be a 2×2 block matrix $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, where $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times k}$, $C \in \mathbb{C}^{l \times n}$ and $D \in \mathbb{C}^{l \times k}$. If A is invertible, then the Schur complement of A in M is defined as

$$S = D - CA^{-1}B.$$

If M is invertible, then S is invertible, too, and M can be decomposed as

$$M = \begin{bmatrix} I_m & 0 \\ CA^{-1} & I_l \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I_m & A^{-1}B \\ 0 & I_l \end{bmatrix},$$

where I_t is the identity matrix of order t. In this case, the inverse of M can be written as

$$M^{-1} = \begin{bmatrix} I_m & -A^{-1}B \\ 0 & I_l \end{bmatrix} \begin{bmatrix} A^{-1} & 0 \\ 0 & S^{-1} \end{bmatrix} \begin{bmatrix} I_m & 0 \\ -CA^{-1} & I_l \end{bmatrix}$$
$$= \begin{bmatrix} A^{-1} + A^{-1}BS^{-1}CA^{-1} & -A^{-1}BS^{-1} \\ -S^{-1}CA^{-1} & S^{-1} \end{bmatrix}.$$
(1.1)

Result (1.1) is well known as the Banachiewicz–Schur form of M, and it has been used in dealing with inverses of block matrices; see [1, 8, 10].

Analogously, we can represent an element of Banach algebra in a block matrix form as follows.

Let $u \in \mathcal{A}$ be an idempotent. Then we can represent element $a \in \mathcal{A}$ as

$$a = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]_{u},$$

where $a_{11} = uau$, $a_{12} = ua(1-u)$, $a_{21} = (1-u)au$, $a_{22} = (1-u)a(1-u)$.

Let $x = \begin{bmatrix} a & b \\ c & d \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$. If $a \in (u\mathcal{A}u)^{-1}$ and the Schur complement $s = d - ca^{-1}b \in ((1-u)\mathcal{A}(1-u))^{-1}$, then the inverse of x has the Banachiewicz–Schur form

$$x^{-1} = \begin{bmatrix} a^{-1} + a^{-1}bs^{-1}ca^{-1} & -a^{-1}bs^{-1} \\ -s^{-1}ca^{-1} & s^{-1} \end{bmatrix}.$$

If $a \in (u\mathcal{A}u)$ is not invertible but has the outer generalized inverse with prescribed idempotents $p_1, q_1 \in (u\mathcal{A}u)^{\bullet}$, we can observe the generalized Schur complement $s = d - ca_{p_1,q_1}^{(2)}b$.

Accordingly, we investigate equivalent conditions under which $x_{p,q}^{(2)}$ has the generalized Banachiewicz–Schur form in a Banach algebra.

We use the following auxiliary results.

Lemma 1.3. Let p,q be idempotents in a Banach algebra A. The following statements are equivalent:

- (i) $p+q \in \mathcal{A}^{\bullet}$,
- (ii) pq = qp = 0.

Proof. $(i) \Rightarrow (ii)$: Suppose $p + q \in \mathcal{A}^{\bullet}$. We have

$$(p+q)^2 = p+q \Rightarrow pq+qp = 0 \Rightarrow pq = -qp.$$

Since the following holds

$$pq = p^2q^2 = p(pq)q = p(-qp)q = -pq(pq) = pqqp = pqp = -ppq = -pq,$$

we obtain pq = 0. The analogous proof holds for qp = 0.

$$(ii) \Rightarrow (i)$$
: Let $p, q \in \mathcal{A}^{\bullet}$ such that $pq = qp = 0$. Then

$$(p+q)^2 = p^2 + pq + qp + q^2 = p + q,$$

so
$$p+q \in \mathcal{A}^{\bullet}$$
.

If $u \in \mathcal{A}^{\bullet}$, then the product of arbitrary elements from algebra $u\mathcal{A}u$ and $(1-u)\mathcal{A}(1-u)$ is equal to 0, i.e. for all $a \in u\mathcal{A}u$ and for all $b \in (1-u)\mathcal{A}(1-u)$, we have ab = 0.

Now, as a corollary of Lemma 1.3, we state the following result.

Lemma 1.4. Let $u \in \mathcal{A}^{\bullet}$. If $p_1 \in (u\mathcal{A}u)^{\bullet}$ and $p_2 \in ((1-u)\mathcal{A}(1-u))^{\bullet}$, then $p = p_1 + p_2 \in \mathcal{A}$ is an idempotent.

2. (p,q)-OUTER GENERALIZED INVERSE

The first result gives the additive properties of the (p,q)-outer generalized inverse.

Theorem 2.1. Let $p, q \in \mathcal{A}^{\bullet}$ and $a, b \in \mathcal{A}_{p,q}^{(2)}$. If

$$a_{p,q}^{(2)}b + b_{p,q}^{(2)}a + 1 = 0,$$
 $ab_{p,q}^{(2)} + ba_{p,q}^{(2)} + 1 = 0,$ (2.1)

then $a + b \in \mathcal{A}_{p,q}^{(2)}$ and

$$(a+b)_{p,q}^{(2)} = a_{p,q}^{(2)} + b_{p,q}^{(2)}$$

Proof. Using the fact that $a, b \in \mathcal{A}_{p,q}^{(2)}$, Theorem 1.2 and conditions (2.1), we have

Cosing the fact that
$$a, b \in \mathcal{A}_{p,q}$$
, Theorem 1.2 and conditions (2.1), we in $(a_{p,q}^{(2)} + b_{p,q}^{(2)})(a+b)(a_{p,q}^{(2)} + b_{p,q}^{(2)}) =$

$$= a_{p,q}^{(2)} + pb_{p,q}^{(2)} + a_{p,q}^{(2)}ba_{p,q}^{(2)} + a_{p,q}^{(2)}(1-q) + b_{p,q}^{(2)}(1-q) + b_{p,q}^{(2)}ab_{p,q}^{(2)} + pa_{p,q}^{(2)} + b_{p,q}^{(2)}$$

$$= a_{p,q}^{(2)} + b_{p,q}^{(2)} + a_{p,q}^{(2)}ba_{p,q}^{(2)} + a_{p,q}^{(2)} + b_{p,q}^{(2)} + b_{p,q}^{(2)}ab_{p,q}^{(2)} + a_{p,q}^{(2)} + b_{p,q}^{(2)}$$

$$= a_{p,q}^{(2)} + b_{p,q}^{(2)} + a_{p,q}^{(2)}(ba_{p,q}^{(2)} + 1) + b_{p,q}^{(2)}(1+ab_{p,q}^{(2)}) + a_{p,q}^{(2)} + b_{p,q}^{(2)}$$

$$= a_{p,q}^{(2)} + b_{p,q}^{(2)} + a_{p,q}^{(2)}(-ab_{p,q}^{(2)}) + b_{p,q}^{(2)}(-ba_{p,q}^{(2)}) + a_{p,q}^{(2)} + b_{p,q}^{(2)}$$

$$= a_{p,q}^{(2)} + b_{p,q}^{(2)} - pb_{p,q}^{(2)} - pa_{p,q}^{(2)} + a_{p,q}^{(2)} + b_{p,q}^{(2)}$$

$$= a_{p,q}^{(2)} + b_{p,q}^{(2)}$$

$$= a_{p,q}^{(2)} + b_{p,q}^{(2)}$$

$$(a_{p,q}^{(2)} + b_{p,q}^{(2)})(a+b) = a_{p,q}^{(2)}a + a_{p,q}^{(2)}b + b_{p,q}^{(2)}a + b_{p,q}^{(2)}b$$

$$= p + pa_{p,q}^{(2)}b + pb_{p,q}^{(2)}a + p$$

$$= p + p(a_{p,q}^{(2)}b + b_{p,q}^{(2)}a + 1)$$

$$= p,$$

and also

$$\begin{array}{lll} (a+b)(a_{p,q}^{(2)}+b_{p,q}^{(2)}) & = & aa_{p,q}^{(2)}+ba_{p,q}^{(2)}+ab_{p,q}^{(2)}+bb_{p,q}^{(2)}\\ & = & (1-q)+ba_{p,q}^{(2)}+ab_{p,q}^{(2)}+(1-q)\\ & = & (1-q)+ba_{p,q}^{(2)}(1-q)+ab_{p,q}^{(2)}(1-q)+(1-q)\\ & = & (1-q)+(ba_{p,q}^{(2)}+ab_{p,q}^{(2)}+1)(1-q)\\ & = & (1-q). \end{array}$$

Thus, we proved $(a+b)_{p,q}^{(2)} = a_{p,q}^{(2)} + b_{p,q}^{(2)}$.

The following theorem gives us equivalent conditions under which $x_{p,q}^{(2)}$ has the generalized Banachiewicz–Schur form in a Banach algebra.

Theorem 2.2. Let $x = \begin{bmatrix} a & b \\ c & d \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$, $p_1, q_1 \in (u\mathcal{A}u)^{\bullet}$ and $p_2, q_2 \in ((1-u)\mathcal{A}(1-u))^{\bullet}$ and let $p = p_1 + p_2 \in \mathcal{A}$ and $q = q_1 + q_2 \in \mathcal{A}$. Let $a \in (u\mathcal{A}u)^{(2)}_{p_1,q_1}$ and let $s = d - ca^{(2)}_{p_1,q_1}b \in ((1-u)\mathcal{A}(1-u))^{(2)}_{p_2,q_2}$ be the generalized Schur complement of a in x. Then the following statements are equivalent:

(i)
$$x \in \mathcal{A}_{p,q}^{(2)}$$
 and $x_{p,q}^{(2)} = r$, where

$$r = \begin{bmatrix} a_{p_1,q_1}^{(2)} + a_{p_1,q_1}^{(2)} b s_{p_2,q_2}^{(2)} c a_{p_1,q_1}^{(2)} & -a_{p_1,q_1}^{(2)} b s_{p_2,q_2}^{(2)} \\ -s_{p_2,q_2}^{(2)} c a_{p_1,q_1}^{(2)} & s_{p_2,q_2}^{(2)} \end{bmatrix}$$

(ii)
$$ca_{p_1,q_1}^{(2)}a = ss_{p_2,q_2}^{(2)}c$$
 and $aa_{p_1,q_1}^{(2)}b = bs_{p_2,q_2}^{(2)}s$.

Proof. By Lemma 1.4 we obtain that p and q are idempotents.

Using the assumptions $a \in (u\mathcal{A}u)_{p_1,q_1}^{(2)}$ and $s \in ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$, we verify rxr = r.

The equation rx = p is equivalent to the equations:

$$s_{p_2,q_2}^{(2)}c = s_{p_2,q_2}^{(2)}ca_{p_1,q_1}^{(2)}a \quad \text{ and } \quad a_{p_1,q_1}^{(2)}b = a_{p_1,q_1}^{(2)}bs_{p_2,q_2}^{(2)}s.$$

On the other hand, 1 - xr = q is equivalent to:

$$bs_{p_2,q_2}^{(2)} = aa_{p_1,q_1}^{(2)}bs_{p_2,q_2}^{(2)} \quad \text{ and } \quad ca_{p_1,q_1}^{(2)} = ss_{p_2,q_2}^{(2)}ca_{p_1,q_1}^{(2)}.$$

Therefore, x has (p,q)-outer generalized inverse if and only if

$$\begin{split} s_{p_2,q_2}^{(2)}c &= s_{p_2,q_2}^{(2)}ca_{p_1,q_1}^{(2)}a, \quad a_{p_1,q_1}^{(2)}b = a_{p_1,q_1}^{(2)}bs_{p_2,q_2}^{(2)}s, \\ bs_{p_2,q_2}^{(2)} &= aa_{p_1,q_1}^{(2)}bs_{p_2,q_2}^{(2)}, \quad ca_{p_1,q_1}^{(2)} = ss_{p_2,q_2}^{(2)}ca_{p_1,q_1}^{(2)}, \end{split}$$

which are equivalent to

$$ca_{p_1,q_1}^{(2)}a = ss_{p_2,q_2}^{(2)}c, \quad bs_{p_2,q_2}^{(2)}s = aa_{p_1,q_1}^{(2)}b.$$

As a corollary, we formulate the following result.

Corollary 2.3. Let $x = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$, $p_1, q_1 \in \mathcal{A}$ $(u\mathcal{A}u)^{\bullet}$ and $p_2, q_2 \in ((1-u)\mathcal{A}(1-u))^{\bullet}$ and let $p = p_1 + p_2 \in \mathcal{A}$ and $q = q_1 + q_2 \in \mathcal{A}$. Let $a \in (u\mathcal{A}u)_{p_1,q_1}^{(2)}$ and let $s = d - ca_{p_1,q_1}^{(2)}b \in ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$. The following statements are equivalent:

(i)
$$ca_{p_1,q_1}^{(2)} = a_{p_1,q_1}^{(2)}b = bs_{p_2,q_2}^{(2)} = s_{p_2,q_2}^{(2)}c = 0,$$

(i)
$$ca_{p_1,q_1}^{(2)} = a_{p_1,q_1}^{(2)}b = bs_{p_2,q_2}^{(2)} = s_{p_2,q_2}^{(2)}c = 0,$$

(ii) $ca_{p_1,q_1}^{(2)}a = ss_{p_2,q_2}^{(2)}c, \quad aa_{p_1,q_1}^{(2)}b = bs_{p_2,q_2}^{(2)}s,$
 $a_{p_1,q_1}^{(2)}bs_{p_2,q_2}^{(2)} = s_{p_2,q_2}^{(2)}ca_{p_1,q_1}^{(2)} = 0.$

If one of these conditions is satisfied, then $x \in \mathcal{A}_{p,q}^{(2)}$ and

$$x_{p,q}^{(2)} = \begin{bmatrix} a_{p_1,q_1}^{(2)} + a_{p_1,q_1}^{(2)} b s_{p_2,q_2}^{(2)} c a_{p_1,q_1}^{(2)} & -a_{p_1,q_1}^{(2)} b s_{p_2,q_2}^{(2)} \\ -s_{p_2,q_2}^{(2)} c a_{p_1,q_1}^{(2)} & s_{p_2,q_2}^{(2)} \end{bmatrix}.$$

3. (p,q)-condition spectrum and (p,q)-pseudospectrum

The pseudospectrum and the condition spectrum were studied in [4], [7] and [9].

Definition 3.1. [9] (Pseudospectrum)

Let $\epsilon > 0$. The ϵ -pseudospectrum of an element $a \in \mathcal{A}$ is defined as

$$\Lambda_{\epsilon}(a) = \left\{ z \in \mathbb{C} \mid a - z \text{ is not invertible or } ||(a - z)^{-1}|| \ge \epsilon \right\}.$$

Definition 3.2. [4] (Condition spectrum)

Let $0 < \epsilon < 1$. The ϵ -condition spectrum of an element $a \in \mathcal{A}$ is defined as

$$\sigma_{\epsilon}(a) = \left\{ z \in \mathbb{C} \mid a - z \text{ is not invertible or } ||(a - z)^{-1}|| \cdot ||a - z|| \ge \frac{1}{\epsilon} \right\}.$$

We generalize the pseudospectrum and the condition spectrum, and we formulate (p,q)-pseudospectrum and (p,q)-condition spectrum as follows:

Definition 3.3. ((p,q)-pseudospectrum)

Let $\epsilon > 0$. The $(p,q) - \epsilon$ -pseudospectrum of an element $a \in \mathcal{A}$ is defined as

$$\Lambda_{\epsilon}(a) = \left\{ z \in \mathbb{C} \mid a - z \notin \mathcal{A}_{p,q}^{(2)} \text{ or } ||(a - z)_{p,q}^{(2)}|| \ge \epsilon \right\}.$$

Definition 3.4. ((p,q)-condition spectrum)

Let $0 < \epsilon < 1$. The $(p,q) - \epsilon$ -condition spectrum of an element $a \in \mathcal{A}$ is defined as

$$\sigma_{(p,q)-\epsilon}(a) = \left\{ z \in \mathbb{C} \mid a - z \notin \mathcal{A}_{p,q}^{(2)} \text{ or } ||(a - z)_{p,q}^{(2)}|| \cdot ||a - z|| \ge \frac{1}{\epsilon} \right\}.$$

Notice that the uniqueness of $a_{p,q}^{(2)}$ allows us to consider the (p,q)-pseudospectrum and (p,q)-condition spectrum.

If $x = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$, then the norm of x can be define as

$$||x|| = \max\{||a||, ||b||\}.$$

Now, we state an auxiliary result.

Lemma 3.5. Let $x = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$, $p_1, q_1 \in (u\mathcal{A}u)^{\bullet}$ and $p_2, q_2 \in ((1-u)\mathcal{A}(1-u))^{\bullet}$ and let $p = p_1 + p_2 \in \mathcal{A}$ and $q = q_1 + q_2 \in \mathcal{A}$. Then $x \in \mathcal{A}_{p,q}^{(2)}$ if and only if $a \in (u\mathcal{A}u)_{p_1,q_1}^{(2)}$ and $b \in ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$. If $x \in \mathcal{A}_{p,q}^{(2)}$, then

$$x_{p,q}^{(2)} = \begin{bmatrix} a_{p_1,q_1}^{(2)} & 0\\ 0 & b_{p_2,q_2}^{(2)} \end{bmatrix}_{u}.$$

Proof. By Lemma 1.4 we obtain that p and q are idempotents.

If $a \in (u\mathcal{A}u)_{p_1,q_1}^{(2)}$ and $b \in ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$, by Theorem 2.2, we obtain $x \in \mathcal{A}_{p,q}^{(2)}$.

If $x \in \mathcal{A}_{p,q}^{(2)}$, there exists the element $y = \begin{bmatrix} a_1 & c \\ d & b_1 \end{bmatrix}_u \in \mathcal{A}$ such that $y = x_{p,q}^{(2)}$. The equation yxy = y is equivalent to equations:

$$a_1aa_1 + cbd = a_1$$
$$a_1ac + cbb_1 = c$$
$$daa_1 + b_1bd = d$$
$$dac + b_1bb_1 = b_1.$$

Also, yx = p is equivalent to:

$$a_1 a = p_1$$

$$cb = 0$$

$$da = 0$$

$$b_1 b = p_2,$$

and 1 - xy = q is equivalent to:

$$u - aa_1 = q_1$$

$$ac = 0$$

$$bd = 0$$

$$(1 - u) - bb_1 = q_2.$$

The equations $a_1ac + cbb_1 = c$, cb = 0 and ac = 0 imply c = 0. Analogously, $daa_1 + b_1bd = d$, da = 0 and bd = 0 imply d = 0. Now, we have the equations:

$$a_1 a a_1 = a_1$$
$$a_1 a = p_1$$
$$u - a a_1 = q_1,$$

and

$$b_1bb_1 = b_1$$
$$b_1b = p_2$$
$$(1 - u) - bb_1 = q_2$$

proving $a_1 = a_{p_1,q_1}^{(2)}$ and $b_1 = b_{p_2,q_2}^{(2)}$. Furthermore, if $x \in \mathcal{A}_{p,q}^{(2)}$, then

$$x_{p,q}^{(2)} = \begin{bmatrix} a_{p_1,q_1}^{(2)} & 0\\ 0 & b_{p_2,q_2}^{(2)} \end{bmatrix}_u.$$

As a corollary, we have the following result for the invertibility of an element $x = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$.

Lemma 3.6. Let $x = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$. Then $x \in \mathcal{A}^{-1}$ if and only if $a \in (u\mathcal{A}u)^{-1}$ and $b \in ((1-u)\mathcal{A}(1-u))^{-1}$. If $x \in \mathcal{A}^{-1}$, then

$$x^{-1} = \left[\begin{array}{cc} a^{-1} & 0 \\ 0 & b^{-1} \end{array} \right]_u.$$

Therefore, for the spectrum of an element $x = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}_u \in \mathcal{A}$, the following holds

$$\sigma(x) = \sigma(a) \cup \sigma(b).$$

We investigate whether the similar property holds for the pseudospectrum and condition spectrum. We formulate the following results.

Theorem 3.7. Let $x = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$, $\epsilon > 0$, $p_1, q_1 \in (u\mathcal{A}u)^{\bullet}$ and $p_2, q_2 \in ((1-u)\mathcal{A}(1-u))^{\bullet}$ and let $p = p_1 + p_2 \in \mathcal{A}$ and $q = q_1 + q_2 \in \mathcal{A}$. Then

$$\Lambda_{(p,q)-\epsilon}(x) = \Lambda_{(p_1,q_1)-\epsilon}(a) \cup \Lambda_{(p_2,q_2)-\epsilon}(b).$$

Proof. Let $z \in \Lambda_{(p,q)-\epsilon}(x)$. Then $x - z \notin \mathcal{A}_{p,q}^{(2)}$ or $||(x-z)_{p,q}^{(2)}|| \ge \epsilon$. If $x - z = \begin{bmatrix} a - zu & 0 \\ 0 & b - z(1-u) \end{bmatrix}_u \notin \mathcal{A}_{p,q}^{(2)}$, by Lemma 3.5, we obtain that $a - zu \notin (u\mathcal{A}u)_{p_1,q_1}^{(2)}$ or $b - z(1-u) \notin ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$. It implies $z \in \Lambda_{(p_1,q_1)-\epsilon}(a)$ or $z \in \Lambda_{(p_2,q_2)-\epsilon}(b)$, so $z \in \Lambda_{(p_1,q_1)-\epsilon}(a) \cup \Lambda_{(p_2,q_2)-\epsilon}(b)$. If $x - z = \begin{bmatrix} a - zu & 0 \\ 0 & b - z(1-u) \end{bmatrix}_u \in \mathcal{A}_{p,q}^{(2)}$, we have

$$(x-z)_{p,q}^{(2)} = \begin{bmatrix} (a-zu)_{p_1,q_1}^{(2)} & 0\\ 0 & (b-z(1-u))_{p_2,q_2}^{(2)} \end{bmatrix}$$

and

$$||(x-z)_{p,q}^{(2)}|| = \max\{||(a-zu)_{p_1,q_1}^{(2)}||, ||(b-z(1-u))_{p_2,q_2}^{(2)}||\} \ge \epsilon.$$

By Lemma 3.5, we conclude that

$$a - zu \in (u\mathcal{A}u)_{p_1,q_1}^{(2)}$$
 and $b - z(1-u) \in ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$.

The assumption $\max\{||(a-zu)_{p_1,q_1}^{(2)}||, ||(b-z(1-u))_{p_2,q_2}^{(2)}||\} \ge \epsilon$ implies that either $||(a-zu)_{p_1,q_1}^{(2)}|| \ge \epsilon$ or $||(b-z(1-u))_{p_2,q_2}^{(2)}|| \ge \epsilon$ holds. It follows that $z \in \Lambda_{(p_1,q_1)-\epsilon}(a)$ or $z \in \Lambda_{(p_2,q_2)-\epsilon}(b)$, so $z \in \Lambda_{(p_1,q_1)-\epsilon}(a) \cup \Lambda_{(p_2,q_2)-\epsilon}(b)$. We have proved $\Lambda_{(p,q)-\epsilon}(x) \subset \Lambda_{(p_1,q_1)-\epsilon}(a) \cup \Lambda_{(p_2,q_2)-\epsilon}(b)$.

Now, let $z \in \Lambda_{(p_1,q_1)-\epsilon}(a) \cup \Lambda_{(p_2,q_2)-\epsilon}(b)$. It follows

$$a - zu \notin (u\mathcal{A}u)_{p_1,q_1}^{(2)} \text{ or } ||(a - zu)_{p_1,q_1}^{(2)}|| \ge \epsilon$$

or

$$b - z(1-u) \notin ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)} \text{ or } ||(b-z(1-u))_{p_2,q_2}^{(2)}|| \ge \epsilon.$$

If either $a - zu \notin (u\mathcal{A}u)_{p_1,q_1}^{(2)}$ or $b - z(1-u) \notin ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$, by Lemma 3.5, it follows $x - z \notin \mathcal{A}_{p,q}^{(2)}$. So, $z \in \Lambda_{(p,q)-\epsilon}(x)$. On the other hand, if

$$a - zu \in (u\mathcal{A}u)_{p_1,q_1}^{(2)}$$
 and $b - z(1-u) \in ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$

it holds either $||(a-zu)_{p_1,q_1}^{(2)}|| \ge \epsilon$ or $||(b-z(1-u))_{p_2,q_2}^{(2)}|| \ge \epsilon$. Therefore, $||(x-z)_{p,q}^{(2)}|| = \max\{||(a-zu)_{p_1,q_1}^{(2)}||,||(b-z(1-u))_{p_2,q_2}^{(2)}||\} \ge \epsilon$. This proves that $z \in \Lambda_{(p,q)-\epsilon}(x)$.

The inclusion $\Lambda_{(p_1,q_1)-\epsilon}(a) \cup \Lambda_{(p_2,q_2)-\epsilon}(b) \subset \Lambda_{(p,q)-\epsilon}(x)$ has been proved. \square

Theorem 3.8. Let $x = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$, $0 < \epsilon < 1$, $p_1, q_1 \in (u\mathcal{A}u)^{\bullet}$ and $p_2, q_2 \in ((1-u)\mathcal{A}(1-u))^{\bullet}$ and let $p = p_1 + p_2 \in \mathcal{A}$ and $q = q_1 + q_2 \in \mathcal{A}$. Then

$$\sigma_{(p_1,q_1)-\epsilon}(a) \cup \sigma_{(p_2,q_2)-\epsilon}(b) \subset \sigma_{(p,q)-\epsilon}(x).$$

Proof. Let $z \in \sigma_{(p_1,q_1)-\epsilon}(a) \cup \sigma_{(p_2,q_2)-\epsilon}(b)$. These imply

$$|a - zu \notin (u\mathcal{A}u)_{p_1,q_1}^{(2)} \text{ or } ||(a - zu)_{p_1,q_1}^{(2)}|| \cdot ||a - zu|| \ge \frac{1}{\epsilon}$$

or

$$b - z(1-u) \notin ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)} \text{ or } ||(b-z(1-u))_{p_2,q_2}^{(2)}|| \cdot ||b-z(1-u)|| \ge \frac{1}{\epsilon}.$$

If either $a - zu \notin (u\mathcal{A}u)_{p_1,q_1}^{(2)}$ or $b - z(1-u) \notin ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$, by Lemma 3.5, it follows $x - z \notin \mathcal{A}_{p,q}^{(2)}$. Then, we have $z \in \sigma_{(p,q)-\epsilon}(x)$. On the other hand, if

$$a - zu \in (u\mathcal{A}u)_{p_1,q_1}^{(2)}$$
 and $b - z(1-u) \in ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$,

it holds either

$$||(a-zu)_{p_1,q_1}^{(2)}||\cdot||a-zu|| \ge \frac{1}{\epsilon} \text{ or } ||(b-z(1-u))_{p_2,q_2}^{(2)}||\cdot||b-z(1-u)|| \ge \frac{1}{\epsilon}.$$

Without loss of generality, assume that $||(a-zu)_{p_1,q_1}^{(2)}|| \cdot ||a-zu|| \geq \frac{1}{\epsilon}$ holds. Therefore,

$$||(x-z)_{p,q}^{(2)}||||x-z|| = \max\{||(a-zu)_{p_1,q_1}^{(2)}||, ||(b-z(1-u))_{p_2,q_2}^{(2)}||\} \cdot \max\{||a-zu||, ||b-z(1-u)||\}$$

$$\geq ||(a-zu)_{p_1,q_1}^{(2)}|| \cdot ||a-zu|| \geq \frac{1}{\epsilon}.$$

This proves that $z \in \sigma_{(p,q)-\epsilon}(x)$.

The next example shows that the converse inclusion is not true in the previous theorem.

Example 3.9. Let $0 < \epsilon < 1$, $z \in \mathbb{C}$ and $u \in \mathcal{A}^{\bullet}$ such that $||u|| < \frac{1}{\sqrt{\epsilon}}$ and $||1 - u|| < \frac{1}{\sqrt{\epsilon}}$. Let $x = \begin{bmatrix} (\epsilon^2 + z)u & 0 \\ 0 & (\epsilon + z)(1 - u) \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$. Then

$$z \in \sigma_{(1,0)-\epsilon}(x)$$
, but $z \notin (\sigma_{(u,0)-\epsilon}((\epsilon^2+z)u) \cup \sigma_{(1-u,0)-\epsilon}((\epsilon+z)(1-u)))$.

Proof. For idempotents $u \in \mathcal{A}$ and $1 - u \in \mathcal{A}$, we have $||u|| \ge 1$ and $||1 - u|| \ge 1$. There exists the inverse

$$(x-z)_{1,0}^{(2)} = \begin{bmatrix} \frac{1}{\epsilon^2} u & 0\\ 0 & \frac{1}{\epsilon} (1-u) \end{bmatrix}_u$$

as well as inverses

$$((\epsilon^{2} + z)u - zu)_{u,0}^{(2)} = (\epsilon^{2}u)_{u,0}^{(2)} = \frac{1}{\epsilon^{2}}u$$

and

$$((\epsilon + z)(1 - u) - z(1 - u))_{1-u,0}^{(2)} = (\epsilon(1 - u))_{1-u,0}^{(2)} = \frac{1}{\epsilon}(1 - u).$$

Now, we have

$$\begin{aligned} &||(x-z)_{1,0}^{(2)}||||x-z|| = \\ &= \max\{||\frac{1}{\epsilon^2}u||, ||\frac{1}{\epsilon}(1-u)||\} \cdot \max\{||\epsilon^2u||, ||\epsilon(1-u)||\} \\ &= ||\frac{1}{\epsilon^2}u|| \cdot ||\epsilon(1-u)|| \ge \left|\frac{1}{\epsilon^2}\right| \cdot |\epsilon| \ge \frac{1}{\epsilon}, \end{aligned}$$

but also

$$||(\epsilon^2 u)_{u,0}^{(2)}|| \cdot ||\epsilon^2 u|| = ||\frac{1}{\epsilon^2} u|| \cdot ||\epsilon^2 u|| = ||u||^2 < \frac{1}{\epsilon} ,$$

and

$$||(\epsilon(1-u))_{1-u,0}^{(2)}||\cdot||\epsilon(1-u)|| = ||\frac{1}{\epsilon}(1-u)||\cdot||\epsilon(1-u)|| = ||1-u||^2 < \frac{1}{\epsilon}.$$

Therefore,

$$z \in \sigma_{(1,0)-\epsilon}(x)$$
, but $z \notin (\sigma_{(u,0)-\epsilon}((\epsilon^2+z)u) \cup \sigma_{(1-u,0)-\epsilon}((\epsilon+z)(1-u)))$.

If $x \in \mathcal{A}$ is invertible, p = 1 and q = 0, then $x^{-1} = x_{p,q}^{(2)}$.

As corollaries of Theorem 3.7 and Theorem 3.8, we formulate the following results for the pseudospectrum and the condition spectrum.

Theorem 3.10. Let $x = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$ and $\epsilon > 0$. Then

$$\Lambda_{\epsilon}(x) = \Lambda_{\epsilon}(a) \cup \Lambda_{\epsilon}(b).$$

Theorem 3.11. Let $x = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$ and $0 < \epsilon < 1$. Then

$$\sigma_{\epsilon}(a) \cup \sigma_{\epsilon}(b) \subset \sigma_{\epsilon}(x).$$

Acknowledgement. The author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 174007

References

- 1. J.K. Baksalary and G.P.H. Styan, Generalized inverses of partitioned matrices in Banachiewicz-Schur form, Linear Algebra Appl. 354 (2002), 41–47.
- D.S. Djordjevic and V. Rakocevic, Lectures on generalized inverses, Faculty of Sciences and Mathematics, University of Nis, 2008.
- 3. D.S. Djordjević and Y. Wei, *Outer generalized inverses in rings*, Comm. Algebra **33** (2005), 3051–3060.
- S.H. Kulkarni and D. Sukumar, The condition spectrum, Acta Sci. Math. (Szeged) 74 (2008), no. 3-4, 625-641.
- B. Načevska and D.S. Djordjević, Inner generalized inverses with prescribed idempotents, Comm. Algebra 39 (2011), 1–14.
- 6. B. Načevska and D.S. Djordjević, Outer generalized inverses in rings and related idempotents, Publ. Math. Debrecen **73** (2008), no. 3-4, 309–316.
- D. Sukumar, Comparative results on eigenvalues, pseudospectra and conditionspectra, arXiv preprint arXiv: 1109.2731 (2011).
- 8. Y. Tian and Y. Takane, Schur Complements and Banachiewicz-Schur Forms, Electronic. J. Linear Algebra 13 (2005), 405–418.
- 9. L.N. Trefethen and M. Embree, *Spectra and pseudospectra*, Princeton University Press, Princeton, NJ, 2005.
- 10. F. Zhang (Ed.), The Schur Complement and its Applications, Springer, 2005.

FACULTY OF SCIENCES AND MATHEMATICS, UNIVERSITY OF NIŠ, P.O. BOX 224, VIŠEGRADSKA 33, 18000 NIŠ, SERBIA.

E-mail address: mkolundzija@pmf.ni.ac.rs, milica.kolundzija@gmail.com