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ABSTRACT. We investigate additive results for (p, ¢)-outer generalized inverse
of elements in Banach algebra, along with the representation of this inverse in
a block matrix in the Banachiewicz—Schur form. Additionally, we investigate
the (p, ¢)-pseudospectrum and (p, g)-condition spectrum of a block matrix x =

a

0 b in a Banach algebra.

1. INTRODUCTION

Let A be the complex unital Banach algebra with unit 1. The sets of all idem-
potents and invertible elements of A will be denoted by A® and A, respectively.

An element a € A is outer generalized invertible, if there exists some b € A
satisfying b = bab. Such b is called the outer generalized inverse of a. In this
case ba and 1 — ab are idempotents corresponding to a and b. The set of all outer
generalized invertible elements of A will be denoted with A

Djordjevi¢ and Wei introduced outer generalized inverses with prescribed idem-
potents in [3] (see also [2]):

Definition 1.1. [3] Let a € A and p,q € A*. An element b € A satisfying
bab = b,ba = p,1 — ab = q,
will be called a (p, ¢)-outer generalized inverse of a, written aj(fg =b.
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The uniqueness of a 1s provided in the following theorem.

Theorem 1.2. [3] Let a € A and p,q € A*. Then the following statements are
equivalent:
(1) a,(fg exists;
(2) (1—q)a=(1—q)ap, and there exists some b € A such that pb =b,bqg =0
and ab =1 —q.
Moreover, if a](fg exists, then it is unique.

The set of all outer generalized invertible elements of A with prescribed idem-
potents p,q € A* will be denoted with Aff,;. Outer generalized inverses in rings
can be found in [0]. Also, inner generalized inverses with prescribed idempotents
were studied in [5].

Let M be a 2 x 2 block matrix M = {C’ D

C € C»" and D € C**. If A is invertible, then the Schur complement of A in
M is defined as

A B ], where A € C™*", B € C™*F,

S=D-CA'B.
If M is invertible, then S is invertible, too, and M can be decomposed as
M= I, O A0 I, A'B
| CATY I 0 S 0 I ’
where [; is the identity matrix of order ¢. In this case, the inverse of M can be
written as

ot [Ie —ATBI[ AT 0 L. 0
=10 1 0 S || —ca
A4 AIBSICAY _ATIBS! (1.1)
- —S-1CA! St }

Result (1.1) is well known as the Banachiewicz—Schur form of M, and it has
been used in dealing with inverses of block matrices; see [, &,

Analogously, we can represent an element of Banach algebra in a block matrix
form as follows.
Let u € A be an idempotent. Then we can represent element a € A as

| 11 ai2
a = )
{ a1 G22 L
where a1 = uau, ajo = ua(l —u), ag; = (1 — w)au, ag = (1 —u)a(l — u).

a b
Letx:{c d

the Schur complement s = d — ca™'b € ((1 — u).A(1 — u))~!, then the inverse of
x has the Banachiewicz—Schur form

1 [ at+atbstea™t —aths!

] € A relative to the idempotent v € A. If a € (uAu)~! and

—s tea™t s71
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If a € (uwAu) is not invertible but has the outer generalized inverse with pre-
scribed idempotents py,q; € (uAu)®, we can observe the generalized Schur com-

plement s = d — cathlb.

Accordingly, we investigate equivalent conditions under which :17% has the gen-
eralized Banachiewicz—Schur form in a Banach algebra.

We use the following auxiliary results.

Lemma 1.3. Let p,q be idempotents in a Banach algebra A. The following
statements are equivalent:

i) p+qge A,
(ii) pg = qp = 0.

Proof. (i) = (ii): Suppose p + g € A®. We have
P+a)’=p+q=pg+q=0=pg=—qp.
Since the following holds
pq = p*q* = p(pg)q = p(—qp)a = —pa(pq) = pagp = pgp = —ppg = —pq,

we obtain pqg = 0. The analogous proof holds for gp = 0.

(17) = (i): Let p,q € A*® such that pg = gp = 0. Then

P+’ =v"+p+w+=p+q

sop+qe A O

If u € A°®, then the product of arbitrary elements from algebra u.4u and (1 —
u)A(1 — u) is equal to 0, i.e. for all @ € wAu and for all b € (1 — u)A(l —u), we
have ab = 0.

Now, as a corollary of Lemma 1.3, we state the following result.

Lemma 1.4. Let v € A*. If p1 € (vAuw)® and ps € ((1 — uw)A(l — u))*, then
p=p1 + p2 € A is an idempotent.

2. (p,q)-OUTER GENERALIZED INVERSE

The first result gives the additive properties of the (p,q)-outer generalized
inverse.

Theorem 2.1. Let p,q € A® and a,b € .A,(f;. If

aPb+bPa+1=0,  ab®)+bal?) +1=0, (2.1)
then a +b € A](fg and
(@ D) = o)+ 1)
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Proof. Using the fact that a,b € Aﬂ, Theorem 1.2 and conditions (2.1), we have
@) | .2 (2)
( q+bpq)(a+b)(apq+bpq)

= a2+ b + o + )1 — g) + bha(1 — q) + bgabing + pag + by
= az(o?g + bz(og + ap qbap%; + a;g,q + bp,q + bp qab(, az(v, b1(72q
2 2 (2) 2 2
— a%é% +b%% + pq(b @ 4 )+bpq( +abp )( ; ;3(4;15 )
= az()é% + bpq + ap ng abp ?2))"‘ bp q( ba(];:)’l) + apg + bpq
azég + bz(%% — pbp q — Pap,g + ap,q + bpg
= apg + bpg,
@@+ (a+b) = alla+allb+bPa+ bR
= p—l—paqu pbDa+p
= p+palb+bPa+1)
- pa
and also
(@a+b)(a?+b2) = aa?)+ ba;?; + abg; + bb}fg

Thus, we proved (a + b);(f; = al(fg +

O

The following theorem gives us equivalent conditions under which x% has the
generalized Banachiewicz—Schur form in a Banach algebra.

Theorem 2.2. Let x = [ CCL Z } € A relative to the idempotent u € A, p1,q1 €

(wAw)® and py, qo € ((1—U)A(1—Z)). andletp =pi+ps € Aandqg=q+q € A.
Leta € (u./élu)g),q1 and let s = d—ca'P g b € ((1—u)./él(l—u))g%q2 be the generalized
Schur complement of a in x. Then the following statements are equivalent:

(i) z € AR and xi%) = r, where

(2) (2) (2)

(2) (2) (2) (2) (2) (2)
— Apy,q1 + Ap1,q1 b5p27<12 Capi,q1  —Qpi,q1 bspz#zz
—Sp2,q2Clp1,q1 Spa,q2

(i) caprna = ssmpc and aag b = bsp s,
Proof. By Lemma 1.4 we obtain that p and ¢ are idempotents.
(2)

Using the assumptions a € (uAu)y and s € ((1 — u)A(1 — u))\2y,, we verify
rer =r.
The equation rx = p is equivalent to the equations:

2 . 2 2)
Sp2,a2C = Spoga Chpy g1 @ and apl Q1b - apl Q1 bsm q2
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On the other hand, 1 — xr = ¢ is equivalent to:

2) (2) _ 4.2 (2)
bspz 92 aam Q1 bsm q2 and Cam,tn - Sspz,qz Cam,qr

Therefore, x has (p, q)-outer generalized inverse if and only if

2) (2) (2) a? 2)
SPQ QQC - sz q2 Capl Q1a p1 q1b - apl q1 bspz q2
2) 2) (2) (2) 2)
bSPQ q2 aapl q bspz q2) Capl Qa 88?2 q2 Capl Q)

which are equivalent to

(2) — <c(?
ca 4= 88,45

P ¢, bs® s=qaa? b

P2,92 P1,q1

As a corollary, we formulate the following result.

Corollary 2.3. Let x = @ Z

(wAu)® and py, g2 € (1—u)A(1—u))® and let p = p1+p2 € A and ¢ = q1+q2 € A.
Let a € (1/J¢4lu);()21),q1 and let s = d — cal(,zl),qlb €(1—u)A(l— u)),()?m. The following
statements are equz’valent'

€ A relative to the idempotent u € A, p1,q1 €

(i) Caz(;?th = am q1b = bsg @ = 51()2)qzc 0,

.. 2 2) 2 (2)
(ii) Capl q1a = S5p2,q2 Gy aapy,q b = bSpy g, 8,

(2) _ @ (2)
pi,q1 b3p2 @2 = SpargaCapiiqr = 0.

If one of these conditions is satisfied, then x € Aﬂ and

2 2 2 2 2
l‘(2) o a;gl):(h + a1(01,Q1 bS;Q)#ZQCaél)fh _a1(01),q21 bspz),qz

Pag (2)
—Spa,q2 Caphth Sp2,q2

3. (p, q)-CONDITION SPECTRUM AND (p, ¢)-PSEUDOSPECTRUM

The pseudospectrum and the condition spectrum were studied in [4], [7] and
9]

Definition 3.1. [9] (Pseudospectrum)
Let € > 0. The e-pseudospectrum of an element a € A is defined as

Ac(a) = {z € C| a— z is not invertible or ||(a — z) || > €} .

Definition 3.2. [1] (Condition spectrum)
Let 0 < € < 1. The e-condition spectrum of an element a € A is defined as

1
oc(a) = {z € C| a— z is not invertible or ||(a — 2)7|| - [la — z|| > —}.
€

We generalize the pseudospectrum and the condition spectrum, and we formu-
late (p, q)-pseudospectrum and (p, ¢)-condition spectrum as follows:
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Definition 3.3. ((p, ¢)-pseudospectrum)
Let € > 0. The (p, q) — e-pseudospectrum of an element a € A is defined as
Afa)={z€Cla—-z¢ Al(fg or ||(a — z)gH > e}

Definition 3.4. ((p, ¢)-condition spectrum)
Let 0 < e < 1. The (p,q) — e-condition spectrum of an element a € A is defined
as

1
o) = { € Claz ¢ A or @@= A1 lla 21| = 7}

Notice that the uniqueness of a](fg allows us to consider the (p, ¢)-pseudospectrum
and (p, q)-condition spectrum.

0 b
can be define as

If v = [ a 0 } € A relative to the idempotent u© € A, then the norm of x

||z|] = max{]lall, |[b]]}-
Now, we state an auxiliary result.
Lemma 3.5. Let x = { 3 2 } € A relative to the idempotent u € A, p1,q €

(uAu)® and pa, g2 € ((1—u)A(1—uu))' andletp =pi+ps € Aandqg=q+q € A.
Then z € AY) if and only if a € (uAw) g and b e (1 —u) Al — u))\2,y,.

Ifx € A;(f(}, then
22 _ ay)y 0
Pq 0 b(2)
P2,92 “

Proof. By Lemma 1.4 we obtain that p and ¢ are idempotents.

If a € (u.,élu)lgl),q1 and b € ((1 —u)A(l — u))g),q,z, by Theorem 2.2, we obtain
x € A,(,?g.

Ifxe A;(fg, there exists the element y = [ @ c

d b
equation yxry = y is equivalent to equations:

} € A such that y = :B,(fz. The

ajaa; + cbd = a;
ajac + cbby = ¢
daay + bibd = d
dac + b1bby = by.

Also, yxr = p is equivalent to:

a a = p
chb=0
da =0

blb = P2,
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and 1 — xy = ¢ is equivalent to:
u—aa; = q
ac=10
bd =0
(1 —u) —bby = qo.

The equations ajac + c¢bby = ¢, ¢b = 0 and ac = 0 imply ¢ = 0. Analogously,
daay, + b1bd = d, da = 0 and bd = 0 imply d = 0. Now, we have the equations:

ajaap = aq

a1 =P

U — aap = 4,

and
b10by = by
bib = py
(1 —u) —bby = qo

proving a; = al()21)7q1 and b; = bl()22)7Q2-

Furthermore, if z € A%, then
2
x(z) — azgn),ql 20
0 b |

As a corollary, we have the following result for the invertibility of an element

O

x = [ g 2 } € A relative to the idempotent u € A .

a 0
Lemma 3.6. Let x = { 0 b

r e A7 if and only if a € (uwAu)™! and b € (1 —u)A(1l —u))t.

Ifv € A7, then
-1 _ ail 0
= -

Therefore, for the spectrum of an element z = [ 8 2 } € A, the following
holds '

] € A relative to the idempotent uw € A. Then

o(z) =0(a)Ua(b).
We investigate whether the similar property holds for the pseudospectrum and
condition spectrum. We formulate the following results.
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Theorem 3.7. Let x = € A relative to the idempotent u € A, € > 0,

a 0
0 b
p1,q1 € (wAuw)® and pe,q € ((1 —u)A(l —w))® and let p = p1 + p2 € A and

g=q +q € A. Then
Ap.g—e(2) = Aprg)—e(0) U Ay g0)—e(D).
Proof. Let z € Ay g)—c(x). Then z — 2 ¢ AR or [|(z — )| > e.
If v —2z = [ a—Ozu b—z(ol —w) }u ¢ Aﬂ, by Lemma 3.5, we obtain that

a—zu @ (uAWD, or b—2(1—u) ¢ (1 — wAl — u)?Py,. It implies z €
Arag)—c(@) or 2 € Ay g,)c(b), 50 2 € Mpy 1) (@) U Ay go) (D).

o _|a—zu 0 (2)
Ifr—2z= 0 b_z(l_u)LEAM,wehave
(2)
a— zu) 0
(SB . Z)(Q) — ( P1,q1
m 0 (b= 2(1 = u))js
and
(2 = 2)gll = max{[[(a — zu)i? [ 11(0 = 2(1 = u)) 2, |I} > e.

By Lemma 3.5, we conclude that

and b— z(1 —u) € (1 —u)A(l —u))?

a— zZu € (u.Au) D2,q2°

pP1,q1
The assumption max{||(a — ,zu)j(fl),q1 I, [[(b—z(1 —u))§,22)7q2||} > € implies that either
[(a—2u)50 || = €or ||(b—z(1—u))5e]| = €holds. Tt follows that z € Ay, 41)—e(a)
Or 2 € Mpga)—e(b), 50 2 € Mgy g1)-e(@) U Ay o) (0).

We have proved A g)—c(%) C Ay g1)—e(@) U A(py,g0)—e(D)-

Now, let 2 € A, g1)—c(a) U A, g0)—e(D). It follows

a—zu ¢ (uAu)?, or [|(a—2u)? || > e

P1,91 P11l —

or

b—2(1—u) ¢ (1 —w) Al —u)P, or [I(b—2(1—u)P, |l > e

p2,92
If either a — zu ¢ (uAu)z(g,Zl),q1 orb—z(1—wu) ¢ ((1—u)Al - u))pMQ, by Lemma
3.5, it follows x — z ¢ A;(fg. So, z € Apg)—e(T).
On the other hand, if
and b— 2(1 —u) € (1 —u)A(l —u))?

a—zu € (uAu)? 2,027

P1,91

it holds either ||(a — 2u)2u || = € or [|(b — 2(1 — w))P4pl|| > e Therefore,
1z = 2)pall = max{||(@ — zu)j ], [|(b = 2(1 = w))jq|[} > € This proves that
z € A(W,)_E(x).

The inclusion A, 4)—c(a) U Ay g0)—e(b) C Agpq—e(x) has been proved. O
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Theorem 3.8. Let x = [ E)L 2 € A relative to the idempotentu € A, 0 < € <

L, p1,q1 € (wAw)® and pe,qa € ((ul —uw)A(l —w))® and let p=p1 + p2 € A and
q=q+q € A. Then

O (p1,a1)—e(@) U O(pg q0)—(b) C O (p,q)—e(2)-
Proof. Let 2 € 0y, g1)—(@) U 0(py,45)—c(b). These imply

1
a—zu ¢ (u.,élu)p1 o OT ||(a—zu)§,21)7q1]| Nla — zul| > -
or
1
b—z(1—u) ¢ ((1—u) A —u),, or [[(b—2(L—u)D [l [Ib—2(1—u)|| > -

If either a — zu ¢ (uAu)$q, or b— z(1—u) ¢ (1 — w)A(l — u))'2y,, by Lemma
3.5, it follows x — z ¢ A?) . Then, we have z € T(p.g)—e(T).
On the other hand, if

a— zu € (uAu)?
it holds either

and b — z(1 —u) € (1 —u)A(l —u))?

P1,91 p2,92?

1 1
_ @ g — Z — — — — z
[1(a = 2u) | lla = zull = — or [|(b = 2(1 = w)D)p, [ - [Ib— 2(1 = w)]| > =
1
Without loss of generality, assume that ||(a — zu)z(fl),qu - |la — zul|| > — holds.
€
Therefore,

liw = 2)pallle — 2 = .
= maxc{]|(a = 2u)iZn I, 10 = 2(1 = W) I} - mace{ 2], [Jb — (1 = w)I}

2
> [|(a — 20| - lla — zul] > .

This proves that z € o(,g)—(2).
0J

The next example shows that the converse inclusion is not true in the previous
theorem.

1
Example 3.9. Let 0 < ¢ < 1, z € C and u € A® such that ||u|]| < —= and

e

1 @+ 2)u 0 .
11 —ul| < 7 Let x = 0 (e+2)(1—u) | € A relative to the
idempotent v € A. Then
2 € 0(10)—e(2), but 2 & (0(u0)—c((€ + 2)u) Uoq_uo—((e + 2)(1 —u))).

Proof. For idempotents u € A and 1 —u € A, we have ||u|| > 1 and ||1 —u|| > 1.
There exists the inverse
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as well as inverses

and
(4 2)(1 =) — 21— w)Pop = (el — u)Prg = ~(1 — ).
Now, we have

2
|(z — 2) 3|z — || =

= mac{|| o], 12 (1 = ]} - max{llul], lle(1 — w)]]}

1 1
= ||6—2U|| e —w)l[ = 3| e[ = -
but also
5 1 1
[1(u) ol - eul| = | ull - |l = [Jul]® < - .
and

(et = ) all - e = )l = 121 = ] [Je(1 = )| = []1 ~ wl? < -

Therefore,

2 € 0a0)—c(z), but z ¢ (0(%0)_6((62 + 2)u) U o—u0)—e((e + 2)(1 —u))).

If x € A is invertible, p =1 and ¢ = 0, then 27! = xg).

q

107

As corollaries of Theorem 3.7 and Theorem 3.8, we formulate the following

results for the pseudospectrum and the condition spectrum.

Theorem 3.10. Let v = { a 0 } € A relative to the idempotent u € A and

0 b
e>0. Then

Ac(z) = Ac(a) UAL(D).

Theorem 3.11. Let x = { g 0 } € A relative to the idempotent u € A and

b
0<e< 1. Then

oc(a) Uoe(b) C o(x).
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