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Abstract. In this paper, we describe all maximal dissipative, maximal accre-
tive and selfadjoint extensions of the minimal symmetric direct sum differential
operators. Further using the equivalence of the Lax-Phillips scattering function
and the Sz.-Nagy-Foiaş characteristic function we show that all eigen and asso-
ciated functions of the maximal dissipative extension of the minimal symmetric
direct sum operator are complete in L2

w(Ω), where Ω = Ω1 ∪ Ω2, Ω1 = (0, c)
and Ω2 = (c,∞).

1. Introduction

In the operator theory, one of the main problems is to describe all the selfadjoint
extensions of a given minimal symmetric operator. This problem is closely related
with finding the dimension of the extended domain. In fact, in 1910 Weyl showed
that [19] at least one of the linearly independent solutions of the equation

−y′′ + q(x)y = λy, x ∈ [0,∞),

is in squarely integrable space on [0,∞). This result comes from the convergence
of the corresponding nested circles. These circles either converge to a circle or a
point. If the primary case occurs, the operator generated by the above differential
expression is said to be of limit-circle case, that is, two linearly independent
solutions and any combinations of them belong to the squarely integrable space.
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Otherwise, the operator is said to be of limit-point case. Of course, a regular
differential operator is in limit-circle case. But a singular differential operator
may be in limit-point case. These analysis have been used to describe all the
selfadjoint extensions of a minimal symmetric differential operators (see [7, 12,
13]). Namely, to describe the selfadjoint extensions of the minimal symmetric
differential operators, one can use the defect numbers of the minimal operator
L0,

m = dim
((
L0 − λI

)
D(L0)

)⊥
, n = dim ((L0 − λI)D(L0))⊥ ,

where D(L0) is the domain of L0 and λ is the complex number. These numbers
(m,n) are called the deficiency indices of L0. It is well known that L0 is selfadjoint
if and only if m = n = 0 and L0 has selfadjoint extensions if and only if m = n.
(1, 1) is known as Weyl’s limit-point case and (2, 2) is known as Weyl’s limit-circle
case for a second order operator. These are the Weyl’s alternatives.

On the other hand in Physics literature such operators having a singularity in
the interior of an interval have been investigated [3, 5]. In this case the operators
may be handled as direct sum of two operators such that one is defined on one
interval and the other is defined on the other interval. Then one may ask that
what the deficiency indices of the minimal symmetric direct sum operator are.
This question was answered in the paper of Everitt and Zettl [4] (further see [20]).
Everitt and Zettl generalized the results known for the deficiency indices theory
of the minimal symmetric operators defined on a single interval to two intervals.
They characterized all the selfadjoint extensions of a minimal symmetric direct
sum operator.

In 1984, Mr. and Mrs. Gorbachuk [8] introduced the method how the non-
selfadjoint extensions of the minimal symmetric operator can be given. In fact, let
Γ1 and Γ2 be the linear mappings of D(A∗) into the Hilbert space S where A is a
closed symmetric operator with equal deficiency indices acts in the Hilbert space
S1. Then (S,Γ1,Γ2) is called the space of the boundary values of the operator A
if
i) for any f, g ∈ D(A∗), (A∗f, g)S1

− (f, A∗g)S1
= (Γ1f,Γ2g)S − (Γ2f,Γ1g)S;

ii) for every F1,F2 ∈ S, there exists a vector f ∈ D(A∗) such that Γ1f = F1

and Γ2f = F2.
Then they introduced the following theorem.

Theorem 1.1. [8] For any contraction K in S the restriction of the operator A∗

to the set of functions f ∈ D(A∗) satisfying the boundary condition

(K − I) Γ1f + i (K + I) Γ2f = 0, (1.1)

or

(K − I) Γ1f − i (K + I) Γ2f = 0 (1.2)

is respectively, a maximal dissipative or a maximal accretive extension of the
operator A, where A is the restriction of the operator A∗ to the domain D(A).
Conversely, every maximal dissipative (maximal accretive) extension of A is the
restriction of A∗ to the set of vectors f ∈ D(A∗) satisfying (1.1) ((1.2)), and the
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contraction K is uniquely determined by the extension. These conditions give self-
adjoint extension if K is unitary. In the latter case (1.1) and (1.2) are equivalent
to the condition (cosC) Γ2f − (sinC) Γ1f = 0, where C is a selfadjoint opera-
tor (hermitian matrix) on S. The general form of the dissipative and accretive
extensions of the operator A is given by the conditions

K (Γ1f + iΓ2f) = Γ1f − iΓ2f, Γ1f + iΓ2f ∈ D(K), (1.3)

K (Γ1f − iΓ2f) = Γ1f + iΓ2f, Γ1f − iΓ2f ∈ D(K), (1.4)

respectively, where K is a linear operator satisfying ‖Kf‖ ≤ ‖f‖ , f ∈ D(K).
The general form of symmetric extensions is given by the formula (1.3) and (1.4),
where K is an isometric operator.

It is well known that all eigenvalues of a dissipative operator lie in the closed
upper half-plane. But this analysis is so weak. To complete the analysis, there are
some methods. One of them is related with the equivalence of the Lax-Phillips
scattering function [11] and Sz.-Nagy-Foiaş characteristic function [17]. In the
basic of the Lax-Phillips scattering theory there is a decomposition of the Hilbert
space H as H = D−⊕H⊕D+ in which an unitary group Ut has typical properties
i′) UtD− ⊂ D−, t ≤ 0; UtD+ ⊂ D+, t ≥ 0,

ii′)
⋃
t≥0 UtD− =

⋃
t≤0 UtD+ = H,

iii′)
⋂
t≤0 UtD− =

⋂
t≥0 UtD+ = {0} ,

iv′) D− ⊥ D+,
where the subspaces D− and D+ are called the incoming and outgoing spaces,
respectively. Then one can construct the scattering function acting from D+ to
D−. On the other hand, Sz.-Nagy and Foiaş defined the characteristic function
of a contractive operator T as

Θ(µ) = −T + µDT ∗(I − µT ∗)−1DT ,

where µ is some complex number and DT = (I − T ∗T )
1
2 and DT ∗ = (I − TT ∗) 1

2

are the operators defined on some Hilbert space H̃. There is an equivalence
between the Lax-Phillips scattering function and Sz.-Nagy-Foiaş characteristic
function (see [17], p. 280). This equivalence has been used in the papers [1] and
[2] to analyze the dissipative operators which are the extensions of the minimal
symmetric differential operators defined on the single interval.

In this paper we describe all the nonselfadjoint (dissipative, accretive) and self-
adjoint extensions of the minimal symmetric direct sum differential operator. In
particular, we consider the maximal dissipative extension of the minimal sym-
metric Bessel-type operator. We construct a selfadjoint dilation of the maximal
dissipative extension. To analyze this dissipative operator, we use the functional
model theory [17]. After showing that the characteristic function (scattering ma-
trix) given in the model is a Blaschke–Potapov product, we prove that all root
(eigen and associated) functions of the dissipative operator which is the extension
of the minimal symmetric direct sum operator are complete in the Hilbert space
L2
w(Ω), where Ω = Ω1 ∪ Ω2, Ω1 = (0, c) and Ω2 = (c,∞).
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2. Maximal dissipative operator

In this paper we consider the differential expression

`(y) :=
1

w(x)

[
−y′′ +

ν2 − 1
4

x2
y + q(x)y

]
, x ∈ Ω := Ω1 ∪ Ω2,

where Ω1 := (0, c), Ω2 := (c,∞), 0 < c < ∞ and 0 ≤ ν < 1. Throughout the
paper it is assumed that the points 0, c and ∞ are singular for the differential
expression `. Further we assume that w and q are real-valued, Lebesgue measur-
able functions on Ω, locally integrable functions on Ω1 and Ω2 and w(x) > 0 for
almost all x ∈ Ω.

LetH := H1⊕H2, whereH1 := L2
w1

(Ω1), H2 := L2
w2

(Ω2), w(x) =

{
w1(x), x ∈ Ω1

w2(x), x ∈ Ω2

and H = L2
w(Ω), be the Hilbert space consisting of all complex-valued functions

y such that
∫

Ω
w(x) |y(x)|2 dx <∞ with the inner product

(y, χ)H = (y, χ)H1
+ (y, χ)H2

,

where

(y, χ)Hk
=

∫
Ωk

wk(x)yk(x)χk(x)dx,

k = 1, 2 and

y(x) =

{
y1(x), x ∈ Ω1

y2(x), x ∈ Ω2
∈ H, χ(x) =

{
χ1(x), x ∈ Ω1

χ2(x), x ∈ Ω2
∈ H.

Let Λ = Λ1 ⊕ Λ2 denote the set of all functions y ∈ H such that y′ are
locally absolutely continuous functions on Ω1 and Ω2 and `(y) ∈ H. The operator
L = L1⊕L2 defined on Λ by the equality Ly = `(y) (x ∈ Ω) is called the maximal
operator [4].

For all y, χ ∈ Λ, Green’s formula is obtained as

(`(y), χ)H − (y, `(χ))H = [y, χ]c− − [y, χ]0 + [y, χ]∞ − [y, χ]c+,

where [y, χ]x := y(x)χ′(x) − y′(x)χ(x) (x ∈ Ω). Green’s formula implies that
for all functions y, χ ∈ Λ at singular points 0, c and ∞, the limits [y, χ]0 :=
limx→0+ [y, χ]x, [y, χ]c± := limx→c±[y, χ]x and [y, χ]∞ := limx→+∞[y, χ]x exist and
are finite.

Let Λ0 = Λ0,1 ⊕ Λ0,2 be the set of all functions y ∈ Λ satisfying the conditions

[y, χ]c− − [y, χ]0 = 0, [y, χ]∞ − [y, χ]c+ = 0,

for arbitrary χ ∈ Λ. The operator L0 = L0,1⊕L0,2 the restriction of the operator
L = L1 ⊕ L2 to the set Λ0 is called the minimal symmetric operator with the
deficiency indices (r, r) (0 ≤ r ≤ 4) and the equality L∗0 = L holds [4].

We assume that w and q satisfy the Weyl’s limit-circle case conditions at sin-
gular points 0, c and ∞. This means that the deficiency indices of the operator



198 E. UGURLU, B.P. ALLAHVERDIEV

L0 are (4, 4). Weyl’s limit point/circle theory is well known and there are sev-
eral sufficient conditions in which Weyl’s limit-circle case holds for a differential
expression [9, 12, 18, 20].

Consider the solutions

u(x) =

{
u1(x), x ∈ Ω1

u2(x), x ∈ Ω2
, v(x) =

{
v1(x), x ∈ Ω1

v2(x), x ∈ Ω2

of the equation `(y) = 0 (x ∈ Ω) satisfying the initial conditions{
u1(k) = 1, u′1(k) = 0,
v1(k) = 0, v′1(k) = 1,

{
u2(l) = 1, u′2(l) = 0,
v2(l) = 0, v′2(l) = 1,

where k ∈ Ω1 and l ∈ Ω2. We note that [u, v]x = 1 (x ∈ Ω).
Let Γ1 and Γ2 be the linear mappings from Λ into E := C4 as

Γ1y =

(
Γ−1 y
Γ+

1 y

)
, Γ2y =

(
Γ−2 y
Γ+

2 y

)
,

where

Γ−1 y :=

(
[y, v]0
[y, u]c−

)
, Γ+

1 y :=

(
[y, v]c+
[y, u]∞

)
and

Γ−2 y :=

(
[y, u]0
[y, v]c−

)
, Γ+

2 y :=

(
[y, u]c+
[y, v]∞

)
.

Lemma 2.1. For any complex numbers αk, βk, γk, θk (k = 1, 2) there is a function
y ∈ Λ satisfying the conditions

[y, u]0 = α1, [y, v]0 = α2, [y, u]c− = β1, [y, v]c− = β2,
[y, u]c+ = γ1, [y, v]c+ = γ2, [y, u]∞ = θ1, [y, v]∞ = θ2.

(2.1)

Proof. Let us denote by L−0,k (L−k ) and L+
0,k (L+

k ) the minimal (maximal) operators

generated by the differential expression ` on the intervals I−k and I+
k respectively

and Λ∓0,k (Λ∓k ) are the domains of L∓0,k (L∓k ), where k = 1, 2 and

I−1 = (0, d], I+
1 = [d, c), 0 < d < c,

I−2 = (c, e], I+
2 = [e,∞), c < e <∞.

We first consider the equation `(y) = λy, x ∈ (0, c). It is known [2] that there is
a function y+

1 ∈ Λ+
1 satisfying the conditions

y+
1 (d) = η1, y

+′
1 (d) = η2, [y+

1 , u]c− = β1, [y+
1 , v]c− = β2,

where η1 and η2 are complex numbers. Similarly there is a function y−1 ∈ Λ−1
satisfying the conditions

y−1 (d) = η1, y
−′
1 (d) = η2, [y−1 , u]0 = α1, [y−1 , v]0 = α2.

Now let

y1(x) =

{
y−1 (x), 0 < x ≤ d
y+

1 (x), d ≤ x < c
.
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Since the function y1 is continuous at the point x = d, the function y1 ∈ Λ1 and
the first part of the condition (2.1) is satisfied.

Similarly it can be shown that there is a function y2 ∈ Λ2 satisfying the condi-
tions

[y2, u]c+ = γ1, [y2, v]c+ = γ2, [y2, u]∞ = θ1, [y2, v]∞ = θ2.

Since y(x) =

{
y1(x) , x ∈ Ω1

y2(x) , x ∈ Ω2
, the proof is completed. �

Then we have the following theorem.

Theorem 2.2. The triplet (E,Γ1,Γ2) is a space of boundary values of the operator
L0.

Proof. For y, χ ∈ Λ, we have

(L∗0y, χ)H − (y, L∗0χ)H = [y, χ]c− − [y, χ]0 + [y, χ]∞ − [y, χ]c+. (2.2)

On the other hand with a direct calculation we get that

(Γ1y,Γ2χ)E − (Γ2y,Γ1χ)E = [y, χ]c− − [y, χ]0 + [y, χ]∞ − [y, χ]c+. (2.3)

(2.2) and (2.3) complete the first part i) given in the introduction of the proof.
Lemma 2.1 completes the second part ii) given in the introduction. Hence the
proof is completed. �

Then from Theorem 1.1, we can introduce the following theorem.

Theorem 2.3. For y ∈ D(L), the boundary conditions

[y, u]0 + h1[y, v]0 = 0, (2.4)

[y, v]c− + h2[y, u]c− = 0, (2.5)

[y, u]c+ + h3[y, v]c+ = 0, (2.6)

[y, v]∞ + h4[y, u]∞ = 0, (2.7)

with =hi ≥ 0 or hi = ∞ (i = 1, 2, 3, 4) describe all the maximal dissipative
extensions of L0 with separated boundary conditions.

In this paper we assume that K is a strict contraction in E, i.e., ‖K‖E < 1.
Let L be the operator generated by ` and the condition

Γ2y +RΓ1y = 0, (2.8)

where R = −i (K + I)−1 (K − I), =R > 0, and −K is the Cayley transform of
the dissipative operator R.

If R is chosen as

R =


h1 0

h2

h3

0 h4

 ,



200 E. UGURLU, B.P. ALLAHVERDIEV

where =hi > 0 (i = 1, 2, 3, 4), then the boundary condition (2.8) coincides with
the separated boundary conditions (2.4)-(2.7).

We note that L is the maximal dissipative operator in H.

3. Characteristic function of L

Let us consider the Hilbert space H = L2(R−;E) ⊕ H ⊕ L2(R+;E), where
R− := (−∞, 0] and R+ := [0,∞). The spaces L2(R−;E) and L2(R+;E) are
called the incoming and outgoing channels, respectively.

We denote by Λ the set consisting of all functions f = 〈ϕ−, y, ϕ+〉 ∈ H,
where ϕ− ∈ W 1

2 (R−;E), y ∈ Λ and ϕ+ ∈ W 1
2 (R+;E) (W 1

2 is the Sobolev space)
satisfying the conditions

Γ2y +RΓ1y = Cϕ−(0), Γ2y +R∗Γ1y = Cϕ+(0), (3.1)

where C2 := 2=R, C > 0.
We consider the operator ℵ on the set Λ generated by the differential expression

ℵ̃ 〈ϕ−, y, ϕ+〉 =

〈
i
dϕ−
dξ

, `(y), i
dϕ+

dζ

〉
(3.2)

as ℵf = ℵ̃f. Then we have the following theorem.

Theorem 3.1. The operator ℵ is selfadjoint in H.

Proof. For f = 〈ϕ−, y, ϕ+〉 , g = 〈ψ−, χ, ψ+〉 ∈ Λ, we have

(ℵf, g)H − (f,ℵg)H = [y, χ]c− − [y, χ]0 + [y, χ]∞ − [y, χ]c+
+i (ϕ−(0), ψ−(0))E − i (ϕ+(0), ψ+(0))E .

(3.3)

Using the condition (3.1) one gets

i (ϕ−(0), ψ−(0))E − i (ϕ+(0), ψ+(0))E = (Γ2y,Γ1χ)E − (Γ1y,Γ2χ)E . (3.4)

Substituting (3.4) in (3.3) we obtain that ℵ is symmetric in H.
Now let f = 〈ϕ−, 0, ϕ+〉 ∈ Λ, ϕ∓ ∈ W 1

2 (R∓;E), ϕ∓(0) = 0. Then for g =
〈ψ−, χ, ψ+〉 ∈ Λ we have

(ℵf, g)H =
(〈
idϕ−
dξ
, 0, idϕ+

dζ

〉
, 〈ψ−, χ, ψ+〉

)
H

=
(
〈ϕ−, 0, ϕ+〉 ,

〈
idψ−
dξ
, χ∗, idψ+

dζ

〉)
H
.

(3.5)

This implies that ℵ∗g =
〈
idψ−
dξ
, χ∗, idψ+

dζ

〉
, where ψ∓ ∈ W 1

2 (R∓), χ∗ ∈ H.
Again let f = 〈0, y, 0〉 ∈ Λ and put it in (3.5). Then we arrive at

ℵ∗g =

〈
i
dψ−
dξ

, `(χ), i
dψ+

dζ

〉
, χ ∈ Λ.

Consequently we obtain

[y, χ]c− − [y, χ]0 + [y, χ]∞ − [y, χ]c+ + i (ϕ−(0), ψ−(0))E − i (ϕ+(0), ψ+(0))E = 0.
(3.6)
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Further solving the boundary conditions (3.1) we find that

Γ1y = −iC−1 [ϕ−(0)− ϕ+(0)] ,
Γ2y = Cϕ−(0) + iRC−1 [ϕ−(0)− ϕ+(0)] .

(3.7)

Using (3.6) and (3.7) one gets that

i (ϕ−(0), ψ−(0))E − i (ϕ+(0), ψ+(0))E = (Γ2y,Γ1χ)E − (Γ1y,Γ2χ)E
= i (ϕ−(0), iCΓ1χ+ C−1R∗Γ1χ+ C−1Γ2χ)E − i (ϕ+(0), C−1R∗Γ1χ+ C−1Γ2χ)E .

(3.8)
Since the values ϕ∓(0) can be arbitrary vectors, comparing the coefficients of
ϕ∓(0), on the left and right of the equality (3.8) it is obtained that

Γ2χ+RΓ1χ = Cψ−(0), Γ2χ+R∗Γ1χ = Cψ+(0).

This implies that D(ℵ∗) ⊆ D(ℵ), and hence ℵ=ℵ∗. �

Let us consider the operator family Zt := PUtP1, t ≥ 0, where Up := exp(iℵp)
(p ∈ R) is a unitary group and P and P1 are the linear mappings as

P : H → H
〈ϕ−, y, ϕ+〉 → y

,
P1 : H → H

y → 〈0, y, 0〉 .

It is known that the operator family {Zt} (t ≥ 0) is the strongly continuous
semigroup of completely nonunitary contractions on H [1, 2, 14, 15].

Let G denote the generator of the semigroup Zt

Gy = lim
t→+0

1

it
(Zty − y).

The domain ofG consists of all the vectors for which the limit exists. The operator
G is a maximal dissipative operator [1, 2, 14, 15] and ℵ is called the selfadjoint
dilation of G [10, 17].

Theorem 3.2. The operator ℵ is a selfadjoint dilation of the operator L.

Proof. For y ∈ H, g ∈ Λ and =λ < 0, let us consider the equality

(ℵ − λI)−1P1y = g = 〈ψ−, χ, ψ+〉 . (3.9)

(3.9) is also equivalent to the equality (ℵ−λI)g = P1y. Therefore we have `(χ)−
λχ = y, ψ−(ξ) = ψ−(0)e−iλξ and ψ+(ζ) = ψ+(0)e−iλζ . Since ψ− ∈ L2(R−;E) we
get that ψ−(0) = 0. Hence χ satisfies the condition Γ2χ + RΓ1χ = 0. Further
since a value λ with =λ < 0 can not be an eigenvalue of a dissipative operator,
one obtains χ = (L − λI)−1 y. So we arrive at

(ℵ − λI)−1P1y =
〈
0, (L − λI)−1y, C−1 (Γ2χ+R∗Γ1χ) e−iλζ

〉
. (3.10)

Applying the mapping P to (3.10), we get that

P (ℵ − λI)−1P1y = (L − λI)−1y. (3.11)

On the other hand the equalities

P (ℵ − λI)−1P1 = −iP
∞∫

0

Ute
−iλtdtP1 = −i

∞∫
0

Zte
−iλtdt = (G− λI)−1 (3.12)
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hold. (3.11) and (3.12) complete the proof. �

We shall remind that the linear operator B (with domain D(B)) acting in
the Hilbert space S is called completely nonselfadjoint (or simple) if there is
no invariant subspace M ⊆ D(B) (M 6= {0}) of the operator B on which the
restriction B on M is selfadjoint.

Lemma 3.3. The operator L is completely nonselfadjoint (simple) in the Hilbert
space H.

Proof. Let L̃ be the selfadjoint part of L in the subspace H̃ ⊂ H with domain

D(L̃) = H̃ ∩D(L). For y ∈ D(L̃) (also for y ∈ D(L̃∗))

0 =
(
L̃y, y

)
H
−
(
y, L̃y

)
H

= (Γ1y,Γ2y)E − (Γ2y,Γ1y)E
= (Γ1y,−RΓ1y)E − (−RΓ1y,Γ1y)E = ((R−R∗) Γ1y,Γ1y)E
= 2i (=RΓ1y,Γ1y)E .

This implies that Γ1y = 0. From (2.8) we get that Γ2y = 0. Hence y ≡ 0. By

the theorem on expansion in eigenfunctions of the selfadjoint operator L̃ we have

H̃ = {0} . This completes the proof. �

Let D− = 〈L2(R−;E), 0, 0〉 and D+ = 〈0, 0, L2(R+;E)〉 . According to the
Lax-Phillips scattering theory [11], the unitary group Ut and the spaces D− and
D+ satisfy the properties i′)−iv′) given in the introduction. To see that these
properties are satisfied, see the detailed proofs in [1, 2, 14, 15].

Consider the solutions

ϕ(x, λ) =

{
ϕ1(x, λ), x ∈ Ω1

ϕ2(x, λ), x ∈ Ω2
, ψ(x, λ) =

{
ψ1(x, λ), x ∈ Ω1

ψ2(x, λ), x ∈ Ω2
,

of `(y) = λy (x ∈ Ω) satisfying the initial conditions{
[ϕ1, v1]0 = 0, [ϕ1, u1]0 = −1,
[ψ1, v1]0 = 1, [ψ1, u1]0 = 0,

{
[ϕ2, v2]c+ = 0, [ϕ2, u2]c+ = −1,
[ψ2, v2]c+ = 1, [ψ2, u2]c+ = 0.

Let M1(λ) and M2(λ) be the matrix-valued functions satisfying the conditions{
M1(λ)Γ−1 ϕ1 = Γ−2 ϕ1

M1(λ)Γ−1 ψ1 = Γ−2 ψ1
,

{
M2(λ)Γ+

1 ϕ2 = Γ+
2 ϕ2

M2(λ)Γ+
1 ψ2 = Γ+

2 ψ2
.

It is possible to find the entries of M1(λ) and M2(λ). Using these matrix-valued
functions we construct the matrix-valued function M(λ) as

M(λ) =

(
M1(λ) 0

0 M2(λ)

)
.

Then we have

M(λ)Γ1ϕ = Γ2ϕ, M(λ)Γ1ψ = Γ2ψ.

M(λ) has the following properties
i′′) M(λ) is meromorphic in C with all its poles on real axis R,
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ii′′) =M(λ) ≤ 0 for =λ > 0,
iii′′) =M(λ) ≥ 0 for =λ < 0,
iv′′) M∗(λ) = M(λ) for all λ ∈ R, except for the poles of M(λ).
Let

ηj := ηj(x, λ) =

{
ηj,1(x, λ), x ∈ Ω1

ηj,2(x, λ), x ∈ Ω2
, θj := θj(x, λ) =

{
θj,1(x, λ), x ∈ Ω1

θj,2(x, λ), x ∈ Ω2

be the solutions of the equation `(y) = λy (x ∈ Ω) satisfying the conditions

Γ1ηj = (M(λ) +R)−1Cej,

Γ1θj = (M(λ) +R∗)−1Cej,

where j = 1, 2, 3, 4, and ej are the orthonormal basis for E.
Now consider the functions π−λ,j := π−λ,j(x, ξ, ζ) and π+

λ,j := π+
λ,j(x, ξ, ζ) as

π−λ,j =
〈
e−iλξej, ηj, C

−1 (M(λ) +R∗) (M(λ) +R)−1Ce−iλζej
〉
,

π+
λ,j =

〈
S(λ)e−iλξej, θj, e

−iλζej
〉
,

where j = 1, 2, 3, 4 and

S(λ) = C−1 (M(λ) +R) (M(λ) +R∗)−1C. (3.13)

For all λ ∈ R, the functions π∓λ,j do not belong to the space H but they satisfy

the equation ℵπ∓λ,j = λπ∓λ,j. Using these functions we define the transformations

F− : f → f̃−(λ) and F+ : f → f̃+(λ) as

(F∓f)(λ) := f̃∓(λ) :=
4∑
j=1

f∓j (λ)ej,

where

f∓j (λ) =
1√
2π

(
f, π∓λ,j

)
H

and f = 〈ϕ−, y, ϕ+〉 in which ϕ−, ϕ+ and y are smooth, compactly supported
functions.

Let

H− =
⋃
t≥0

UtD−, H+ =
⋃
t≤0

UtD+.

The transformation F− isometrically maps H− onto L2(R;E) and the transfor-
mation F+ isometrically maps H+ onto L2(R;E). The detailed proofs were given
in [1, 2, 14, 15]. Further for all vectors f, g ∈ H∓, the Parseval equality and the
inverse formula hold [1, 2, 14, 15]:

(f, g)H = (f̃∓, g̃∓)L2 =
∞∫
−∞

4∑
j=1

f∓j (λ)g∓j (λ)dλ, f = 1√
2π

∞∫
−∞

4∑
j=1

π∓λ,jf
∓
j (λ)dλ.
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It is clear that the matrix-valued function S(λ) given in (3.13) is meromorphic
in C and all poles are in the lower half-plane. Further it is possible to get that
‖S(λ)‖ ≤ 1 for =λ > 0 and S(λ) is the unitary matrix for all λ ∈ R. Then for
λ ∈ R we have

π+
λ,j =

4∑
k=1

Sjk(λ)π−λ,j, (3.14)

where Sjk(λ), (j = 1, 2, 3, 4) are the entries of the matrix S(λ).
According to the Lax-Phillips scattering theory [11], F− is the incoming spec-

tral representation for Ut and F+ is the outgoing spectral representation for Ut.
From (3.14) we get that

f̃− = S(λ)f̃+.

Since the scattering matrix of the group Ut with respect to the subspaces D− and
D+ is the coefficient by which the F−−representation of a vector f ∈ H must

be multiplied in order to get the corresponding F+−representation: f̃+(λ) =

S−1(λ)f̃−(λ), we have the following.

Theorem 3.4. The matrix S−1(λ) is the scattering matrix of the group Ut.

From Lemma 3.3 one gets that [1, 2, 14, 15]

H− +H+ = H.

Since the spaces H− and H+ are isometrically identical with L2(R;E) we arrive
at

H− = H+ = H.

Hence under the transformation F− we have the following mappings [1, 2, 14, 15]
1) H→ L2(R;E),

2) f → f̃−(λ),
3) D− → H2

−,
4) D+ → S(λ)H2

+,
5) 〈0, H, 0〉 → H2

+ 	 S(λ)H2
+,

6) Utf →
(
F−UtF−1

− f̃−

)
(λ) = eiλtf̃−(λ),

where H2
+ is the Hardy class in L2(R;E) consisting of the vector valued functions

analytically extendible to the upper half-plane. These transformations 1) − 6)
show that the maximal dissipative operator L is unitary equivalent to the model
dissipative operator with characteristic function S(λ) [10, 15, 17]. Since the
characteristic functions of unitary equivalent dissipative operators coincide with
each other [17], we can introduce the following theorem.

Theorem 3.5. The characteristic function of the maximal dissipative operator
L coincides with the matrix-valued function S(λ).



ON SELFADJOINT DILATION OF THE DISSIPATIVE EXTENSION 205

4. The spectral analysis of the maximal dissipative operator L

Characteristic function can answer the question of whether all eigenfunctions
and associated functions of a maximal dissipative operator span the whole space
or not. This analysis can be done with ensuring that the singular factor s (λ) in
the factorization detS (λ) = s (λ)B (λ) (B (λ) is the Blaschke product) is absent
(see [10, 17]).

But, before the calculations we need to define a suitable form for the Γ-capacity
[6, 16].

Let Ẽ be an m-dimensional (m <∞) Euclidean space. In Ẽ, we fix an or-
thonormal basis e1, e2, ..., em and denote by Ek (k = 1, 2, ...,m) the linear span
of vectors e1, e2, ..., ek. If M ⊂ Ek, then the set of x ∈ Ek−1 with the property
Cap {λ : λ ∈ C, (x+ λek) ∈M} > 0 will be denoted by Γk−1M . (Cap G is the
inner logarithmic capacity of the set G ⊂ C). The Γ-capacity of the set M ⊂ Ẽ is
a number Γ-CapM := supCap {λ : λ ∈ C, λe1 ⊂ Γ1Γ2...Γm−1M} , where the sup
is taken with respect to all orthonormal basis in Ẽ (see [6, 16]). It is known that
[6, 16] every set M ⊂ Ẽ of zero Γ-capacity has zero 2m-dimensional Lebesgue
measure (in the decomplexified space Ẽ), however, the converse is false.

Denote by [E] the set of all linear operators in E (= C4). To convert [E] into the
16-dimensional Euclidean space, we introduce the inner product 〈T, S〉 = trS∗T
for T, S ∈ [E] (trS∗T is the trace of the operator S∗T ). Hence, we may introduce
the Γ-capacity of a set of [E] .

To reach our main aim we will use the following lemma (see [2]).

Lemma 4.1. The characteristic function S (λ) of the operator L has the form

S(λ) = X1 (I −K1K
∗
1)−

1
2 (θ (ξ)−K1) (I −K∗1θ (ξ))−1 (I −K∗1K1)

1
2 X2,

where K1 = −K is the Cayley transformation of the dissipative operator R,
and θ (ξ) is the Cayley transformation of the matrix-valued function M (λ) , ξ =
(λ− i) (λ+ i)−1 , and

X1 := (=R)−
1
2 (I −K1)−1 (I −K1K

∗
1)

1
2 ,

X2 := (I −K∗1K1)−
1
2 (I −K∗1) (=R)

1
2 , |detX1| = |detX2| = 1.

It is known [6, 10] that the inner matrix-valued function S (λ) is a Blaschke–
Potapov product if and only if detS (λ) is a Blaschke product. So from Lemma 4.1
we can infer that the characteristic function S (λ) is a Blaschke–Potapov product
if and only if the matrix-valued function

XK (ξ) = (I −K1K
∗
1)−

1
2 (θ (ξ)−K1) (I −K∗1θ (ξ))−1 (I −K∗1K1)

1
2

is a Blaschke–Potapov product in a unit disk.
We will utilize the following important result of the paper [6].

Lemma 4.2. Let X (ξ) (|ξ| < 1) be a holomorphic function with the values to be
contractive operators in [E] (i.e., ‖X (ξ)‖E ≤ 1). Then for Γ-quasi-every strictly
contractive operators K in [E] (i.e., for all strictly contractive K ∈ [E] with the
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possible exception of a set of Γ-capacity zero) the inner part of the contractive
function

XK (ξ) := (I −KK∗)−
1
2 (X (ξ)−K) (I −K∗X (ξ))−1 (I −K∗K)

1
2

is a Blaschke–Potapov product.

Showing the absence of the singular factor s(λ) in the factorization detS (λ) =
s (λ)B (λ) (B (λ) is the Blaschke–Potapov product) ensures the completeness of
the eigenfunctions and associated functions of the operator L in the space L2

w(Ω)
(see [6, 10, 15, 17]).

Finally summarizing all the obtained results for the maximal dissipative oper-
ators L, we can introduce the following theorem.

Theorem 4.3. For Γ-quasi-every strictly contractive K ∈ [E] (i.e., for all strictly
contractive K ∈ [E] with the possible exception of a set of Γ-capacity zero), the
characteristic function S (λ) of the maximal dissipative operator L is a Blaschke–
Potapov product, and the spectrum of L is purely discrete and belongs to the open
upper half-plane. For Γ-quasi-every strictly contractive K ∈ [E] , the operator L
has a countable number of isolated eigenvalues with finite multiplicity and limit
point at infinity, and the system of eigenfunctions and associated functions of this
operator is complete in the space L2

w(Ω).
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