
Banach J. Math. Anal. 7 (2013), no. 2, 42–52

Banach Journal of Mathematical Analysis

ISSN: 1735-8787 (electronic)

www.emis.de/journals/BJMA/

PSEUDO ASYMPTOTIC SOLUTIONS OF FRACTIONAL
ORDER SEMILINEAR EQUATIONS

EDGARDO ALVAREZ-PARDO1 AND CARLOS LIZAMA2∗

Communicated by L. Castro

Abstract. Using a generalization of the semigroup theory of linear operators,
we prove existence and uniqueness of mild solutions for the semilinear fractional
order differential equation

Dα+1
t u(t) + µDβ

t u(t)−Au(t) = f(t, u(t)), t > 0, 0 < α ≤ β ≤ 1, µ ≥ 0,

with the property that the solution can be written as u = f+h where f belongs
to the space of periodic (resp. almost periodic, compact almost automorphic,
almost automorphic) functions and h belongs to the space P0(R+, X) := {φ ∈
BC(R+, X) : limT→∞

1
T

∫ T
0
||φ(s)||ds = 0}. Moreover, this decomposition is

unique.

1. Introduction

Our concern in this paper is the existence, uniqueness and regularity of bounded
solutions for fractional order differential equations of the form

Dα+1
t u(t) + µDβ

t u(t)− Au(t) = f(t, u(t)), t > 0, (1.1)

with prescribed initial conditions u(0) and u′(0), and where A : D(A) ⊂ X → X
is sectorial of angle βπ/2, f is a vector-valued function, and Dγ

t denotes the
Caputo fractional derivative of order γ.
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Fractional order differential equations represent a subject of increasing interest
in different contexts and areas of research, see e.g. [1, 3, 10, 11, 13, 20, 22], the
survey paper [9] and the references therein. Our motivation to study equation
(1.1) comes from recent investigations on the subject. Indeed, in the article
[17] the author studied existence and uniqueness of solutions for the abstract
equation (1.1) in the special case α = β and in the article [23] the authors
studied the nonlinear two-term time fractional diffusion wave equation (1.1) with

0 < α < β − 1 and A = d2

dx2
.

In the recent paper [12], asymptotic behavior for mild solutions of (1.1) was
studied. However, to the best of our knowledge, no study has investigated the
existence and uniqueness of pseudo asymptotic mild solutions for equation (1.1).

The concept of pseudo asymptotic solutions, which is the central subject in
this paper, was introduced by Zhang [25], [26], [27] for almost periodic functions
in the early nineties. Since then, such a notion became of great interest. For
more on the concepts of pseudo-almost periodicity, pseudo-almost automorphy
and related issues, we refer the reader to [24] and [14].

In [12] the authors proved that it is possible to give an abstract operator ap-
proach to equation (1.1) by defining first an ad-hoc solution family of strongly
continuous operators Sα,β(t) for (1.1) in case f ≡ 0. It turns out, that it is a
particular case of an (a, k)-regularized family [16] and a generalization of the
semigroup theory. Then, the solution of equation (1.1) can be written in terms
of a kind of variation of constants formula. It give us the necessary framework
to apply an operator theoretical approach in the analysis of pseudo asymptotic
solutions for the abstract fractional order differential equation (1.1).

We outline the plan of the paper as follows. In section 2, we recall the concept
of fractional order derivatives and some properties of (α, β)µ-regularized fami-
lies. In section 3 we consider the linear case, that is f(t, u(t)) = f(t) and show
existence and uniqueness of pseudo asymptotic solutions of our problem. The ex-
istence, uniqueness and the pseudo asymptotic behavior of mild solutions of the
semi-linear problem is investigated in Section 4. Existence is proved by means
of the contraction mapping theorem. Finally, we conclude the paper by giving a
concrete example where the situation in the previous sections can be applied.

2. Preliminaries

Let α > 0, m = dαe and u : [0,∞)→ X, where X is a complex Banach space.
We denote by R+ the closed interval [0,∞). The Caputo fractional derivative of
u ∈ C(R+) of order α is defined by

Dα
t u(t) :=

∫ t

0

gm−α(t− s)u(m)(s)ds, t > 0,

where gβ(t) := tβ−1

Γ(β)
, t > 0, β > 0, and in case β = 0 we set g0(t) := δ0, the

Dirac measure concentrated at the origin. When α = n is integer, we define
Dn
t := dn

dtn
, n ∈ N.
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We denote by

BC(X) := {f : R→ X : f is continuous, ||f ||∞ := sup
t∈R
||f(t)|| <∞},

the Banach space of X-valued bounded and continuous functions on R, with
natural norm.

Now we turn our attention to the family of function spaces built on X and
which will play a key role in our study.

Let PT (X) := {f ∈ BC(X) : f(t + T ) = f(t) ∀t ∈ R} be the space of all
vector-valued periodic functions, with fixed period T > 0. We denote by AP (X)
the space of almost periodic functions (in the sense of Bohr) which consists of
all functions f ∈ BC(X) such that for each ε > 0 there exists a T > 0 such
that every subinterval of R of length T contains at least one point τ such that
||f(t + τ) − f(t)||∞ ≤ ε. This definition is equivalent to the so-called Bochner
criterion (cf. [19, Theorem 3.1.8]), namely, f ∈ AP (X) if and only if for every
sequence of reals (s′n) there exists a subsequence (sn) such that (f(· + sn)) is
uniformly convergent on R.

The space of compact almost automorphic functions will be denoted byAAc(X).
Recall that a continuous bounded function f belongs to AAc(X) if and only if for
all sequence (s′n) of real numbers, there exists a subsequence (sn) ⊂ (s′n) such that
limn→∞ f(t + sn) =: f(t) and limn→∞ f(t − sn) = f(t) uniformly over compact
subsets of R.

The space of almost automorphic functions is defined as follows

AA(X) := {f ∈ BC(X) : for all (s′n), there exists (sn) ⊂ (s′n) such that

lim
n→∞

f(t+ sn) =: f(t) and lim
n→∞

f(t− sn) = f(t)∀t ∈ R},

and is endowed with the norm || · ||∞. Almost automorphic functions were in-
troduced by Bochner in connection to some aspects of differential geometry
[6, 5, 4, 7]. For more details about this topic we refer to the book [19] where
the author gave an important overview about the theory of almost automorphic
functions and their applications to differential equations. For recent work in this
topic see e.g. [8] and references therein. We note that more general classes of
function spaces have been introduced and recently applied to semi-linear differ-
ential equations (see [15] and references therein).

We have that PT (X), AP (X), AAc(X) and AA(X) are Banach spaces with the
norm || · ||∞ and the following inclusions hold:

PT (X) ⊂ AP (X) ⊂ AAc(X) ⊂ AA(X) ⊂ BC(X).

Now we define the space

P0(R+, X) := {f ∈ BC(R+, X) : lim
T→∞

1

T

∫ T

0

||f(s)||ds = 0},

and define the space of pseudo asymptotically periodic functions as PPT (R+, X) :=
PT (X) ⊕ P0(R+, X). Analogously, we define the space of pseudo asymptotically
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almost periodic functions PAP (R+, X) := AP (X) ⊕ P0(R+, X), the space of
pseudo asymptotically compact almost automorphic functions, PAAc(R+, X) :=
AAc(X)⊕P0(R+, X), and the space of pseudo asymptotically almost automorphic
functions PAA(R+, X) := AA(X)⊕ P0(R+, X).

We have the following natural inclusions

PPT (R+, X) ⊂ PAP (R+, X) ⊂ PAAc(R+, X) ⊂ PAA(R+, X) ⊂ BC(R+, X).

Note that all the inclusions are proper. Let

Λ ∈ {PT (X), AP (X), AAc(X), AA(X)}.

Definition 2.1. We say that a function u is a pseudo asymptotic solution of the
equation (1.1) if u is a solution and belongs to any of the spaces PPT (R+, X),
PAP (R+, X), PAAc(R+, X) or PAA(R+, X).

Lemma 2.2. Let X be a Banach space, h ∈ L1

loc(R+, X). If limt→∞ ‖h(t)‖ = 0

then h ∈ P0(R+, X).

Proof. We apply the Theorem 4.1.2 of [2] to the function f(t) := ‖h(t)‖ and
obtain the conclusion of the lemma. �

Lemma 2.3. Let {S(t)}t≥0 ⊂ L(X) be a uniformly integrable and strongly contin-

uous family. Let g ∈ Λ and set z(t) :=
∫ 0

−∞ S(t− s)g(s) ds. Then z ∈ P0(R+, X).

Proof.

‖z(t)‖ =

∥∥∥∥∫ 0

−∞
S(t− s)g(s) ds

∥∥∥∥ ≤ ∫ 0

−∞
‖S(t− s)‖‖g(s)‖ ds

≤ ‖g‖∞
∫ ∞
t

‖S(s)‖ ds→ 0, (t→∞).

It follows from Lemma 2.2 that z ∈ P0(R+, X). �

Lemma 2.4. Let {S(t)}t≥0 ⊂ L(X) be a uniformly integrable and strongly con-
tinuous family. If h ∈ P0(R+, X) then S ∗ h ∈ P0(R+, X).

Proof. Let h ∈ P0(R+, X). Note that the function defined by

ϕT (s) :=
1

T

∫ T−s

0

‖h(u)‖ du
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is decreasing on R+. Furthermore, ϕT (0) = 1
T

∫ T
0
‖h(u)‖ du → 0 as T → ∞ by

hypothesis. From Fubini’s Theorem we have that

1
T

∫ T

0

‖(S ∗ h)(t)‖ dt ≤ 1
T

∫ T

0

[∫ t

0

‖S(t− s)‖‖h(s)‖ ds
]
dt

= 1
T

∫ T

0

[∫ T

s

‖S(s)‖‖h(t− s)‖ dt
]
ds

= 1
T

∫ T

0

‖S(s)‖
[∫ T

s

‖h(t− s)‖ dt
]
ds

=

∫ T

0

‖S(s)‖
[

1

T

∫ T−s

0

‖h(u)‖ du
]
ds

=

∫ T

0

‖S(s)‖ϕT (s) ds

≤
∫ T

0

‖S(s)‖(ϕT (0)) ds

≤ ϕT (0)

∫ ∞
0

‖S(s)‖ ds→ 0, (as t→∞).

Hence S ∗ h ∈ P0(R+, X). �

In order to give an operator theoretical approach to equation (1.1) we have the
following definition.

Definition 2.5. ([12]) Let µ ≥ 0 and 0 ≤ α, β ≤ 1 be given. Let A be a closed
linear operator with domain D(A) defined on a Banach space X. We call A the
generator of an (α, β)µ-regularized family if there exist ω ≥ 0 and a strongly
continuous function Sα,β : R+ → B(X) such that {λα+1 + µλβ : Reλ > ω} ⊂
ρ(A) and

H(λ)x := λα(λα+1 + µλβ − A)−1x =

∫ ∞
0

e−λtSα,β(t)xdt, Reλ > ω, x ∈ X.

Because of the uniqueness theorem for the Laplace transform, if µ = 0 and
α = 0, this corresponds to the case of a C0-semigroup whereas the case µ =
0, α = 1 corresponds to the concept of cosine family. For more details on the
Laplace transform approach to semigroups and cosine functions, we refer to the
monograph [2].

Let us recall that a closed and densely defined operator A is said to be ω-
sectorial of angle θ if there exists θ ∈ [0, π/2) and ω ∈ R such that its resolvent
exists in the sector ω + Sθ := {ω + λ : λ ∈ C, |arg(λ)| < π

2
+ θ} \ {ω}, and

||(λ− A)−1|| ≤ M

|λ− ω|
, λ ∈ ω + Sθ. (2.1)

These are generators of holomorphic semigroups. In case ω = 0 we merely say
that A is sectorial of angle θ. We should mention that in the general theory of
sectorial operators, it is not required that (2.1) holds in a sector of angle π/2.
Our restriction corresponds to the class of operators used in this paper.

Sufficient conditions to obtain generators of an (α, β)µ-regularized family are
given in the following result.
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Theorem 2.6. ([12]) Let 0 < α ≤ β ≤ 1, µ > 0 and A be a ω sectorial operator
of angle βπ/2. Then A generates a bounded (α, β)µ-regularized family.

We next consider the linear fractional differential equation

Dα+1
t u(t) + µDβ

t u(t)− Au(t) = Dα
t f(t), t ≥ 0, 0 < α ≤ β ≤ 1, µ ≥ 0, (2.2)

with initial conditions u(0) = x, u′(0) = y and A is a ω-sectorial operator of
angle βπ/2.

Recall that a function u ∈ C1(R+;X) is called a strong solution of (2.2) on R+

if u(t) ∈ D(A) and (2.2) holds on R+. We have the following result.
If A is ω-sectorial of angle βπ/2 then, by [12, Cor.3.4] and Theorem 2.6, a

strong solution for (2.2) always exists and is given by:

u(t) = Sα,β(t)x+ (g1 ∗ Sα,β)(t)y + µ(g1+α−β ∗ Sα,β(t))x+ (Sα,β ∗ f)(t), (2.3)

where 0 < α ≤ β ≤ 1, µ > 0; x, y ∈ D(A); f : R+ → D(A) and Sα,β(t) is the
(α, β)µ-regularized family generated by A. If merely x, y ∈ X and f : R+ → X
instead of the domain of A, we say that u given by the formula (2.3) is a mild
solution of the linear equation (2.2).

In order to study the pseudo asymptotic behavior of mild solutions, we need the
following result on the integrability of the (α, β)µ-regularized family generated by
A.

Theorem 2.7. ([12]) Let 0 < α ≤ β ≤ 1, µ > 0 and ω < 0. Assume that A
is an ω-sectorial operator of angle βπ/2, then A generates an (α, β)µ-regularized
family Sα,β(t) satisfying the estimate

||Sα,β(t)|| ≤ C

1 + |ω|(tα+1 + µtβ)
, t ≥ 0, (2.4)

for some constant C > 0 depending only on α, β.

3. Pseudo asymptotic solutions: The linear case.

Let M(X) ∈ {PPT (R+, X), PAP (R+, X), PAAc(R+, X), PAA(R+, X)}. We
can prove the following theorem which is the main result in this section.

Theorem 3.1. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial
operator of angle βπ/2 with ω < 0. Then for each f ∈ M(X) there exists a
unique mild solution u of equation (2.2) such that u ∈M(X).

Proof. Let f ∈ M(X) be given. By Theorem 2.7, A generates a uniformly
integrable (α, β)µ-regularized family Sα,β(t) on the Banach space X, and the
unique mild solution for (2.2) is given by (2.3), that is;

u(t) = Sα,β(t)x+ (g1 ∗ Sα,β)(t)y + µ(g1+α−β ∗ Sα,β(t))x+ (Sα,β ∗ f)(t),

where 0 < α ≤ β ≤ 1;µ > 0 and x, y ∈ X. Let

Λ ∈ {PT (X), AP (X), AAc(X), AA(X)}.
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We claim that Sα,β ∗ f ∈ M(X). In fact, for f = g + h where g ∈ Λ and
h ∈ P0(R+, X), we have that

(Sα,β∗f)(t) =

∫ t

−∞
Sα,β(t−s)g(s)ds−

∫ 0

−∞
Sα,β(t−s)g(s)ds+

∫ t

0

Sα,β(t−s)h(s)ds.

By [18, Th. 3.3] we conclude that the first term on the right hand side of the
above equality belongs to Λ. On other hand, Lemma 2.3 and Lemma 2.4 imply
that the second and third term on the right hand side belong to P0(R+, X).

Now, note that by (2.4) we have limt→∞ ‖Sα,β(t)‖ = 0. From the Lemma 2.2
we obtain that Sα,β(t) ∈ P0(R+, X). Hence Sα,β ∈ M(X). We now prove that
g1 ∗ Sα,β ∈ M(X). In fact, by (2.4) we have supt>τ ||tSα,β(t)|| < ∞, for each

τ > 0. Since A is an ω-sectorial of angle β π
2

then ||Ŝα,β(λ)|| → 0 as λ → 0.
Thus, by the vector-valued Hardy-Littlewood theorem (see [2, Theorem 4.2.9])
we conclude that ||(g1 ∗ Sα,β)(t)|| → 0 as t → ∞. The conclusion follows from
Lemma 2.2. It remains only to show that g1+α−β ∗ Sα,β ∈ M(X) for α < β. To
see this, we estimate ||g1+α−β ∗ Sα,β(t)|| as follows. Let 0 < ε < β − α be given,
then

||g1+α−β ∗ Sα,β(t)|| = ||Γ(β − α− ε)
∫ t

0

g1+α−β(t− τ)gβ−α−ε(τ)τα−β+ε+1Sα,β(τ)dτ ||

≤ Γ(β − α− ε)
∫ t

0

g1+α−β(t− τ)gβ−α−ε(τ)τα−β+ε+1||Sα,β(τ)||dτ

where, thanks to (2.4), we have that

Γ(β − α− ε)τα−β+ε+1||Sα,β(τ)|| ≤ Mτα−β+ε−1

1 + |ω|τα+1
=

Mτ−β+ε

1
τα+1 + |ω|

, τ > 0.

Since ε < β, there exists a constant C > 0 such that τα−β+ε+1||Sα,β(τ)|| ≤ C.
Therefore,

||g1+α−β ∗ Sα,β(t)|| ≤ C

∫ t

0

g1+α−β(t− τ)gβ−α−ε(τ)dτ = Cg1−ε(t) = Ct−ε,

which shows that ‖g1+α−β ∗ Sα,β(t)‖ → 0 as t → ∞. By Lemma 2.2 we can
conclude that g1+α−β ∗Sα,β(t) ∈ P0(R+, X). Therefore g1+α−β ∗Sα,β ∈M(X) and
finally, we have shown that u ∈M(X). �

For further use, we state the following immediate corollaries. The first, shows
existence and uniqueness of pseudo almost periodic mild solutions of equation
(2.2).

Corollary 3.2. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial
operator of angle βπ/2 with ω < 0. Then for each f ∈ PAP (R+, X) there exists
a unique mild solution u of equation (2.2) such that u ∈ PAP (R+, X).

We next give existence and uniqueness of pseudo almost automorphic mild
solutions of equation (2.2).
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Corollary 3.3. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial
operator of angle βπ/2 with ω < 0. Then for each f ∈ PAA(R+, X) there exists
a unique mild solution u of equation (2.2) such that u ∈ PAA(R+, X).

4. Pseudo asymptotic solutions: The semilinear case.

Define the Nemytskii superposition operator N (ϕ)(·) := f(·, ϕ(·)) for ϕ ∈
M(X). We define the setM(R+×X;X) to consist of all functions f : R+×X →
X such that f(·, x) ∈M(X) uniformly for each x ∈ K, where K is any bounded
subset of X. From now on, we also denote

P0(R+ ×X,X) = {f ∈ BC(R+ ×X,X) : lim
T→∞

1

T

∫ T

0

||f(t, x)||dt = 0

uniformly on any subset of X}.

In what follows we study existence and uniqueness of solutions in M(X) for
the semi-linear fractional order differential equation

Dα+1
t u(t) + µDβ

t u(t)− Au(t) = Dα
t f(t, u(t)), t ≥ 0, 0 < α ≤ β ≤ 1, µ > 0,

(4.1)
where A is an ω-sectorial operator of angle βπ/2 with ω < 0, u(0) = x and
u′(0) = y.

In view of the linear case, the following definition of mild solution is natural.
Note that in the borderline case µ = 0 and α = 1 it corresponds to the notion
of mild solution for the semi-linear problem u′′(t) = Au(t) + f(t, u(t)) under the
hypothesis that A is the generator of a cosine family C(t). In fact, in this case:
S1,0(t) ≡ C(t) and the associate sine family is equal to (g1 ∗ S1,0)(t).

Definition 4.1. Suppose 0 < α ≤ β ≤ 1, µ > 0. A function u : R+ → X is said
to be a mild solution to Equation (4.1) if it satisfies

u(t) = Sα,β(t)x+(g1 ∗Sα,β)(t)y+µ(g1+α−β ∗Sα,β(t))x+

∫ t

0

Sα,β(t−s)f(s, u(s))ds,

for each t ∈ R+ and x, y ∈ X.

We next give a result on existence of mild solutions for the semi-linear problem.

Theorem 4.2. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial
operator of angle βπ/2 and ω < 0. Let f : R+ × X → X be a function on
M(R+ ×X;X) and assume that there exists a bounded integrable function Lf :
R+ → R+ satisfying

||f(t, x)− f(t, y)|| ≤ Lf (t)||x− y||, (4.2)

for all x, y ∈ X and t ≥ 0. Then Equation (4.1) has a unique mild solution
u ∈M(X).
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Proof. Let Sα,β(t) be the (α, β)µ-regularized family generated by A (cf. Theorem
2.7). We define the operator Kα,β on the space M(X) by

(Kα,βu)(t) = Sα,β(t)x+ (g1 ∗ Sα,β)(t)y + µ(g1+α−β ∗ Sα,β(t))x

+

∫ t

0

Sα,β(t− s)f(s, u(s))ds. (4.3)

From the proof of Theorem 3.1, we know that Sα,β(t)x+(g1∗Sα,β)(t)y+µ(g1+α−β∗
Sα,β(t))x ∈M(X). Moreover by [18, Theorem 4.1] we conclude that the function
s → f(s, u(s)) is in M(X). Then, by hypothesis and in the same way as in the

proof of Theorem 3.1, we arrive at the conclusion that

∫ t

0

Sα,β(t− s)f(s, u(s))ds

is also in M(X) and thus Kα,β is well defined. Let u, v be in M(X). Observe
that

||(Kα,βu)(t)− (Kα,βv)(t)|| ≤
∫ t

0

‖Sα,β(t− s)‖‖f(s, u(s))− f(s, v(s))‖ds

≤
∫ t

0

‖Sα,β(t− s)‖Lf (s)‖u(s)− v(s)‖ds

≤ ‖Sα,β‖1‖u− v‖∞
∫ t

0

Lf (s)ds

≤ ‖Sα,β‖1‖u− v‖∞‖Lf‖1.

By induction, we find the following estimate:

||(Kn
α,βu)(t)− (Kn

α,βv)(t)|| ≤ ||Sα,β||
n
1

(n− 1)!
||u− v||∞

∫ t

0

Lf (s)

(∫ s

0

Lf (τ)dτ

)n−1

ds

=
||Sα,β||n1
n!

||u− v||∞
(∫ t

0

Lf (τ)dτ

)n
≤ ||Sα,β||

n
1

n!
||u− v||∞||Lf ||n1 .

Since
||Sα,β ||n1

n!
||Lf ||n1 < 1 for n sufficiently large, applying the contraction principle

we conclude that F has a unique fixed point u ∈ M(X) such that (Kα,βu)(t) =
u(t). �

The following corollaries are immediate consequences.

Corollary 4.3. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial
operator of angle βπ/2 and ω < 0. Let f : R+ × X → X be a function on
PAP (R+ × X;X) and assume that there exists a bounded integrable function
Lf : R+ → R+ satisfying (4.2). Then Equation (4.1) has a unique mild solution
u ∈ PAP (R+, X).

Corollary 4.4. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial
operator of angle βπ/2 and ω < 0. Let f : R+ × X → X be a function on
PAA(R+ × X;X) and assume that there exists a bounded integrable function
Lf : R+ → R+ satisfying (4.2). Then Equation (4.1) has a unique mild solution
u ∈ PAA(R+, X).
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To finish, we present one example, which do not aim at generality but indicate
how our theorems can be applied to concrete problems.

Example 4.5. Suppose that b ∈ L1(R+), b(t)→ 0 as t→∞. Then the equation

Dα+1
t u(x, t) + µDβ

t u(x, t) =
∂2

∂x2
u(x, t) + τu(x, t)

+ Dα
t [b(t) sin(u(t))], t > 0, 0 < α ≤ β ≤ 1 (4.4)

where τ < 0 is fixed, with initial and zero boundary conditions has a unique
mild solution u(t, x) which decomposes as a sum of a first part which is almost
automorphic (possibly zero) and a second part that belongs to the space P0(R+×
X,X).

Indeed, the equation (4.4) is of the form (4.1) with Au = ∂2

∂x2
u+τu and f(t, u) =

b(t) sin(u(t)). Setting the Dirichlet boundary conditions u(0, t) = u(2π, t) = 0 we
consider A with domain D(A) := {u ∈ L2[0, 2π] : u′′ ∈ L2[0, 2π];u(0) = u(2π) =
0} and f(t, x) = b(t) sin(x). Then it is wellknown that the operator A is ω sectorial
with ω = τ < 0 and angle π/2 (and hence of angle βπ/2 for all β ≤ 1). On the
other hand, since b ∈ L1(R+) and b(t)→ 0 as t→∞, we have

‖f(t, u)− f(t, v)‖2
2 =

∫ π

0

|b(t)|2| sin(u(s))− sin(v(s))|2ds ≤ |b(t)|2‖u− v‖2
2,

and the condition (4.2) holds. Hence the hypothesis of Theorem 4.2 are satisfied
and thus the conclusion of the example follows.
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