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Abstract. In this paper we derive some improvements of means inequalities
for Hilbert space operators. More precisely, we obtain refinements and reverses
of the arithmetic-geometric operator mean inequality. As an application, we
also deduce an improved variant for the refined arithmetic–Heinz mean in-
equality. We also present some eigenvalue inequalities for differences of certain
operator means.

1. Introduction

Let H be a Hilbert space and let B(H) be the space of all bounded linear op-
erators on H. Let Bh(H) be the semi-space in B(H) of all self-adjoint operators.
Moreover, let B+(H) and B++(H), respectively, denote the sets of all positive
and positive invertible operators in Bh(H). The weighted operator geometric
mean ]µ and the arithmetic mean ∇µ, for µ ∈ [0, 1] and A,B ∈ B++(H), are
defined as follows:

A]µB = A
1
2

(
A−

1
2BA−

1
2

)µ
A

1
2 ,

A∇µB = (1− µ)A+ µB.

If µ = 1/2, we write A]B, A∇B for brevity, respectively.
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It is well-known that the arithmetic-geometric mean inequality, with respect
to operator order, says that

A]µB ≤ A∇µB, µ ∈ [0, 1].

Such mean inequalities for Hilbert space operators lie in the fields of interest of
numerous mathematicians, and we refer here to some recent results.

Recently, Kittaneh et. al. [10], obtained the following refinement and reverse
of the arithmetic-geometric operator mean inequality:

2 max{p1, p2}
p1 + p2

[A∇B − A]B] ≥ A∇ p1
p1+p2

B − A] p1
p1+p2

B

≥ 2 min{p1, p2}
p1 + p2

[A∇B − A]B] , (1.1)

where A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+.

Further, the paper [10] also deals with the Heinz operator mean, which is
deduced from the geometric operator mean. Recall that the Heinz operator mean
is defined by

Hµ(A,B) =
A]µB + A]1−µB

2
, (1.2)

where A,B ∈ B++(H) and µ ∈ [0, 1]. It is easy to see that the Heinz mean
interpolates the arithmetic-geometric mean inequality (see [10]):

A]B ≤ Hµ(A,B) ≤ A∇B.
Even more, the paper [10] provides the following refinement of the arithmetic–
Heinz operator mean inequality:

A∇B −H p1
p1+p2

(A,B) ≥ 2

p1 + p2
min{p1, p2} [A∇B − A]B] . (1.3)

It should be mentioned here that the series of inequalities in (1.1) and inequality
(1.3) were proved in [9] for positive definite matrices A,B ∈Mn(C). Here, Mn(C)
denotes the algebra of n× n complex matrices. The similar problem area is, for
example, considered in [8] and [11]. In addition, for a comprehensive inspection of
the recent results about inequalities for bounded self-adjoint operators on Hilbert
space, the reader is referred to [4].

The main objective of this paper is an improvement of the series of inequalities
(1.1) and inequality (1.3). In other words, we shall improve estimates for the
lower and upper bounds for the difference between the arithmetic and geometric
operator means considering an order in R2

+ and an operator order in B++(H).
The paper is organized in the following way: after this Introduction, in Section

2 we define a functional that measures the difference between the classical arith-
metic and geometric means and also deduce some significant scalar inequalities
which will help us in obtaining operator inequalities. Further, in Section 3 we ob-
tain, under certain conditions, improvements of the series of inequalities in (1.1)
as well as yet another lower bound for the difference between the arithmetic and
geometric operator means. As an application, in Section 4 we give an improved
variant of inequality (1.3), concerning the Heinz operator mean. In Section 5 we
present some eigenvalue inequalities for differences of certain operator means.
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2. Auxiliary results

In this section we give some auxiliary results which will help us to establish the
announced improvements of the inequalities involving operator means on Hilbert
space.

The starting point in obtaining the inequalities for bounded self-adjoint opera-
tors on Hilbert space is the following general monotonicity principle for operator
functions: If X ∈ Bh(H) with spectrum Sp(X) and f, g are continuous real-
valued functions on Sp(X), then

f(t) ≥ g(t), t ∈ Sp(X), implies that f(X) ≥ g(X), (2.1)

with equality if and only if f(t) = g(t) for all t ∈ Sp(X). For more details about
the described monotonicity principle and contributed consequences, the reader is
referred to [4]. Clearly, the above principle allows us to raise some significant real
inequalities on the level of self-adjoint operators on Hilbert space.

Accordingly, at the beginning, we consider an interesting inequality in one
variable, dependent on a certain parameter.

Lemma 2.1. If

p ≥ 1, x ≥ 1 or 0 < p ≤ 1, 0 < x ≤ 1, (2.2)

then

1 + px2 − (1 + p)x
2p
1+p ≥ 2p

1 + p
(x− 1)2. (2.3)

In addition, if
p ≥ 1, 0 < x ≤ 1 or 0 < p ≤ 1, x ≥ 1,

then the sign of inequality (2.3) is reversed. Moreover, equality in (2.3) and in
the reverse inequality holds if and only if x = 1 or p = 1.

Proof. We consider the function g : (0,∞)→ R, defined by

g(x) = 1 + px2 − (1 + p)x
2p
1+p − 2p

1 + p
(x− 1)2.

By taking the first and second derivatives of the function g, we get

g′(x) =
2p(p− 1)

p+ 1
x− 2px

p−1
p+1 +

4p

p+ 1
,

g′′(x) =
2p(p− 1)

p+ 1

(
1− x−

2
p+1

)
.

If p ≥ 1, x ≥ 1, then g′′(x) ≥ 0. Hence, g′ is increasing on [1,∞), which
implies the inequality g′(x) ≥ g′(1) = 0 for x ≥ 1. Since, g′(x) ≥ 0 for x ≥ 1,
we conclude that g is increasing on interval [1,∞). This implies the inequality
g(x) ≥ g(1) = 0, which is valid for x ≥ 1.

Similarly, if 0 < p ≤ 1, 0 < x ≤ 1, then g′′(x) ≥ 0 and g′ is increasing on (0, 1],
which implies the inequality g′(x) ≤ g′(1) = 0 for 0 < x ≤ 1. Since g′(x) ≤ 0
for 0 < x ≤ 1, we conclude that g is decreasing on interval (0, 1]. This implies
the inequality g(x) ≥ g(1) = 0, which holds for 0 < x ≤ 1. Therefore, inequality
(2.3) is valid under conditions (2.2).
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On the other hand, the reverse inequality in (2.3) is deduced in the same way
as inequality (2.3).

Finally, conditions for equality in (2.3) and in the reversed inequality follow
immediately from the presented proof. �

Note that the sign of inequality in (2.3) depends on both, the variable x and
the parameter p. In the sequel, we give another type of lower bounds for the
left-hand side of inequality (2.3), which holds for all positive x and p.

Lemma 2.2. If p > 0, x > 0, then

1 + px− (1 + p)x
p

1+p ≥ 3p(x− 1)2

(4 + 2p)x+ 2 + 4p
. (2.4)

Equality in (2.4) holds if and only if x = 1.

Proof. We consider the function g : (0,∞)→ R, defined by

g(x) = [(4 + 2p)x+ 2 + 4p]
[
1 + px− (1 + p)x

p
1+p

]
− 3p(x− 1)2.

By taking its first three derivatives, we get

g′(x) = 2(1 + 2p)
[
p
(
x− x−

1
1+p

)
− (2 + p)

(
x

p
1+p − 1

)]
,

g′′(x) =
2p(1 + 2p)

1 + p

[
1 + p+ x−

2+p
1+p − (2 + p)x−

1
1+p

]
,

g′′′(x) =
2p(1 + 2p)(2 + p)

(1 + p)2
(x− 1)x−

3+2p
1+p .

If x ≥ 1, then g′′′(x) ≥ 0. Hence, g′′ is increasing on [1,∞), which implies the
inequality g′′(x) ≥ g′′(1) = 0, for x ≥ 1. Since g′′(x) ≥ 0, for x ≥ 1, we conclude
that g′ is increasing on [1,∞), that is g′(x) ≥ g′(1) = 0, for x ≥ 1. Now, g is
increasing on [1,∞), i.e. g(x) ≥ g(1) = 0, for x ≥ 1.

On the other hand, if 0 < x ≤ 1, then g′′′(x) ≤ 0, which means that g′′ is
decreasing on (0, 1]. Hence, g′′(x) ≥ g′′(1) = 0, for 0 < x ≤ 1. The latter
relations implies that g′ is increasing on interval (0, 1], that is g′(x) ≤ g′(1) = 0,
for 0 < x ≤ 1. Now, g is decreasing on (0, 1], which implies that g(x) ≥ g(1) = 0
for 0 < x ≤ 1. This completes the proof. �

Remark 2.3. It should be mentioned here that special cases of Lemmas 2.1 and
2.2, with similar proofs, can be found in [2]. In addition, some related results can
also be found in [3].

If we take a closer look at inequalities (2.3) and (2.4), we see that the left-
hand sides of these inequalities can be interpreted as the differences between
classical weighted arithmetic and geometric means. For that sake, we need more
convenient forms of inequalities (2.3) and (2.4). More precisely, we define the
functional J : R2

+ × R2
+ → R+ by

J(x,p) = (p1 + p2) [A(x,p)−G(x,p)] , (2.5)
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where x = (x1, x2), p = (p1, p2), and

A(x,p) =
p1x1 + p2x2
p1 + p2

, G(x,p) = (xp11 x
p2
2 )

1
p1+p2 .

Obviously, due to the relationship between the arithmetic and geometric means,
functional (2.5) is non-negative.

Now, Lemmas 2.1 and 2.2 enable us to establish appropriate bounds for func-
tional (2.5), regarding the orders in x and p.

More precisely, Lemma 2.1 yields lower and upper bounds for functional (2.5)
with respect to the orders in x = (x1, x2) and p = (p1, p2).

Lemma 2.4. Let x = (x1, x2),p = (p1, p2) ∈ R2
+. If

0 < p1 ≤ p2, 0 < x1 ≤ x2 or 0 < p2 ≤ p1, 0 < x2 ≤ x1, (2.6)

then
J(x,p) ≥ H(p1, p2)

(√
x1 −

√
x2
)2
, (2.7)

where H(p1, p2) = 2p1p2/(p1 + p2), that is, the harmonic mean of p1 and p2. In
addition, if

0 < p1 ≤ p2, 0 < x2 ≤ x1 or 0 < p2 ≤ p1, 0 < x1 ≤ x2, (2.8)

then the sign of inequality (2.7) is reversed. Further, equality in (2.7) and in the
reverse inequality holds if and only if x1 = x2 or p1 = p2.

Proof. Suppose that conditions (2.6) are fulfilled and rewrite the functional (2.5)
in the form:

J(x,p) = p1x1

[
1 +

p2
p1
· x2
x1
−
(

1 +
p2
p1

)(
x2
x1

) p2
p1+p2

]
. (2.9)

If we denote p = p2/p1 and x =
√
x2/x1, we see that conditions (2.6) are equiv-

alent to those in (2.2). Besides, under the above notations, the expression in
the square brackets represents the left-hand side of inequality (2.3). Thus, by
applying (2.3) on (2.9), we have

J(x,p) ≥ p1x1

2p2
p1

1 + p2
p1

(√
x2
x1
− 1

)2

=
2p1p2
p1 + p2

(√
x1 −

√
x2
)2
,

as required.
On the other hand, if conditions (2.8) are fulfilled, then, again by using Lemma

2.1, the sign of inequality (2.7) is reversed. �

Lemma 2.2 yields another lower bound for functional (2.5) regardless of an
order in x = (x1, x2) and p = (p1, p2).

Lemma 2.5. If x = (x1, x2),p = (p1, p2) ∈ R2
+, then

J(x,p) ≥ 3p1p2(x1 − x2)2

(2p1 + 4p2)x1 + (4p1 + 2p2)x2
. (2.10)

In addition, equality in (2.10) holds if and only if x1 = x2.
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Proof. Note that functional (2.5) can be written in the form:

J(x,p) = p1x1

[
1 +

p2
p1
· x2
x1
−
(

1 +
p2
p1

)(
x2
x1

) p2
p1+p2

]
.

Applying inequality (2.4) on the above expression in the square brackets for
p = p2/p1 and x = x2/x1, we have

J(x,p) ≥ p1x1

3p2
p1
·
(
x2
x1
− 1
)2(

4 + 2p2
p1

)
· x2
x1

+
(

2 + 4p2
p1

) =
3p1p2(x1 − x2)2

(2p1 + 4p2)x1 + (4p1 + 2p2)x2
,

which completes the proof. �

3. Main results

In this section, with the help of Lemma 2.4, we are ready to deduce refine-
ments and reverses of the arithmetic-geometric mean inequality for Hilbert space
operators. More precisely, by following the ideas developed in Lemma 2.4, we get
refinements and reverses of the arithmetic-geometric operator mean inequality
which yield better results than the original result (1.1), presented in the Intro-
duction.

Theorem 3.1. Let A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+. If

A ≥ B, 0 < p1 ≤ p2 or A ≤ B, 0 < p2 ≤ p1, (3.1)

then

A∇ p1
p1+p2

B − A] p1
p1+p2

B ≥ 2H(p1, p2)

p1 + p2
[A∇B − A]B] . (3.2)

In addition, if

A ≥ B, 0 < p2 ≤ p1 or A ≤ B, 0 < p1 ≤ p2, (3.3)

then the sign of inequality (3.2) is reversed. Equality in (3.2) and in the reverse
inequality holds if and only if A = B or p1 = p2.

Proof. If we put x1 = x and x2 = 1 in (2.7), we get the inequality

p1x+ p2 − (p1 + p2)x
p1

p1+p2 ≥ 2H(p1, p2)

(
x+ 1

2
−
√
x

)
, (3.4)

which is valid if

0 < p1 ≤ p2, 0 < x ≤ 1 or 0 < p2 ≤ p1, x ≥ 1.

Now, considering the operator A−
1
2BA−

1
2 ∈ B++(H) and the monotonicity prin-

ciple (2.1), applied on inequality (3.4), we get the inequality

p1A
− 1

2BA−
1
2 +p21H−(p1+p2)

(
A−

1
2BA−

1
2

) p1
p1+p2

≥ 2H(p1, p2)

[
A−

1
2BA−

1
2 + 1H

2
−
(
A−

1
2BA−

1
2

) 1
2

]
, (3.5)
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which is valid if

0 < p1 ≤ p2, A
− 1

2BA−
1
2 ≤ 1H or 0 < p2 ≤ p1, A

− 1
2BA−

1
2 ≥ 1H. (3.6)

Here, 1H denotes the identity operator on the Hilbert spaceH. Clearly, conditions
(3.6) are equivalent to those in (3.1). Now, multiplying inequality (3.5) by A

1
2

from both sides, we get inequality (3.2).
On the other hand, by considering the reverse inequality in (3.4), which is valid

under the conditions

0 < p1 ≤ p2, x ≥ 1 or 0 < p2 ≤ p1, 0 < x ≤ 1,

we get the reverse inequality in (3.2), following the same lines as in the first part
of the proof. Clearly, the reverse inequality in (3.2) is fulfilled under conditions
(3.3).

Finally, equality conditions follow immediately from Lemma 2.4 and the mono-
tonicity principle (2.1) for operator functions. �

Remark 3.2. Since min{p1, p2} ≤ H(p1, p2) ≤ max{p1, p2}, inequality (3.2), which
holds under conditions (3.1), represents an improvement of the refined inequality
in (1.1). On the other hand, the reverse inequality in (3.2), which is valid under
conditions (3.3), also represents an improvement of the reverse inequality in (1.1).

Inequality (2.10) from Lemma 2.5 yields yet another lower bound for functi-
onal (2.5), regardless of an order in x = (x1, x2) and p = (p1, p2). By raising to
the level of operators in the Hilbert space, we get another lower bound for the
difference between the arithmetic and geometric operator means, without any
conditions on the positive operators A and B, and the positive parameters p1
and p2.

Theorem 3.3. Let A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+. Then,

A∇ p1
p1+p2

B − A] p1
p1+p2

B ≥ 3p1p2
p1 + p2

A
1
2D−

1
2

[
A−

1
2 (A−B)A−

1
2

]2
D−

1
2A

1
2 , (3.7)

where D = A−
1
2 [(4p1 + 2p2)A+ (2p1 + 4p2)B]A−

1
2 . Moreover, equality in (3.7)

holds if and only if A = B.

Proof. If we put x1 = x and x2 = 1 in (2.10), we get the inequality

p1x+ p2 − (p1 + p2)x
p1

p1+p2 ≥ 3p1p2(x− 1)2

(2p1 + 4p2)x+ 4p1 + 2p2
,

which can be rewritten in the form

p1x+ p2 − (p1 + p2)x
p1

p1+p2 ≥ 3p1p2k
− 1

2 (x)(x− 1)2k−
1
2 (x), (3.8)

where k(x) = (2p1 + 4p2)x+ 4p1 + 2p2.

Now, considering the operator A−
1
2BA−

1
2 ∈ B++(H) and the monotonicity

principle (2.1), applied on inequality (3.8), we get the inequality

p1A
− 1

2BA−
1
2 +p21H−(p1+p2)

(
A−

1
2BA−

1
2

) p1
p1+p2

≥ 3p1p2k
− 1

2

(
A−

1
2BA−

1
2

)(
A−

1
2BA−

1
2 − 1H

)2
k−

1
2

(
A−

1
2BA−

1
2

)
. (3.9)
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Now,

k
(
A−

1
2BA−

1
2

)
= (2p1 + 4p2)A

− 1
2BA−

1
2 + (4p1 + 2p2)1H

= (2p1 + 4p2)A
− 1

2BA−
1
2 + (4p1 + 2p2)A

− 1
2AA−

1
2

= A−
1
2 [(4p1 + 2p2)A+ (2p1 + 4p2)B]A−

1
2 = D,

and [
A−

1
2BA−

1
2 − 1H

]2
=
[
A−

1
2BA−

1
2 − A−

1
2AA−

1
2

]2
=
[
A−

1
2 (B − A)A−

1
2

]2
=
[
A−

1
2 (A−B)A−

1
2

]2
,

so inequality (3.9) takes the form

p1A
− 1

2BA−
1
2 +p21H−(p1+p2)

(
A−

1
2BA−

1
2

) p1
p1+p2

≥ 3p1p2D
− 1

2

[
A−

1
2 (A−B)A−

1
2

]2
D−

1
2 . (3.10)

Finally, if we multiply inequality (3.10) by A
1
2 from both sides, we get (3.7). This

completes the proof. �

4. Applications to Heinz means

In this section we apply our Theorems 3.1 and 3.3 to the operator Heinz mean.
Recall that the Heinz mean (1.2) is closely connected with the arithmetic and
geometric means and it interpolates the two mentioned means. As an application
of Theorem 3.1, we obtain a better lower bound, for the difference between the
arithmetic and Heinz means, than the original refinement (1.3) presented in the
Introduction.

Theorem 4.1. Let A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+. If A ≥ B or A ≤ B,

then

A∇B −H p1
p1+p2

(A,B) ≥ H(p1, p2) + min{p1, p2}
p1 + p2

[A∇B − A]B] . (4.1)

Moreover, equality in (4.1) holds if and only if A = B or p1 = p2.

Proof. Consider the right inequality in (1.1) with reversed roles of the parameters
p1 and p2:

A∇ p2
p1+p2

B − A] p2
p1+p2

B ≥ 2 min{p1, p2}
p1 + p2

[A∇B − A]B] . (4.2)

Clearly, inequality (4.2) is valid for any choice of positive parameters p1 and p2,
where A,B ∈ B++(H). On the other hand, inequality (3.2) is valid under con-
ditions (3.1). Now, adding inequalities (3.2) and (4.2), it follows that inequality
(4.1) holds under conditions (3.1).
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Now, considering (3.2) with reversed roles of the parameters p1 and p2, we get
the inequality

A∇ p2
p1+p2

B − A] p2
p1+p2

B ≥ 2H(p1, p2)

p1 + p2
[A∇B − A]B] , (4.3)

which is valid under conditions (3.3). Same as before, if we add the right in-
equality in (1.1) and (4.3), we obtain again inequality (4.1) which holds under
conditions (3.3).

From this we conclude that (4.1) holds if one of the conditions in (3.1) or (3.3) is
fulfilled. This means that we can drop the conditions concerning the parameters
p1 and p2 in (3.1) and (3.3), that is, (4.1) holds if A ≤ B or A ≥ B. �

Remark 4.2. Since H(p1, p2)+min{p1, p2} ≥ 2 min{p1, p2}, inequality (4.1) repre-
sents an improved form of inequality (1.3) from the Introduction. Note also that
inequality (4.1) is established by successive application of the improved inequality
(3.2) and the weaker refined inequality in (1.1). Therefore, in inequality (4.1) we
do not get so good constant factor 2H(p1, p2), as in (3.2), but we can omit the
conditions concerning the parameters p1 and p2.

Remark 4.3. In a similar way as in Theorem 4.1, we get a reverse inequality
related to (4.1), that is

A∇B −H p1
p1+p2

(A,B) ≤ r [A∇B − A]B] , (4.4)

where

r =
H(p1, p2) + max{p1, p2}

p1 + p2
≥ min{p1, p2}+ max{p1, p2}

p1 + p2
= 1.

Reverse relation (4.4) can be rewritten in the following form:

H p1
p1+p2

(A,B) ≥ A]B − (r − 1) [A∇B − A]B] . (4.5)

Now, since r ≥ 1 and A∇B ≥ A]B, inequality (4.5) is weaker than the original
relationship between the Heinz and geometric means, i.e. Hp1/(p1+p2)(A,B) ≥
A]B. It is reasonable since the inequality between the geometric and Heinz means
is established throughout the scalar inequality xp1/(p1+p2) + xp2/(p1+p2) ≥ 2

√
x.

Namely, the last inequality is non-weighted, and that is the best possible which
gives the method developed in this paper.

We conclude this section with another type of refinements of the arithmetic–
Heinz mean inequality, arising from Theorem 3.3.

Theorem 4.4. Let A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+. Then,

A∇B−H p1
p1+p2

(A,B)

≥ 3p1p2
2 (p1 + p2)

A
1
2

(
D−

1
2 +D′−

1
2

) [
A−

1
2 (A−B)A−

1
2

]2 (
D−

1
2 +D′−

1
2

)
A

1
2 , (4.6)

where D = A−
1
2 [(4p1 + 2p2)A+ (2p1 + 4p2)B]A−

1
2 and D′ is obtained from D

by changing the roles of the parameters p1 and p2. In addition, equality in (4.6)
holds if and only if A = B.
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Proof. If we rewrite inequality (3.7) with reversed roles of the parameters p1 and
p2, we get the inequality

A∇ p2
p1+p2

B − A] p2
p1+p2

B ≥ 3p1p2
p1 + p2

A
1
2D′−

1
2

[
A−

1
2 (A−B)A−

1
2

]2
D′−

1
2A

1
2 . (4.7)

Finally, by adding inequalities (3.7) and (4.7), we obtain (4.6). Now, equality
in (4.6) holds if and only if it holds in inequalities (3.7) and (4.7), that is, if
A = B. �

5. Eigenvalues of differences of certain operator means

This section is devoted to eigenvalue inequalities for differences of means of
positive invertible operators, under certain compactness assumption. Related
results have been recently obtained in [7].

For a compact operator A ∈ B+(H), let λ1(A) ≥ λ2(A) ≥ · · · ≥ 0 denote
the eigenvalues of A arranged in decreasing order and repeated according to mul-
tiplicity. In order to present our promised eigenvalue inequalities, we need the
following three lemmas. The first lemma follows from the well-known character-
ization of compact operators (see e.g., [6] or [12, p. 59]):

A ∈ B(H) is compact if and only if 〈Aen, en〉 → 0 as n→∞

for every orthonormal set {en} inH, where 〈·, ·〉 denotes the inner product defined
on H. The second lemma is known as the Weyl’s monotonicity principle for
compact positive operators (see e.g., [1, p. 63] or [5, p. 26]). While, the third
lemma is a basic property of the eigenvalues of compact operators.

Lemma 5.1. Let A,B ∈ B+(H) such that A is compact and A ≥ B. Then B is
compact.

Lemma 5.2. Let A,B ∈ B+(H) be compact such that A ≥ B. Then λj(A) ≥
λj(B) for j = 1, 2, ....

Lemma 5.3. Let X ∈ B(H) be compact. Then λj (X∗X) = λj (XX∗) for j =
1, 2, ....

Our first eigenvalue inequality in this section, which is closely related to in-
equality (3.7), gives a lower bound for the difference between the arithmetic and
geometric means.

Theorem 5.4. Let A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+. If A−B is compact

and D = A−
1
2 [(4p1 + 2p2)A+ (2p1 + 4p2)B]A−

1
2 , then

λj

(
A∇ p1

p1+p2

B − A] p1
p1+p2

B
)
≥ 3p1p2
p1 + p2

λj

(
D−

1
2A−

1
2 (A−B)2A−

1
2D−

1
2

)
(5.1)

for j = 1, 2, ....

Proof. Inequality (3.8) can be written as

p1
p1 + p2

x+
p2

p1 + p2
− x

p1
p1+p2 ≥ 3p1p2

p1 + p2
(x− 1) k−1(x)(x− 1) (5.2)
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for x > 0, where k(x) = (2p1 + 4p2)x+ 4p1 + 2p2. Since Sp(A−
1
2BA−

1
2 ) ⊆ (0,∞),

the monotonicity principle (2.1), applied on inequality (5.2), implies that

p1
p1 + p2

A−
1
2BA−

1
2 +

p2
p1 + p2

−
(
A−

1
2BA−

1
2

) p1
p1+p2

≥ 3p1p2
p1 + p2

(
A−

1
2BA−

1
2 − 1H

)
k−1(A−

1
2BA−

1
2 )(A−

1
2BA−

1
2 − 1H)

=
3p1p2
p1 + p2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2 − 1H)

and so

A∇ p1
p1+p2

B−A] p1
p1+p2

B

=
p1

p1 + p2
B +

p2
p1 + p2

A− A
1
2

(
A−

1
2BA−

1
2

) p1
p1+p2 A

1
2

≥ 3p1p2
p1 + p2

A
1
2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2 − 1H)A

1
2 . (5.3)

Since A − B is compact, it follows from the spectral theorem, applied in the
Calkin algebra setting, that the operator A∇ p1

p1+p2

B −A] p1
p1+p2

B is also compact,

and since the operator A
1
2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2−1H)A

1
2 is positive,

it follows from inequality (5.3), together with Lemma 5.1, that the operator

A
1
2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2 − 1H)A

1
2

is compact. Lemma 5.2, together with the inequality (5.3), implies that

λj

(
A∇ p1

p1+p2

B − A] p1
p1+p2

B
)

≥ 3p1p2
p1 + p2

λj

(
A

1
2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2 − 1H)A

1
2

)
(5.4)

for j = 1, 2, .... Let X = D−
1
2 (A−

1
2BA−

1
2 − 1H)A

1
2 . It follows from Lemma 5.3

that

λj

(
A

1
2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2 − 1H)A

1
2

)
= λj (X∗X)

= λj (XX∗)

= λj

(
D−

1
2 (A−

1
2BA−

1
2 − 1H)A(A−

1
2BA−

1
2 − 1H)D−

1
2

)
= λj

(
D−

1
2A−

1
2 (A−B)2A−

1
2D−

1
2

)
(5.5)

for j = 1, 2, .... Now, the result follows from inequality (5.4) and identity (5.5).
�

In order to investigate the equality condition of inequality (5.1) in Theorem
5.4, we need the following lemma (see, e.g., [5, p. 26]).
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Lemma 5.5. Let A,B ∈ B+(H) be compact such that A ≥ B. Then A = B if
and only if λj(A) = λj(B) for j = 1, 2, ....

Theorem 5.6. Let A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+. If A−B is compact

and D = A−
1
2 [(4p1 + 2p2)A+ (2p1 + 4p2)B]A−

1
2 , then

λj

(
A∇ p1

p1+p2

B − A] p1
p1+p2

B
)

=
3p1p2
p1 + p2

λj

(
D−

1
2A−

1
2 (A−B)2A−

1
2D−

1
2

)
for j = 1, 2, ... if and only if A = B.

Proof. Suppose that

λj

(
A∇ p1

p1+p2

B − A] p1
p1+p2

B
)

=
3p1p2
p1 + p2

λj

(
D−

1
2A−

1
2 (A−B)2A−

1
2D−

1
2

)
for j = 1, 2, .... Then, it follows from identity (5.5) that

λj

(
A∇ p1

p1+p2

B − A] p1
p1+p2

B
)

=
3p1p2
p1 + p2

λj

(
A

1
2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2 − 1H)A

1
2

)
(5.6)

for j = 1, 2, .... It follows from relation (5.6), together with inequality (5.3) and
Lemma 5.5, that

A∇ p1
p1+p2

B − A] p1
p1+p2

B

=
3p1p2
p1 + p2

A
1
2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2 − 1H)A

1
2 . (5.7)

The equality in (5.7) implies that

J(x,p)

p1 + p2
=

p1
p1 + p2

x+
p2

p1 + p2
− x

p1
p1+p2

=
3p1p2
p1 + p2

(x− 1) k−1(x)(x− 1)

=
3p1p2
p1 + p2

k−1(x)(x− 1)2 (5.8)

for all x ∈ Sp
(
A−

1
2BA−

1
2

)
, where x = (x, 1). Now, it follows from (5.8) and the

equality conditions of inequality (2.10) that x = 1 for all x ∈ Sp
(
A−

1
2BA−

1
2

)
.

Using this, together with the equality condition of inequality (2.1), we have

A−
1
2BA−

1
2 = 1H, that is, B = A.

The converse is trivial, and the proof is complete. �

Our second eigenvalue inequality in this section gives a lower bound for the
difference between the arithmetic and Heinz means.

Theorem 5.7. Let A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+. If A−B is compact

and D = A−
1
2 [(4p1 + 2p2)A+ (2p1 + 4p2)B]A−

1
2 , then

λj

(
A∇B −H p1

p1+p2

(A,B)
)
≥ 3p1p2
p1 + p2

λj

(
D−

1
2A−

1
2 (A−B)2A−

1
2D−

1
2

)
(5.9)
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for j = 1, 2, ....

Proof. In inequality (5.3) interchanging p1 and p2, we have

A∇ p2
p1+p2

B − A] p2
p1+p2

B

≥ 3p1p2
p1 + p2

A
1
2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2 − 1H)A

1
2 . (5.10)

Adding inequalities (5.3) and (5.10), we have

A∇B−H p1
p1+p2

(A,B)

=
A+B −

(
A] p1

p1+p2

B + A] p2
p1+p2

B
)

2

=

(
A∇ p1

p1+p2

B − A] p1
p1+p2

B
)

+
(
A∇ p2

p1+p2

B − A] p2
p1+p2

B
)

2

≥ 3p1p2
p1 + p2

A
1
2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2 − 1H)A

1
2 . (5.11)

Since A−B is compact, the operators

A∇B −H p1
p1+p2

(A,B)

and
3p1p2
p1 + p2

A
1
2

(
A−

1
2BA−

1
2 − 1H

)
D−1(A−

1
2BA−

1
2 − 1H)A

1
2

are compact. It follows from inequality (5.11), together with identity (5.5) and
Lemma 5.2, that

λj

(
A∇B −H p1

p1+p2

(A,B)
)
≥ 3p1p2
p1 + p2

λj

(
D−

1
2A−

1
2 (A−B)2A−

1
2D−

1
2

)
for j = 1, 2, ..., as required. �

The equality condition of inequality (5.9) in Theorem 5.7 can be stated as
follows. The proof is similar to that given for Theorem 5.6.

Theorem 5.8. Let A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+. If A−B is compact

and D = A−
1
2 [(4p1 + 2p2)A+ (2p1 + 4p2)B]A−

1
2 , then

λj

(
A∇B −H p1

p1+p2

(A,B)
)

=
3p1p2
p1 + p2

λj

(
D−

1
2A−

1
2 (A−B)2A−

1
2D−

1
2

)
for j = 1, 2, ... if and only if A = B.

Finally, we remark that, using Lemma 5.2 and the spectral theorem for compact
positive operators, Theorems 5.4 and 5.7 can be formulated in the following forms.

Theorem 5.9. Let A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+. If A−B is compact

and D = A−
1
2 [(4p1 + 2p2)A+ (2p1 + 4p2)B]A−

1
2 , then

A∇ p1
p1+p2

B − A] p1
p1+p2

B ≥ 3p1p2
p1 + p2

U∗D−
1
2A−

1
2 (A−B)2A−

1
2D−

1
2U (5.12)
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for some unitary operator U ∈ B(H). Moreover, equality holds in (5.12) if and
only if A = B.

Theorem 5.10. Let A,B ∈ B++(H) and p = (p1, p2) ∈ R2
+. If A−B is compact

and D = A−
1
2 [(4p1 + 2p2)A+ (2p1 + 4p2)B]A−

1
2 , then

A∇B −H p1
p1+p2

(A,B) ≥ 3p1p2
p1 + p2

U∗D−
1
2A−

1
2 (A−B)2A−

1
2D−

1
2U (5.13)

for some unitary operator U ∈ B(H). Moreover, equality holds in (5.13) if and
only if A = B.
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