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Abstract. In this paper we establish a Fubini theorem for functionals on a
function space. We then establish some relationships as applications of our
Fubini theorem. Finally, we present some historical remarks.

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space; that is the space of real-valued
continuous functions x on [0, T ] with x(0) = 0. In [1], Bearman established
a very useful theorem which is called the rotation theorem on Wiener space
C0[0, T ]. In [13, 14, 15], Huffman, Park and Skoug used the rotation theorem
to obtain a basic relationship between the analytic Fourier–Feynman transform
and the convolution product of functionals on C0[0, T ], and in [16, 17], Huffman,
Skoug and Storvick established a Fubini theorem via the rotation theorem to
obtain various analytic Wiener and Feynman integrals and integration formulas
involving Fourier–Feynman transforms on C0[0, T ].

In [3], Cameron and Storvick established a very fundamental result to evaluate
the analytic Feynman integral for unbounded functionals on C0[0, T ]. In [20],
Park, Skoug and Storvick used the fundamental result to obtain integration by
parts formulas for analytic Feynman integrals and for analytic Fourier–Feynman
transforms.
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The function space Ca,b[0, T ], induced by generalized Brownian motion, was
introduced by Yeh in [22] and was used extensively in [4, 5, 6, 7, 8, 9].

In this paper, we establish a Fubini theorem for functionals on the function
space Ca,b[0, T ]. We then use the Fubini theorem and the translation theorem
to obtain a Cameron–Storvick type theorem. Finally, we present some historical
remarks for our main results.

The Wiener process used in [1, 2, 3, 10, 11, 12, 13, 14, 15, 16, 17, 20] is free
of drift and is stationary in time while the stochastic process used in this paper,
as well as in [4, 5, 6, 7, 8, 9], is nonstationary in time, is subject to a drift a(t),
and can be used to explain the position of the Ornstein–Uhlenbeck process in an
external force field [19]. Thus the formulas and results in this paper are more
complicated than the formulas and results in [1, 3]. However, when a(t) ≡ 0
and b(t) = t on [0, T ], the function space Ca,b[0, T ] reduces to the Wiener space
C0[0, T ] and so the results in [1, 3, 13, 14, 15, 16, 17, 20] follow immediately from
the results in this paper.

2. Preliminaries

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A real-valued
stochastic process Y on (Ω,B, P ) and D is called a generalized Brownian motion
process if Y (0, ω)=0 almost everywhere and for 0 = t0 < t1 < · · · < tn ≤ T ,
the n-dimensional random vector (Y (t1, ω), . . . , Y (tn, ω)) is normally distributed
with density function

Wn(~t, ~η) =
(
(2π)n

n∏
j=1

(b(tj)− b(tj−1))
)−1/2

· exp

{
−1

2

n∑
j=1

((ηj − a(tj))− (ηj−1 − a(tj−1)))
2

b(tj)− b(tj−1)

} (2.1)

where ~η = (η1, . . . , ηn), η0 = 0, ~t = (t1, . . . , tn), a(t) is an absolutely continuous
real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t) is a strictly
increasing, continuously differentiable real-valued function with b(0) = 0 and
b′(t) > 0 for each t ∈ [0, T ].

As explained in [21, pp.18–20], Y induces a probability measure µ on the
measurable space (RD,BD) where RD is the space of all real-valued functions
x(t), t ∈ D, and BD is the smallest σ-algebra of subsets of RD with respect
to which all the coordinate evaluation maps et(x) = x(t) defined on RD are
measurable. The triple (RD,BD, µ) is a probability measure space. This measure
space is called the function space induced by the generalized Brownian motion
process Y determined by a(·) and b(·).

We note that the generalized Brownian motion process Y determined by a(·)
and b(·) is a Gaussian process with mean function a(t) and covariance function
r(s, t) = min{b(s), b(t)}. By Theorem 14.2 [21, p.187], the probability measure
µ induced by Y , taking a separable version, is supported by Ca,b[0, T ] (which is
equivalent to the Banach space of continuous functions x on [0, T ] with x(0) = 0
under the sup norm). Hence (Ca,b[0, T ],W(Ca,b[0, T ]), µ) is the function space
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induced by Y where W(Ca,b[0, T ]) is the collection of all Wiener measurable
subsets of Ca,b[0, T ].

A subset E of Ca,b[0, T ] is said to be scale-invariant measurable provided ρE ∈
W(Ca,b[0, T ]) for all ρ > 0, and a scale-invariant measurable set N is said to be
a scale-invariant null set provided µ(ρN) = 0 for all ρ > 0. A property that
holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere.

Let L2
a,b[0, T ] be the Hilbert space of functions on [0, T ] which are Lebesgue

measurable and square integrable with respect to the Lebesgue Stieltjes measures
on [0, T ] induced by a(·) and b(·); i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) <∞ and

∫ T

0

v2(s)d|a|(s) <∞
}

where |a|(t) denotes the total variation of the function a(·) on the interval [0, t].
For u, v ∈ L2

a,b[0, T ], let

(u, v)a,b =

∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ‖u‖a,b =

√
(u, u)a,b is a norm

on L2
a,b[0, T ]. In particular note that ‖u‖a,b = 0 if and only if u(t) = 0 a.e. on

[0, T ]. Furthermore (L2
a,b[0, T ], ‖ · ‖a,b) is a separable Hilbert space. Note that all

functions of bounded variation on [0, T ] are elements of L2
a,b[0, T ]. Also note that

if a(t) ≡ 0 and b(t) = t, then L2
a,b[0, T ] = L2[0, T ]. In fact,

(L2
a,b[0, T ], ‖ · ‖a,b) ⊂ (L2

0,b[0, T ], ‖ · ‖0,b) = (L2[0, T ], ‖ · ‖2)

since the two norms ‖ · ‖0,b and ‖ · ‖2 are equivalent. For v ∈ L2
a,b[0, T ], let

(v, a′) =

∫ T

0

v(t)a′(t)dt =

∫ T

0

v(t)da(t)

and

(v2, b′) =

∫ T

0

v2(t)b′(t)dt =

∫ T

0

v2(t)db(t).

It is well-known that for each v ∈ L2
a,b[0, T ], the Paley–Wiener–Zygmund(PWZ)

stochastic integral 〈v, x〉, see [4, 5, 7, 8, 9], exists for µ-a.e. x ∈ Ca,b[0, T ].
Throughout this paper we will assume that each functional F : Ca,b[0, T ]→ C

consider is scale-invariant measurable and that∫
Ca,b[0,T ]

|F (ρx)|dµ(x) <∞

for each ρ > 0.

Remark 2.1. Let w(t) = a′(t)
b′(t)

. In addition to the conditions put on a(t) above we

now add the condition ∫ T

0

|a′(t)|2d|a|(t) <∞;
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from which it follows that∫ T

0

w2(t)d[b(t) + |a|(t)] =

∫ T

0

[
a′(t)

b′(t)

]2
d[b(t) + |a|(t)] <∞.

Note that a(t) =
∫ t
0
w(s)db(s) for t ∈ [0, T ].

3. A Fubini theorem

In this section we define two transforms on function spaces. We then use these
transforms and the translation theorem on Ca,b[0, T ] to obtain a Fubini theorem,
see Theorem 4.2 below.

First, we define two interesting transforms Rθ and Aθ on C2
a,b[0, T ] ≡ Ca,b[0, T ]×

Ca,b[0, T ] used in this paper.
For each real number θ, let Rθ : C2

a,b[0, T ]→ C2
a,b[0, T ] be the transform defined

by Rθ(x, y) = (X, Y ) where(
X(t)
Y (t)

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x(t)
y(t)

)
, t ∈ [0, T ],

and let Aθ : C2
a,b[0, T ]→ C2

a,b[0, T ] be the transform defined by Aθ(x, y) = (X ′, Y ′)
where (

X ′(t)
Y ′(t)

)
=

(
x(t)
y(t)

)
− E

[(
x(t)
y(t)

)]
+ E[Rθ(x, y)(t)], t ∈ [0, T ],

where E is the expectation, which implies that{
X ′(t) = (x(t)− a(t)) + (cos θ − sin θ)a(t)

Y ′(t) = (y(t)− a(t)) + (cos θ + sin θ)a(t), t ∈ [0, T ].

Note that if a(t) ≡ 0 on [0, T ], then the transform Aθ is the identity transform
on C2

a,b[0, T ].

The following lemma plays a key role to obtain our main results and formulas
of this paper.

Lemma 3.1. For any Borel set B in C2
a,b[0, T ],

(µ× µ) ◦R−1θ (B) = (µ× µ) ◦ A−1θ (B).

Proof. Let B(Ca,b[0, T ]) and B(C2
a,b[0, T ]) be the Borel σ-algebras on Ca,b[0, T ] and

C2
a,b[0, T ], respectively. Since Ca,b[0, T ] is a separable metric space, we see that

B(C2
a,b[0, T ]) = B(Ca,b[0, T ]) × B(Ca,b[0, T ]) and that B(C2

a,b[0, T ]) is coincided

with the σ-algebra generated by the collection of all cylinder sets on C2
a,b[0, T ].

Thus to prove our assertion, it suffices to show that

(µ× µ) ◦R−1θ (I × J) = (µ× µ) ◦ A−1θ (I × J),

where I and J are cylinder sets on Ca,b[0, T ]. For 0 = t0 < t1 < · · · < tn ≤ T , let

I × J =
{

(X, Y ) ∈ C2
a,b[0, T ]

∣∣
αj < X(tj) ≤ βj, ξj < Y (tj) ≤ ηj, j = 1, · · · , n

}
.

(3.1)
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Then

R−1θ (I × J) =
{

(x, y) ∈ C2
a,b[0, T ]

∣∣αj < x(tj) cos θ − y(tj) sin θ ≤ βj,

ξj < x(tj) sin θ + y(tj) cos θ ≤ ηj, j = 1, · · · , n
} (3.2)

and

A−1θ (I × J) =
{

(x, y) ∈ C2
a,b[0, T ]

∣∣αj < x(tj)− a(tj) + (cos θ − sin θ)a(tj) ≤ βj,

ξj < y(tj)− a(tj) + (cos θ + sin θ)a(tj) ≤ ηj, j = 1, · · · , n
}
.
(3.3)

Using equations (3.1), (3.2) and (3.3) it follows that

(µ× µ) ◦R−1θ (I × J)

=

∫
C2
a,b[0,T ]

χR−1
θ (I×J)(x, y)d(µ× µ)(x, y)

=

∫
C2
a,b[0,T ]

[ n∏
j=1

χ(αj ,βj ](x(tj) cos θ − y(tj) sin θ)

]

·
[ n∏
j=1

χ(ξj ,ηj ](x(tj) sin θ + y(tj) cos θ)

]
d(µ× µ)(x, y)

=

∫
Rn

∫
Rn

n∏
j=1

χ(αj ,βj ](uj cos θ − vj sin θ) ·
n∏
j=1

χ(ξj ,ηj ](uj sin θ + vj cos θ)

·Wn(~t, ~u)Wn(~t, ~v)d~ud~v,

where Wn(~t, ~u) is given by (2.1) above. Now, let uj cos θ − vj sin θ = u′j and
uj sin θ + vj cos θ = v′j for each j = 1, . . . , n. Then the last expression above
becomes

[
(2π)n

n∏
j=1

(b(tj)− b(tj−1))
]−1 ∫

Rn

∫
Rn

n∏
j=1

χ(αj ,βj ](u
′
j) ·

n∏
j=1

χ(ξj ,ηj ](v
′
j)

· exp

{
−1

2

n∑
j=1

(u′j − u′j−1)2 + (v′j − v′j−1)2 + 2(a(tj)− a(tj−1))
2

b(tj)− b(tj−1)

− 1

2

n∑
j=1

2(u′j − u′j−1)(a(tj)− a(tj−1))(sin θ − cos θ)

b(tj)− b(tj−1)

+
1

2

n∑
j=1

2(v′j − v′j−1)(a(tj)− a(tj−1))(sin θ + cos θ)

b(tj)− b(tj−1)

}
d~u′d~v′.
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By the way, let u′j = uj − a(tj) + (cos θ− sin θ)a(tj) and v′j = vj − a(tj) + (cos θ+
sin θ)a(tj) for each j = 1, . . . , n. Then the last expression above becomes∫

Rn

∫
Rn

n∏
j=1

χ(αj ,βj ](uj − a(tj) + (cos θ − sin θ)a(tj))

·
n∏
j=1

χ(ξj ,ηj ](vj − a(tj) + (cos θ + sin θ)a(tj))

·Wn(~t, ~u)Wn(~t, ~v)d~ud~v

=

∫
C2
a,b[0,T ]

[ n∏
j=1

χ(αj ,βj ](x(tj)− a(tj) + (cos θ − sin θ)a(tj))

]

·
[ n∏
j=1

χ(ξj ,ηj ](y(tj)− a(tj) + (cos θ + sin θ)a(tj))

]
d(µ× µ)(x, y)

=

∫
C2
a,b[0,T ]

χA−1
θ (I×J)(x, y)d(µ× µ)(x, y)

= (µ× µ) ◦ A−1θ (I × J),

which completes the proof of the Lemma 3.1 as desired. �

Remark 3.2. Note that R−1θ (N) is a Borel null set if and only if A−1θ (N) is a
Borel null set. Hence, by the Carathéodory extension, we see that for any µ× µ-
measurable set E, (µ× µ) ◦R−1θ (E) = (µ× µ) ◦ A−1θ (E).

Theorem 3.3. Let G be a complex-valued functional on C2
a,b[0, T ]. Then G(Rθ(x, y))

is µ× µ-measurable if and only if G(Aθ(x, y)) is µ× µ-measurable and∫
C2
a,b[0,T ]

G(Rθ(x, y))d(µ× µ
)
(x, y)

∗
=

∫
C2
a,b[0,T ]

G(Aθ(x, y))d(µ× µ)(x, y) (3.4)

where by
∗
= we means that if either side exists, both sides exist and equality holds.

Proof. The proof of Theorem 3.3 is straightforward by Lemma 3.1. �

Lemma 3.4. Let F be a complex-valued Borel measurable functional on Ca,b[0, T ].
Then ∫

C2
a,b[0,T ]

F (x sin θ + y cos θ)d(µ× µ)(x, y)

∗
=

∫
Ca,b[0,T ]

F (z + (sin θ + cos θ − 1)a)dµ(z)

(3.5)

where a ≡ a(t) is as in Remark 2.1.

Proof. Let P2 : C2
a,b[0, T ]→ Ca,b[0, T ] be the projection map given by P2(x, y) = y.

Then equation (3.5) follows from equation (3.4) with G replaced with F ◦P2. �

The following theorem is the first main result in this paper, which is called a
Fubini theorem on function spaces.
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Theorem 3.5. (Fubini theorem) Let F be a complex-valued Borel measurable
functional on Ca,b[0, T ] such that∫

C2
a,b[0,T ]

|F (px+ qy)|d(µ× µ)(x, y) <∞

for all non-zero real numbers p and q. Then for all p, q ∈ R− {0},∫
C2
a,b[0,T ]

F (px+ qy)d(µ× µ)(x, y)

=

∫
Ca,b[0,T ]

F
(√

p2 + q2z +
(
p+ q −

√
p2 + q2

)
a
)
dµ(z),

(3.6)

where a(t) is as in Remark 2.1.

Proof. For given p and q, letting sin θ = p√
p2+q2

, cos θ = q√
p2+q2

and H(x) =

F (
√
p2 + q2x) and using equation (3.5) with F replaced with H, we obtain that∫

C2
a,b[0,T ]

F (px+ qy)d(µ× µ)(x, y)

=

∫
C2
a,b[0,T ]

F

(√
p2 + q2

( p√
p2 + q2

x+
q√

p2 + q2
y
))

d(µ× µ)(x, y)

=

∫
Ca,b[0,T ]

H
(
x sin θ + y cos θ

)
dµ(z)

=

∫
Ca,b[0,T ]

H(z + (sin θ + cos θ − 1)a)dµ(z)

=

∫
Ca,b[0,T ]

F
(√

p2 + q2z +
(
p+ q −

√
p2 + q2

)
a
)
dµ(z),

which completes the proof of the Theorem 3.5 as desired. �

In the following example, we illustrate some usefulness of our Fubini theorem.
First of all, we will use the following well-known Wiener integration formula
several times in our calculations.

Theorem 3.6. Let f : R→ C be a Lebesgue measurable function and let v be an
element of L2

a,b[0, T ]. If F (x) = f(〈v, x〉), then F is µ-measurable and∫
Ca,b[0,T ]

F (x)dµ(x)
∗
=

(
1

2π(v2, b′)

) 1
2
∫
R
f(u) exp

{
−(u− (v, a′))2

2(v2, b′)

}
du. (3.7)

Example 3.7. Let f(u) = u2 and let F (x) = f(〈v, x〉) = 〈v, x〉2. Then we easily
see that for all p, q ∈ R− {0},∫

C2
a,b[0,T ]

|F (px+ qy)|d(µ× µ)(x, y) <∞.
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We note that for all p ∈ R− {0}, using equation (3.7),∫
Ca,b[0,T ]

F (px)dµ(x) = p2(v2, b′) + p(v, a′)2.

This means that F satisfies the hypotheses of Theorem 3.5, and hence using
equation (3.6), it follows that for all p, q ∈ R− {0},∫

C2
a,b[0,T ]

F (px+ qy)d(µ× µ)(x, y)

=

∫
Ca,b[0,T ]

F
(√

p2 + q2z +
(
p+ q −

√
p2 + q2

)
a
)
dµ(z)

= (p2 + q2)(v2, b′) + (p+ q)2(v, a′)2.

Next, we give an example more complicated than Example 3.7 above.

Example 3.8. Let f(u) = e−u
2

and let F (x) = f(〈v, x〉) = exp{−〈v, x〉2}. Then
we easily see that for all p, q ∈ R− {0},∫

C2
a,b[0,T ]

|F (px+ qy)|d(µ× µ)(x, y) <∞.

We note that for all p ∈ R− {0}, using equation (3.7),∫
Ca,b[0,T ]

F (px)dµ(x) =
1√

2p2(v2, b′) + 1
exp

{
− p2(v, a′)2

2p2(v2, b′) + 1

}
.

This means that F satisfies the hypotheses of Theorem 3.5, and hence using
equation (3.6), it follows that for all p, q ∈ R− {0},∫

C2
a,b[0,T ]

F (px+ qy)d(µ× µ)(x, y)

=

∫
Ca,b[0,T ]

F
(√

p2 + q2z +
(
p+ q −

√
p2 + q2

)
a
)
dµ(z)

=
1√

2(p2 + q2)(v2, b′) + 1
exp

{
− (p+ q)2(v, a′)2

2(p2 + q2)(v2, b′) + 1

}
.

4. Applications

In this section we use the Fubini theorem and the translation theorem to ob-
tain interesting relationships involving a Cameron–Storvick type theorem, see
Theorems 4.2 and 4.6 below.

The following lemma was established in [9, p.379].
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Lemma 4.1. (Translation theorem) Let x0(t) =
∫ t
0
u(s)db(s) for some u ∈

L2
a,b[0, T ] and let F be a µ-integrable functional on Ca,b[0, T ]. Then∫

Ca,b[0,T ]

F (x+ x0)dµ(x)

= exp

{
−1

2
(u2, b′)− (u, a′)

}∫
Ca,b[0,T ]

F (x) exp{〈u, x〉}dµ(x).

Now we establish an interesting relationship between the translation theorem
and the our Fubini theorem.

Theorem 4.2. (Application 1) Let the function a ≡ a(t) and w be as in Remark
2.1 and let F be as in Theorem 3.5 above. Then for all p, q ∈ R− {0},∫

C2
a,b[0,T ]

F (px+ qy)d(µ× µ)(x, y)

= exp

{
− pq

p2 + q2
(w, a′)

}
·
∫
Ca,b[0,T ]

F (
√
p2 + q2z) exp

{
p+ q −

√
p2 + q2√

p2 + q2
〈w, z〉

}
dµ(z).

Proof. The proof is straightforward by applying the Fubini theorem (Theorem
3.5) and the translation theorem (Lemma 4.1). �

The following corollary immediately follows from Theorem 4.2.

Corollary 4.3. (1) Let a, w and F be as in Theorem 4.2 above. Then for all
non-zero real numbers p and q with p2 + q2 = 1,∫

C2
a,b[0,T ]

F (px+ qy)d(µ× µ)(x, y)

= exp
{
− pq(w, a′)

}∫
Ca,b[0,T ]

F (z) exp
{

(p+ q − 1)〈w, z〉
}
dµ(z).

(2) When a(t) ≡ 0 on [0, T ] and hence w(t) ≡ 0 on [0, T ], it follows that for all
non-zero real numbers p and q,∫

C2
a,b[0,T ]

F (px+ qy)d(µ× µ)(x, y) =

∫
Ca,b[0,T ]

F (
√
p2 + q2z)dµ(z).

We are ready to state the definition of the first variation of a functional F on
a function space.

Definition 4.4. Let F be a complex-valued functional on Ca,b[0, T ]. Then

δF (x|h) =
∂

∂k
F (x+ kh)

∣∣∣∣
k=0

, x, h ∈ Ca,b[0, T ],

(if it exists) is called the first variation of F in the direction of h.
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The following lemma is very useful to find a Cameron–Storvick type theorem
on a function space. This is a straightforward extension of the Application 1,
namely Theorem 4.2 above.

Lemma 4.5. Let F,w and a be as in Theorem 4.2 above. Then for u ∈ Ca,b[0, T ]
and all non-zero real numbers p and q,

∫
C2
a,b[0,T ]

F (px+ qy + u)d(µ× µ)(x, y)

= exp

{
− pq

p2 + q2
(w, a′)

}
·
∫
Ca,b[0,T ]

F (
√
p2 + q2z + u) exp

{
p+ q −

√
p2 + q2√

p2 + q2
〈w, z〉

}
dµ(z).

(4.1)

The following theorem is the last theorem in this paper which is called a
Cameron–Storvick type theorem on function spaces.

Theorem 4.6. (Application 2 : Cameron–Storvick type theorem) Let F,w and

a be as in Theorem 4.2 above, and let h(t) =
∫ t
0
v(s)db(s) for some v ∈ L2

a,b[0, T ].
Assume that

∫
C2
a,b[0,T ]

∣∣δF(px+ qy
∣∣h)∣∣d(µ× µ)(x, y) <∞

for all non-zero real numbers p and q. Then for all non-zero real numbers p and
q,

∫
C2
a,b[0,T ]

δF (px+ qy|h)d(µ× µ)(x, y)

=
1√

p2 + q2
exp

{
− pq

p2 + q2
(w, a′)

}
·
∫
Ca,b[0,T ]

〈v, z〉F (
√
p2 + q2z) exp

{
p+ q −

√
p2 + q2√

p2 + q2
〈w, z〉

}
dµ(z)

− p+ q

p2 + q2
(v, a′) exp

{
− pq

p2 + q2
(w, a′)

}
·
∫
Ca,b[0,T ]

F (
√
p2 + q2z) exp

{
p+ q −

√
p2 + q2√

p2 + q2
〈w, z〉

}
dµ(z).

(4.2)



A FUBINI THEOREM ON A FUNCTION SPACE AND ITS APPLICATIONS 183

Proof. First, by applying the dominated convergence theorem and using equation
(4.1), we obtain that for all non-zero real numbers p and q,∫

C2
a,b[0,T ]

δF (px+ qy|h)d(µ× µ)(x, y)

=

∫
C2
a,b[0,T ]

∂

∂k
F (px+ qy + kh)

∣∣∣∣
k=0

d(µ× µ)(x, y)

=
∂

∂k

[
exp

{
− pq

p2 + q2
(w, a′)

}∫
Ca,b[0,T ]

F (
√
p2 + q2z + kh)

· exp

{
p+ q −

√
p2 + q2√

p2 + q2
〈w, z〉

}
dµ(z)

]∣∣∣∣
k=0

.

The remainder of the proof is straightforward by applying the translation theorem
(Lemma 4.1) and taking the partial derivative in variable k. �

The following corollary immediately follows from Theorem 4.6.

Corollary 4.7. Let F,w, h and a be as in Theorem 4.6 above. Then for all
non-zero real numbers p and q with p2 + q2 = 1,∫

C2
a,b[0,T ]

δF (px+ qy|h)d(µ× µ)(x, y)

= exp
{
− pq(w, a′)

}∫
Ca,b[0,T ]

〈v, z〉F (z) exp
{

(p+ q − 1)〈w, z〉
}
dµ(z)

− (p+ q)(v, a′) exp
{
− pq(w, a′)

}
·
∫
Ca,b[0,T ]

F (z) exp
{

(p+ q − 1)〈w, z〉
}
dµ(z).

Remark 4.8. As mentioned in Section 3, we can apply our applications in The-
orem 4.2 and 4.6 above to various classes of functionals. Also, as discussed in
[16, 17], we can apply our result obtained in Sections 3 and 4 to study various
topics related with the generalized analytic Feynman integral and the generalized
analytic Fourier–Feynman transform for functionals on Ca,b[0, T ].

5. Historical remarks

In this section we present some remarks for our main theorems obtained in
Sections 3 and 4 above.

1. For Fubini theorem.

In the setting of one parameter Wiener space C0[0, T ] (i.e., in the case where
a(t) ≡ 0 and b(t) = t on [0, T ] in our research), Bearman [1] studied a significant
rotation property for double Wiener integral. Cameron and Storvick developed
the Bearman’s result to study an operator valued Yeh–Wiener integral and a
Wiener integral equation [2, Lemma 2]. The result, as a corollary of Theorem
3.5, is summarized as follows.



184 H.S. CHUNG, J.G. CHOI, S.J. CHANG

For an appropriate F : C0[0, T ]→ C and non-zero real numbers p and q,∫
C2

0 [0,T ]

F (pw + qz)d(m×m)(w, z) =

∫
C0[0,T ]

F
(√

p2 + q2x
)
dm(x)

where m is the Wiener measure. This rotation theorem was improved in [18] to
study the analytic Feynman integral and the analytic Fourier–Feynman transform
theories. For a detailed study of the theories, see [18, Section 5]. Also, see
[4, 5, 9, 11, 13, 14, 15, 16, 17, 20] for related work.

2. For Cameron–Storvick type theorem.

In the setting of one parameter Wiener space C0[0, T ], Cameron and Storvick
(See [20, p.278]) established that for appropriate F : C0[0, T ]→ C,∫

C0[0,T ]

δF (z|h)dm(z) =

∫
C0[0,T ]

〈v, z〉F (z)dm(z),

where h is given by h(t) =
∫ t
0
v(s)ds for v ∈ L2[0, T ] and m is the Wiener measure.

Whereas in [9], Chang and Skoug showed that∫
Ca,b[0,T ]

δF (z|h)dµ(z) =

∫
Ca,b[0,T ]

〈v, z〉F (z)dµ(z)− (v, a′)

∫
Ca,b[0,T ]

F (z)dµ(z),

where h is given by h(t) =
∫ t
0
v(s)db(s) for v ∈ L2

a,b[0, T ]. One can see that these
results are immediate corollaries of Theorem 4.6 above.
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