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Abstract. In this paper, we establish sharp maximal function inequalities for
the Toeplitz type operator related to some general fractional integral operators.
As an application, we obtain the boundedness of the operator on Lebesgue,
Morrey and Triebel-Lizorkin spaces. The operators include Littlewood-Paley
operator, Marcinkiewicz operator and Bochner-Riesz operator.

1. Introduction and definitions

As the development of singular integral operators (see [6],[22]), their commu-
tators have been well studied. In [3],[20],[21], the authors prove that the com-
mutators generated by the singular integral operators and BMO functions are
bounded on Lp(Rn) for 1 < p <∞. Chanillo (see [2]) proves a similar result when
singular integral operators are replaced by the fractional integral operators. In
[7],[17], the boundedness of the commutators generated by the singular integral
operators and Lipschitz functions on Triebel-Lizorkin and Lp(Rn)(1 < p < ∞)
spaces is obtained. In [1], some singular integral operators with general kernel are
introduced, and the boundedness of the operators and their commutators gener-
ated by BMO and Lipschitz functions is obtained (see [1],[10]). In [8],[9], some
Toeplitz type operators related to the singular integral operators and strongly
singular integral operators are introduced, and the boundedness of the operators
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generated by BMO and Lipschitz functions is obtained. In this paper, we will
study the Toeplitz type operator generated by some general fractional integral
operators with the Lipschitz and BMO functions.

First, let us introduce some notations. Throughout this paper, C denotes a
positive constant, which is not necessarily the same at each occurrence, Q denotes
a cube of Rn with sides parallel to the axes. For any locally integrable function
f , the sharp maximal function of f is defined by

M#(f)(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)− fQ|dy,

where, and in what follows, fQ = |Q|−1
∫
Q
f(x)dx. It is well-known that (see

[6],[22])

M#(f)(x) ≈ sup
Q3x

inf
c∈C

1

|Q|

∫
Q

|f(y)− c|dy.

We say that f belongs to BMO(Rn) if M#(f) belongs to L∞(Rn) and define
||f ||BMO = ||M#(f)||L∞ . It has been known that (see [22])

||f − f2kQ||BMO ≤ Ck||f ||BMO.

Let

M(f)(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)|dy.

For η > 0, let Mη(f)(x) = M(|f |η)1/η(x).
For 0 < η < n and 1 ≤ r <∞, set

Mη,r(f)(x) = sup
Q3x

(
1

|Q|1−rη/n

∫
Q

|f(y)|rdy
)1/r

.

The Ap weight is defined by (see [6]), for 1 < p <∞,

Ap =

{
w ∈ L1

loc(Rn) : sup
Q

(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)−1/(p−1)dx

)p−1

<∞

}
and

A1 = {w ∈ Lploc(R
n) : M(w)(x) ≤ Cw(x), a.e.}.

For β > 0 and p > 1, let Ḟ β,∞
p (Rn) be the homogeneous Triebel-Lizorkin space

(see [17]).
For β > 0, the Lipschitz space Lipβ(Rn) is the space of functions f such that

||f ||Lipβ = sup
x,y∈Rn
x 6=y

|f(x)− f(y)|
|x− y|β

<∞.

Definition 1.1. Let ϕ be a positive, increasing function on R+ for which there
exists a constant D > 0 such that

ϕ(2t) ≤ Dϕ(t) for t ≥ 0.
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Let f be a locally integrable function on Rn. Set, for 1 ≤ p <∞,

||f ||Lp,ϕ = sup
x∈Rn, d>0

(
1

ϕ(d)

∫
Q(x,d)

|f(y)|pdy
)1/p

,

where Q(x, d) denotes a cube of Rn with sides parallel to the axes, whose center
is x and side length is d. The generalized Morrey space is defined by

Lp,ϕ(Rn) = {f ∈ L1
loc(Rn) : ||f ||Lp,ϕ <∞}.

If ϕ(d) = dδ, δ > 0, then Lp,ϕ(Rn) = Lp,δ(Rn), which is the classical Morrey
spaces (see [18],[19]). If ϕ(d) = 1, then Lp,ϕ(Rn) = Lp(Rn), which is the Lebesgue
spaces (see [6]).

Since the Morrey space may be considered as an extension of the Lebesgue
space, it is natural and important to study the boundedness of the operator on
the Morrey spaces (see [4],[5],[11],[16]).

In this paper, we will study some singular integral operators as following (see
[1]).

Definition 1.2. Let Ft(x, y) be defined on Rn×Rn× [0,+∞) and b be a locally
integrable function on Rn. Set

Ft(f)(x) =

∫
Rn
Ft(x, y)f(y)dy

for every bounded and compactly supported function f . And Ft satisfies: there
is a sequence of positive constant numbers {Cj} such that for any j ≥ 1,∫

2|y−z|<|x−y|
(||Ft(x, y)− Ft(x, z)||+ ||Ft(y, x)− Ft(z, x)||)dx ≤ C,

and (∫
2j |z−y|≤|x−y|<2j+1|z−y|

(||Ft(x, y)− Ft(x, z)||+ ||Ft(y, x)− Ft(z, x)||)qdy
)1/q

≤ Cj(2
j|z − y|)−n/q′ ,

where 1 < q′ < 2 and 1/q + 1/q′ = 1.
Let H be the Banach space H = {h : ||h|| < ∞}. For each fixed x ∈ Rn, it is
view Ft(f)(x) as the mapping from [0,+∞) to H. Set

T (f)(x) = ||Ft(f)(x)||,
which T is bounded on L2(Rn). Let b be a locally integrable function on Rn. The
Toeplitz type operator related to T is defined by

T b(f) = ||F b
t (f)||,

where

F b
t (f) =

m∑
k=1

(F k,1
t MbIαF

k,2
t + F k,3

t IαMbF
k,4
t ),

moreover, F k,1
t (f) are Ft(f) or ±I(the identity operator), F k,2

t (f), F k,3
t (f) and

F k,4
t (f) are the linear operators with T k,2(f) = ||F k,2

t (f)||, T k,4(f) = ||F k,4
t (f)||
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and T k,3 = ±I, k = 1, · · · ,m, Mb(f) = bf and Iα is the fractional integral
operator(0 < α < n) (see [2]).

Note that the commutator [b, T ](f) = bT (f) − T (bf) is a particular operator
of the Toeplitz type operators T b. The Toeplitz type operators T b are the non-
trivial generalizations of the commutator. It is well known that commutators
are of great interest in harmonic analysis and have been widely studied by many
authors (see [20],[21]). The main purpose of this paper is to prove sharp maximal
inequalities for the Toeplitz type operators T b. As the application, we obtain the
the Lp-norm inequality and the boundedness of T b on Triebel-Lizorkin spaces.
The operators include Littlewood-Paley operators, Marcinkiewicz operators and
Bochner-Riesz operator.

2. Some Preliminary Lemmas

We begin with some preliminary lemmas.

Lemma 2.1. (see [1]) Let T be the integral operator as Definition 1.2. Then T
is bounded on Lp(Rn) for 1 < p <∞.

Lemma 2.2. (see [17]). For 0 < β < 1 and 1 < p <∞, we have

||f ||Ḟβ,∞p ≈
∣∣∣∣∣∣∣∣sup
Q3·

1

|Q|1+β/n

∫
Q

|f(x)− fQ|dx
∣∣∣∣∣∣∣∣
Lp

≈
∣∣∣∣∣∣∣∣sup
Q3·

inf
c

1

|Q|1+β/n

∫
Q

|f(x)− c|dx
∣∣∣∣∣∣∣∣
Lp

.

Lemma 2.3. (see [6]). Let 0 < p <∞ and w ∈ ∪1≤r<∞Ar. Then, for any smooth
function f for which the left-hand side is finite,∫

Rn
M(f)(x)pw(x)dx ≤ C

∫
Rn
M#(f)(x)pw(x)dx.

Lemma 2.4. (see [2],[6]). Suppose that 0 < α < n, 1 ≤ s < p < n/α and
1/r = 1/p− α/n. Then

||Iα(f)||Lr ≤ C||f ||Lp

and

||Mα,s(f)||Lr ≤ C||f ||Lp .

Lemma 2.5. Let 1 < p <∞, 0 < D < 2n. Then, for any smooth function f for
which the left-hand side is finite,

||M(f)||Lp,ϕ ≤ C||M#(f)||Lp,ϕ .

Proof. For any cube Q = Q(x0, d) in Rn, we know M(χQ) ∈ A1 for any cube
Q = Q(x, d) by [6]. Noticing that M(χQ) ≤ 1 and M(χQ)(x) ≤ dn/(|x−x0|−d)n
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if x ∈ Qc. By Lemma 2.3, we have, for f ∈ Lp,ϕ(Rn),∫
Q

M(f)(x)pdx =

∫
Rn
M(f)(x)pχQ(x)dx

≤
∫
Rn
M(f)(x)pM(χQ)(x)dx ≤ C

∫
Rn
M#(f)(x)|pM(χQ)(x)dx

= C

(∫
Q

M#(f)(x)pM(χQ)(x)dx+
∞∑
k=0

∫
2k+1Q\2kQ

M#(f)(x)pM(χQ)(x)dx

)

≤ C

(∫
Q

M#(f)(x)pdx+
∞∑
k=0

∫
2k+1Q\2kQ

M#(f)(x)p
|Q|
|2k+1Q|

dx

)

≤ C

(∫
Q

M#(f)(x)pdx+
∞∑
k=0

∫
2k+1Q

M#(f)(x)p2−kndy

)

≤ C||M#(f)||pLp,ϕ
∞∑
k=0

2−knϕ(2k+1d)

≤ C||M#(f)||pLp,ϕ
∞∑
k=0

(2−nD)kϕ(d)

≤ C||M#(f)||pLp,ϕϕ(d),

thus (
1

ϕ(d)

∫
Q

M(f)(x)pdx

)1/p

≤ C

(
1

ϕ(d)

∫
Q

M#(f)(x)pdx

)1/p

and

||M(f)||Lp,ϕ ≤ C||M#(f)||Lp,ϕ .

This finishes the proof. �

Lemma 2.6. Let 0 < α < n, 0 < D < 2n, 1 ≤ s < p < n/α and 1/r = 1/p−α/n.
Then

||Iα(f)||Lr,ϕ ≤ C||f ||Lp,ϕ

and

||Mα,s(f)||Lr,ϕ ≤ C||f ||Lp,ϕ .

The proof of the Lemma is similar to that of Lemma 2.5 by Lemma 2.4, we
omit the details.

3. Theorems And Proofs

Now we are in the position to prove the following theorems. Suppose that T is
the integral operator as Definition 1.2 in the following theorems.
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Theorem 3.1. Let 0 < β < 1, q′ ≤ s < ∞, b ∈ Lipβ(Rn) and the sequence
{Cj} ∈ l1. If F 1

t (g) = 0 for any g ∈ Lu(Rn)(1 < u < ∞), then there exists a
constant C > 0 such that for any f ∈ C∞0 (Rn) and x̃ ∈ Rn,

M#(T b(f))(x̃) ≤ C||b||Lipβ

m∑
k=1

(Mβ,s(IαT
k,2(f))(x̃) +Mβ+α,s(T

k,4(f))(x̃)).

Proof. It suffices to prove that for f ∈ C∞0 (Rn) and some constant C0, the fol-
lowing inequality holds:

1

|Q|

∫
Q

∣∣T b(f)(x)− C0

∣∣ dx ≤ C||b||Lipβ

m∑
k=1

(Mβ,s(IαT
k,2(f))(x̃)+Mβ+α,s(T

k,4(f))(x̃)).

Without loss of generality, we may assume T k,1 are T (k = 1, · · · ,m). Fix a cube
Q = Q(x0, d) and x̃ ∈ Q. Write, for f1 = fχ2Q and f2 = fχ(2Q)c ,

F b
t (f)(x) =

m∑
k=1

F k,1
t MbIαF

k,2
t (f)(x) +

m∑
k=1

F k,3
t IαMbF

k,4
t (f)(x) = Ab(x) +Bb(x)

= Ab−bQ(x) +Bb−bQ(x),

where

Ab−bQ(x) =
m∑
k=1

F k,1
t M(b−bQ)χ2Q

IαF
k,2
t (f)(x) +

m∑
k=1

F k,1
t M(b−bQ)χ(2Q)c

IαF
k,2
t (f)(x)

= A1(x) + A2(x)

and

Bb−bQ(x) =
m∑
k=1

F k,3
t IαM(b−bQ)χ2Q

F k,4
t (f)(x) +

m∑
k=1

F k,3
t IαM(b−bQ)χ(2Q)c

F k,4
t (f)(x)

= B1(x) +B2(x).

Then

1

|Q|

∫
Q

∣∣Ab−bQ(f)(x)− A2(x0)
∣∣ dx

≤ 1

|Q|

∫
Q

|A1(x)|dx+
1

|Q|

∫
Q

|A2(x)− A2(x0)|dx = I1 + I2

and

1

|Q|

∫
Q

∣∣Bb−bQ(f)(x)−B2(x0)
∣∣ dx

≤ 1

|Q|

∫
Q

|B1(x)|dx+
1

|Q|

∫
Q

|B2(x)−B2(x0)|dx = I3 + I4.
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For I1, by Hölder’s inequality and Lemma 2.1, we obtain, for 1/r = 1/s− α/n,

1

|Q|

∫
Q

||F k,1
t M(b−bQ)χ2Q

IαF
k,2
t (f)(x)||dx

=
1

|Q|

∫
Q

|T k,1M(b−bQ)χ2Q
IαT

k,2(f)(x)|dx

≤
(

1

|Q|

∫
Rn
|T k,1M(b−bQ)χ2Q

IαT
k,2(f)(x)|sdx

)1/s

≤ C|Q|−1/s

(∫
Rn
|M(b−bQ)χ2Q

IαT
k,2(f)(x)|sdx

)1/s

≤ C|Q|−1/s

(∫
2Q

(|b(x)− bQ||IαT k,2(f)(x)|)sdx
)1/s

≤ C|Q|−1/s||b||Lipβ |2Q|
β/n|2Q|1/s−β/n

(
1

|2Q|1−sβ/n

∫
2Q

|IαT k,2(f)(x)|sdx
)1/s

≤ C||b||LipβMβ,s(IαT
k,2(f))(x̃),

thus

I1 ≤
m∑
k=1

1

|Q|

∫
Rn
||F k,1

t M(b−bQ)χ2Q
IαF

k,2
t (f)(x)||dx ≤ C||b||Lipβ

m∑
k=1

Mβ,s(IαT
k,2(f))(x̃).

For I2, by the boundedness of T and recalling that s > q′, we get, for x ∈ Q,

||F k,1
t M(b−bQ)χ(2Q)c

IαF
k,2
t (f)(x)− F k,1

t M(b−bQ)χ(2Q)c
IαF

k,2
t (f)(x0)||

≤
∫

(2Q)c
|b(y)− b2Q|||Ft(x, y)− Ft(x0, y)|||IαT k,2(f)(y)|dy

=
∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y)− b2Q|||Ft(x, y)− Ft(x0, y)|||IαT k,2(f)(y)|dy

≤ C||b||Lipβ

∞∑
j=1

|2j+1Q|β/n
(∫

2jd≤|y−x0|<2j+1d

||Ft(x, y)− Ft(x0, y)||qdy
)1/q

×
(∫

2j+1Q

|IαT k,2(f)(y)|q′dy
)1/q′

≤ C||b||Lipβ

∞∑
j=1

|2j+1Q|β/nCj(2jd)−n/q
′|2j+1Q|1/q′−β/n

×
(

1

|2j+1Q|1−sβ/n

∫
2j+1Q

|IαT k,2(f)(y)|sdy
)1/s

≤ C||b||LipβMβ,s(IαT
k,2(f))(x̃)

∞∑
j=1

Cj

≤ C||b||LipβMβ,s(IαT
k,2(f))(x̃),
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thus

I2 ≤
1

|Q|

∫
Q

m∑
k=1

||F k,1
t M(b−bQ)χ(2Q)c

IαF
k,2
t (f)(x)

−F k,1
t M(b−bQ)χ(2Q)c

IαF
k,2
t (f)(x0)||dx

≤ C||b||Lipβ

m∑
k=1

Mβ,s(IαT
k,2(f))(x̃).

Similarly

I3 ≤
m∑
k=1

(
1

|Q|

∫
Rn
||IαM(b−bQ)χ2Q

F k,4
t (f)(x)||rdx

)1/r

≤ C
m∑
k=1

|Q|−1/r

(∫
2Q

(|b(x)− bQ||T k,4(f)(x)|)sdx
)1/s

≤ C||b||Lipβ

m∑
k=1

|Q|−1/r|2Q|β/n|2Q|1/s−(β+α)/n

×
(

1

|2Q|1−s(β+α)/n

∫
2Q

|T k,4(f)(x)|sdx
)1/s

≤ C||b||Lipβ

m∑
k=1

Mβ+α,s(T
k,6(f))(x̃),

I4 ≤
m∑
k=1

1

|Q|

∫
Q

∫
(2Q)c
|b(y)− b2Q|

∣∣∣∣ 1

|x− y|n−α
− 1

|x0 − y|n−α

∣∣∣∣ ||F k,4
t (f)(y)||dydx

≤ C
m∑
k=1

∞∑
j=1

||b||Lipβ |2
j+1Q|β/n

∫
2jd≤|y−x0|<2j+1d

d

|x0 − y|n−α+1
|T k,4(f)(y)|dy

≤ C||b||Lipβ

m∑
k=1

∞∑
j=1

(2jd)βd(2jd)−n+α−1(2jd)n(1−1/s)(2jd)n/s−β−α

×
(

1

|2j+1Q|1−s(β+α)/n

∫
2j+1Q

|T k,4(f)(y)|sdy
)1/s

≤ C||b||Lipβ

m∑
k=1

Mβ+α,s(T
k,4(f))(x̃)

∞∑
j=1

2−j

≤ C||b||Lipβ

m∑
k=1

Mβ+α,s(T
k,4(f))(x̃).

This completes the proof of Theorem 3.1. �

Theorem 3.2. Let 0 < β < 1, q′ ≤ s < ∞, b ∈ Lipβ(Rn) and the sequence

{2jβCj} ∈ l1. If F 1
t (g) = 0 for any g ∈ Lu(Rn)(1 < u < ∞), then there exists a
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constant C > 0 such that for any f ∈ C∞0 (Rn) and x̃ ∈ Rn,

sup
Q3x̃

inf
c∈C

1

|Q|1+β/n

∫
Q

∣∣T b(f)(x)− c
∣∣ dx ≤ C||b||Lipβ

m∑
k=1

(Ms(IαT
k,2(f))(x̃) + Mα,s(T

k,4(f))(x̃)).

Proof. It suffices to prove for f ∈ C∞0 (Rn) and some constant C0, the following
inequality holds:

sup
Q3x̃

1

|Q|1+β/n

∫
Q

∣∣T b(f)(x)− C0

∣∣ dx ≤ C||b||Lipβ

m∑
k=1

(Ms(IαT
k,2(f))(x̃) + Mα,s(T

k,4(f))(x̃)).

Without loss of generality, we may assume T k,1 are T (k = 1, · · · ,m). Fix a
cube Q = Q(x0, d) and x̃ ∈ Q. Similar to the proof of Theorem 3.1, we have, for
f1 = fχ2Q and f2 = fχ(2Q)c ,

1

|Q|1+β/n

∫
Q

∣∣T b(f)(x)− A2(x0)−B2(x0)
∣∣ dx

≤ 1

|Q|1+β/n

∫
Q

|A1(x)|dx+
1

|Q|1+β/n

∫
Q

|A2(x)− A2(x0)|dx

+
1

|Q|1+β/n

∫
Q

|B1(x)|dx+
1

|Q|1+β/n

∫
Q

|B2(x)−B2(x0)|dx

= I5 + I6 + I7 + I8.

By using the same argument as in the proof of Theorem 3.1, we get, for 1/r =
1/s− α/n,

I5 ≤ |Q|−β/n
m∑
k=1

(
1

|Q|

∫
Rn
|T k,1M(b−bQ)χ2Q

IαT
k,2(f)(x)|sdx

)1/s

≤ C|Q|−β/n
m∑
k=1

|Q|−1/s

(∫
2Q

(|b(x)− bQ||IαT k,2(f)(x)|)sdx
)1/s

≤ C|Q|−β/n
m∑
k=1

|Q|−1/s||b||Lipβ |2Q|
β/n|Q|1/s

(
1

|Q|

∫
2Q

|IαT k,2(f)(x)|sdx
)1/s

≤ C||b||Lipβ

m∑
k=1

Ms(IαT
k,2(f))(x̃),
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I6 ≤ |Q|−β/n
m∑
k=1

1

|Q|

∫
Q

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y)− b2Q|

× ||Ft(x, y)− Ft(x0, y)|||IαT k,2(f)(y)|dydx

≤ |Q|−β/n
m∑
k=1

C

|Q|

∫
Q

∞∑
j=1

||b||Lipβ |2
j+1Q|β/n

(∫
2j+1Q

|IαT k,2(f)(y)|q′dy
)1/q′

×
(∫

2jd≤|y−x0|<2j+1d

||Ft(x, y)− Ft(x0, y)||qdy
)1/q

dx

≤ C||b||Lipβ |Q|
−β/n

m∑
k=1

∞∑
j=1

|2j+1Q|β/nCj(2jd)−n/q
′ |2j+1Q|1/q′

×
(

1

|2j+1Q|

∫
2j+1Q

|IαT k,2(f)(y)|sdy
)1/s

≤ C||b||Lipβ

m∑
k=1

Ms(IαT
k,2(f))(x̃)

∞∑
j=1

2jβCj

≤ C||b||Lipβ

m∑
k=1

Ms(IαT
k,2(f))(x̃),

I7 ≤ |Q|−β/n
m∑
k=1

(
1

|Q|

∫
Rn
|IαM(b−bQ)χ2Q

T k,4(f)(x)|rdx
)1/r

≤ C|Q|−β/n−1/r

m∑
k=1

(∫
2Q

(|b(x)− bQ||T k,4(f)(x)|)sdx
)1/s

≤ C||b||Lipβ

m∑
k=1

|Q|−β/n−1/r|2Q|β/n|Q|1/s−α/n
(

1

|Q|1−sα/n

∫
2Q

|T k,4(f)(x)|sdx
) 1

s

≤ C||b||Lipβ

m∑
k=1

Mα,s(T
k,4(f))(x̃),

I8 ≤ |Q|−β/n−1

m∑
k=1

∫
Q

∫
(2Q)c
|b(y)− b2Q|

∣∣∣∣ 1

|x− y|n−α
− 1

|x0 − y|n−α

∣∣∣∣ |T k,4(f)(y)|dydx

≤ C|Q|−β/n
m∑
k=1

∞∑
j=1

||b||Lipβ |2
j+1Q|β/n

×
∫

2jd≤|y−x0|<2j+1d

d

|x0 − y|n−α+1
|T k,4(f)(y)|dy

≤ C||b||Lipβ

m∑
k=1

∞∑
j=1

d−β(2jd)βd(2jd)−n+α−1(2jd)n(1−1/s)(2jd)n/s−α
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×
(

1

|2j+1Q|1−sα/n

∫
2j+1Q

|T k,4(f)(y)|sdy
)1/s

≤ C||b||Lipβ

m∑
k=1

Mα,s(T
k,4(f))(x̃)

∞∑
j=1

2j(β−1) ≤ C||b||Lipβ

m∑
k=1

Mα,s(T
k,4(f))(x̃).

This completes the proof of Theorem 3.2. �

Theorem 3.3. Let q′ ≤ s < ∞, b ∈ BMO(Rn) and the sequence {jCj} ∈ l1. If
F 1
t (g) = 0 for any g ∈ Lu(Rn)(1 < u < ∞), then there exists a constant C > 0

such that for any f ∈ C∞0 (Rn) and x̃ ∈ Rn,

M#(T b(f))(x̃) ≤ C||b||BMO

m∑
k=1

(Ms(IαT
k,2(f))(x̃) +Mα,s(T

k,4(f))(x̃)).

Proof. It suffices to prove for f ∈ C∞0 (Rn) and some constant C0, the following
inequality holds:

1

|Q|

∫
Q

∣∣T b(f)(x)− C0

∣∣ dx ≤ C||b||BMO

m∑
k=1

(Ms(IαT
k,2(f))(x̃)+Mα,s(T

k,4(f))(x̃)).

Without loss of generality, we may assume T k,1 are T (k = 1, · · · ,m). Fix a cube
Q = Q(x0, d) and x̃ ∈ Q. Similar to the proof of Theorem 3.1, we have, for
f1 = fχ2Q and f2 = fχ(2Q)c ,

1

|Q|

∫
Q

∣∣T b(f)(x)− A2(x0)−B2(x0)
∣∣ dx

≤ 1

|Q|

∫
Q

|A1(x)|dx+
1

|Q|

∫
Q

|A2(x)− A2(x0)|dx

+
1

|Q|

∫
Q

|B1(x)|dx+
1

|Q|

∫
Q

|B2(x)−B2(x0)|dx = I9 + I10 + I11 + I12.

By using the same argument as in the proof of Theorem 3.1, we get, for 1 < r1 < s,
1 < p <∞, 1 < r2 < s with 1/p+1/q+1/r2 = 1, 1/r3 = 1/p−α/n with 1 < p < s,

I9 ≤
m∑
k=1

(
1

|Q|

∫
Rn
|T k,1M(b−bQ)χ2Q

IαT
k,2(f)(x)|r1dx

)1/r1

≤ C

m∑
k=1

|Q|−1/r

(∫
2Q

(|b(x)− bQ||IαT k,2(f)(x)|)r1dx
)1/r1

≤ C

m∑
k=1

(
1

|Q|

∫
2Q

|IαT k,2(f)(x)|sdx
)1/s(

1

|Q|

∫
2Q

|b(x)− bQ|sr1/(s−r1)dx

) s−r1
sr1

≤ C||b||BMO

m∑
k=1

Ms(IαT
k,2(f))(x̃),
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I10 ≤
m∑
k=1

1

|Q|

∫
Q

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y)− b2Q|

× ||Ft(x, y)− Ft(x0, y)|||IαT k,2(f)(y)|dydx

≤
m∑
k=1

C

|Q|

∫
Q

∞∑
j=1

(∫
2jd≤|y−x0|<2j+1d

||Ft(x, y)− Ft(x0, y)||qdy
)1/q

×
(∫

2j+1Q

|b(y)− bQ|pdy
)1/p(∫

2j+1Q

|IαT k,2(f)(y)|r2dy
)1/r2

dx

≤ C||b||BMO

m∑
k=1

∞∑
j=1

Cj(2
jd)−n/q

′
j(2jd)n/p(2jd)n/s

×
(

1

|2j+1Q|

∫
2j+1Q

|IαT k,2(f)(y)|sdy
)1/s

≤ C||b||BMO

m∑
k=1

Ms(IαT
k,2(f))(x̃)

∞∑
j=1

jCj

≤ C||b||BMO

m∑
k=1

Ms(IαT
k,2(f))(x̃),

I11 ≤
m∑
k=1

(
1

|Q|

∫
Rn
|IαM(b−bQ)χ2Q

T k,4(f)(x)|r3dx
)1/r3

≤ C|Q|−1/r3

m∑
k=1

(∫
2Q

(|b(x)− bQ||T k,4(f)(x)|)pdx
)1/p

≤ C
m∑
k=1

(
1

|Q|

∫
2Q

|b(x)− bQ|ps/(s−p)dx
)(s−p)/ps

×
(

1

|Q|1−sα/n

∫
2Q

|T k,4(f)(x)|sdx
)1/s

≤ C||b||BMO

m∑
k=1

Mα,s(T
k,4(f))(x̃),

I12 ≤ |Q|−1

m∑
k=1

∫
Q

∫
(2Q)c
|b(y)− b2Q|

×
∣∣∣∣ 1

|x− y|n−α
− 1

|x0 − y|n−α

∣∣∣∣ |T k,4(f)(y)|dydx

≤ C
m∑
k=1

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y)− b2Q|
d

|x0 − y|n−α+1
|T k,4(f)(y)|dy
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≤ C

m∑
k=1

∞∑
j=1

d

(2jd)n−α+1
(2jd)n(1−1/s)

(
1

|2j+1Q|

∫
2j+1Q

|b(y)− bQ|s
′
dy

)1/s′

× (2jd)n/s−α
(

1

|2j+1Q|1−sα/n

∫
2j+1Q

|T k,4(f)(y)|sdy
)1/s

≤ C||b||BMO

m∑
k=1

Mα,s(T
k,4(f))(x̃)

∞∑
j=1

j2−j

≤ C||b||BMO

m∑
k=1

Mα,s(T
k,4(f))(x̃).

This completes the proof of Theorem 3.3 �

Theorem 3.4. Let 0 < β < min(1, n/q′), q′ < p < n/(α + β), 1/r = 1/p −
(α + β)/n, b ∈ Lipβ(Rn) and the sequence {Cj} ∈ l1. If F 1

t (g) = 0 for any

g ∈ Lu(Rn)(1 < u < ∞) and T k,4(f) = ||F k,4
t (f)|| are the bounded operators on

Lp(Rn) for 1 < p <∞(1 ≤ k ≤ m), then T b is bounded from Lp(Rn) to Lr(Rn).

Proof. Choose q′ < s < p in Theorem 3.1 and set 1/v = 1/p− β/n. We have, by
Lemmas 2.3 and 2.4,

||T b(f)||Lr ≤ ‖M(T b(f))‖Lr ≤ C‖M#(T b(f))‖Lr

≤ C||b||Lipβ

m∑
k=1

(‖Mβ,s(IαT
k,2(f))‖Lr + ‖Mβ+α,s(T

k,4(f))‖Lr)

≤ C||b||Lipβ

m∑
k=1

(‖IαT k,2(f)‖Lv + ‖T k,4(f)‖Lp)

≤ C||b||Lipβ

m∑
k=1

(‖T k,2(f)‖Lp + ‖f‖Lp)

≤ C||b||Lipβ‖f‖Lp .

This completes the proof of the theorem. �

Theorem 3.5. Let 0 < β < min(1, n/q′), q′ < p < n/(α + β), 1/r = 1/p− (α +
β)/n, 0 < D < 2n, b ∈ Lipβ(Rn) and the sequence {Cj} ∈ l1. If F 1

t (g) = 0 for

any g ∈ Lu(Rn)(1 < u <∞) and T k,4(f) = ||F k,4
t (f)|| are the bounded operators

on Lp,ϕ(Rn) for 1 < p < ∞(1 ≤ k ≤ m), then T b is bounded from Lp,ϕ(Rn) to
Lr,ϕ(Rn).

Proof. Choose q′ < s < p in Theorem 3.1 and set 1/v = 1/p− β/n. We have, by
Lemmas 2.5 and 2.6,

||T b(f)||Lr,ϕ ≤ ‖M(T b(f))‖Lr,ϕ ≤ C‖M#(T b(f))‖Lr,ϕ
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≤ C||b||Lipβ

m∑
k=1

(‖Mβ,s(IαT
k,2(f))‖Lr,ϕ + ‖Mβ+α,s(T

k,4(f))‖Lr,ϕ)

≤ C||b||Lipβ

m∑
k=1

(‖IαT k,2(f)‖Lv,ϕ + ‖T k,4(f)‖Lp,ϕ)

≤ C||b||Lipβ

m∑
k=1

(‖T k,2(f)‖Lp,ϕ + ‖f‖Lp,ϕ)

≤ C||b||Lipβ‖f‖Lp,ϕ .
This completes the proof of the theorem. �

Theorem 3.6. Let 0 < β < min(1, n/q′), q′ < p < n/α, 1/r = 1/p − α/n,
b ∈ Lipβ(Rn) and the sequence {2jβCj} ∈ l1. If F 1

t (g) = 0 for any g ∈ Lu(Rn)(1 <

u < ∞) and T k,4(f) = ||F k,4
t (f)|| are the bounded operators on Lp(Rn) for 1 <

p <∞(1 ≤ k ≤ m), then T b is bounded from Lp(Rn) to Ḟ β,∞
r (Rn).

Proof. Choose q′ < s < p in Theorem 3.2. We have, by Lemmas 2.2, 2.3 and 2.4,

||T b(f)||Ḟβ,∞r ≤ C

∣∣∣∣∣∣∣∣sup
Q3·

1

|Q|1+β/n

∫
Q

∣∣T b(f)(x)− C0

∣∣ dx∣∣∣∣∣∣∣∣
Lr

≤ C||b||Lipβ

m∑
k=1

(‖Ms(IαT
k,2(f))‖Lr + ‖Mα,s(T

k,4(f))‖Lr)

≤ C||b||Lipβ

m∑
k=1

(‖IαT k,2(f)‖Lr + ‖T k,4(f)‖Lp)

≤ C||b||Lipβ

m∑
k=1

(‖T k,2(f)‖Lp + ‖f‖Lp)

≤ C||b||Lipβ ||f ||Lp .
This completes the proof of the theorem. �

Theorem 3.7. Let q′ < p < n/α, 1/r = 1/p − α/n, b ∈ BMO(Rn) and the
sequence {jCj} ∈ l1. If F 1

t (g) = 0 for any g ∈ Lu(Rn)(1 < u < ∞) and

T k,4(f) = ||F k,4
t (f)|| are the bounded operators on Lp(Rn) for 1 < p < ∞(1 ≤

k ≤ m), then T b is bounded from Lp(Rn) to Lr(Rn).

Proof. Choose q′ < s < p in Theorem 3.3, we have, by Lemmas 2.3 and 2.4,

||T b(f)||Lr ≤ ‖M(T b(f))‖Lr ≤ C‖M#(T b(f))‖Lr

≤ C||b||BMO

m∑
k=1

(‖Ms(IαT
k,2(f))‖Lr + ‖Mα,s(T

k,4(f))‖Lr)

≤ C||b||BMO

m∑
k=1

(‖IαT k,2(f)‖Lr + ‖T k,4(f)‖Lp)

≤ C||b||BMO‖f‖Lp .
This completes the proof of the theorem. �
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Theorem 3.8. Let 0 < D < 2n, q′ < p < n/α, 1/r = 1/p− α/n, b ∈ BMO(Rn)
and the sequence {jCj} ∈ l1. If F 1

t (g) = 0 for any g ∈ Lu(Rn)(1 < u < ∞) and

T k,4(f) = ||F k,4
t (f)|| are the bounded operators on Lp,ϕ(Rn) for 1 < p < ∞(1 ≤

k ≤ m), then T b is bounded from Lp,ϕ(Rn) to Lr,ϕ(Rn).

Proof. Choose q′ < s < p in Theorem 3.3, we have, by Lemmas 2.5 and 2.6,

||T b(f)||Lr,ϕ ≤ ‖M(T b(f))‖Lr,ϕ ≤ C‖M#(T b(f))‖Lr,ϕ

≤ C||b||BMO

m∑
k=1

(‖Ms(IαT
k,2(f))‖Lr,ϕ + ‖Mα,s(T

k,4(f))‖Lr,ϕ)

≤ C||b||BMO

m∑
k=1

(‖IαT k,2(f)‖Lr,ϕ + ‖T k,4(f)‖Lp,ϕ)

≤ C||b||BMO‖f‖Lp,ϕ .
This completes the proof of the theorem. �

4. Applications

In this section we shall apply Theorems 3.1-3.8 to some particular operators
such as the Littlewood-Paley operator, Marcinkiewicz operator and Bochner-
Riesz operator.

Application 1. Littlewood-Paley operator.
Fixed ε > 0. Let ψ be a fixed function which satisfies:
(1)

∫
Rn ψ(x)dx = 0,

(2) |ψ(x)| ≤ C(1 + |x|)−(n+1),
(3) |ψ(x+ y)− ψ(x)| ≤ C|y|ε(1 + |x|)−(n+1+ε) when 2|y| < |x|;
Let ψt(x) = t−nψ(x/t) for t > 0 and Ft(f)(x) =

∫
Rn f(y)ψt(x − y)dy. The

Littlewood-Paley operator is defined(see [23])

gψ(f)(x) =

(∫ ∞
0

|Ft(f)(x)|2dt
t

)1/2

.

Set H be the space

H =

{
h : ||h|| =

(∫ ∞
0

|h(t)|2dt/t
)1/2

<∞

}
.

Let b be a locally integrable function on Rn. The Toeplitz type operator related
to the Littlewood-Paley operator is defined by

gbψ(f)(x) =

(∫ ∞
0

|F b
t (f)(x)|2dt

t

)1/2

,

where

F b
t =

m∑
k=1

(F k,1
t MbIαF

k,2
t + F k,3

t IαMbF
k,4
t ),

moreover, F k,1
t (f) are Ft(f) or ±I(the identity operator), T k,2(f) = ||F k,2

t (f)||
and T k,4(f) = ||F k,4

t (f)|| are the bounded linear operators on Lp(Rn) for 1 <
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p < ∞, T k,3 = ±I, k = 1, · · · ,m, Mb(f) = bf and Iα is the fractional integral
operator(0 < α < n). It is easily to see that gbψ satisfies the conditions of

Theorems 3.1-3.8 (see [12],[13],[14]), thus these theorems hold for gbψ.
Application 2. Marcinkiewicz operator.
Fixed 0 < γ ≤ 1. Let Ω be homogeneous of degree zero on Rn with

∫
Sn−1 Ω(x′)

dσ(x′) = 0. Assume that Ω ∈ Lipγ(Sn−1). Set Ft(f)(x) =
∫
|x−y|≤t

Ω(x−y)
|x−y|n−1f(y)dy.

The Marcinkiewicz operator is defined by (see [24])

µΩ(f)(x) =

(∫ ∞
0

|Ft(f)(x)|2dt
t3

)1/2

.

Set H be the space

H =

{
h : ||h|| =

(∫ ∞
0

|h(t)|2dt/t3
)1/2

<∞

}
.

Let b be a locally integrable function on Rn. The Toeplitz type operator related
to the Marcinkiewicz operator is defined by

µbΩ(f)(x) =

(∫ ∞
0

|F b
t (f)(x)|2dt

t3

)1/2

,

where

F b
t =

m∑
k=1

(F k,1
t MbIαF

k,2
t + F k,3

t IαMbF
k,4
t ),

moreover, F k,1
t (f) are Ft(f) or ±I(the identity operator), T k,2(f) = ||F k,2

t (f)||
and T k,4(f) = ||F k,4

t (f)|| are the bounded linear operators on Lp(Rn) for 1 <
p < ∞, T k,3 = ±I, k = 1, · · · ,m, Mb(f) = bf and Iα is the fractional integral
operator(0 < α < n). It is easily to see that µbΩ satisfies the conditions of
Theorems 3.1-3.8 (see [12],[13],[14],[24]), thus these theorems hold for µbΩ.

Application 3. Bochner-Riesz operator.

Let δ > (n − 1)/2, F δ
t (f )̂(ξ) = (1 − t2|ξ|2)δ+f̂(ξ) and Bδ

t (z) = t−nBδ(z/t) for
t > 0. The maximal Bochner-Riesz operator is defined by(see [15])

Bδ,∗(f)(x) = sup
t>0
|F δ
t (f)(x)|.

Set H be the space H = {h : ||h|| = sup
t>0
|h(t)| <∞}. Let b be a locally integrable

function on Rn. The Toeplitz type operator related to the maximal Bochner-Riesz
operator is defined by

Bb
δ,∗(f)(x) = sup

t>0
|Bb

δ,t(f)(x)|,

where

Bb
δ,t =

m∑
k=1

(F k,1
t MbIαF

k,2
t + F k,3

t IαMbF
k,4
t ),

moreover, F k,1
t (f) are Ft(f) or ±I(the identity operator), T k,2(f) = ||F k,2

t (f)||
and T k,4(f) = ||F k,4

t (f)|| are the bounded linear operators on Lp(Rn) for 1 <
p < ∞, T k,3 = ±I, k = 1, · · · ,m, Mb(f) = bf and Iα is the fractional integral
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operator(0 < α < n). It is easily to see that Bb
δ,∗ satisfies the conditions of

Theorems 3.1-3.8 (see [12],[13]), thus these theorems hold for Bb
δ,∗.
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