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Abstract. In the present paper, taking some advantages offered by the con-
text of finite dimensional Hilbert spaces, we shall give a complete characteriza-
tions of certain distinguished classes of operators (self-adjoint, unitary reflec-
tion, normal) in terms of operator inequalities. These results extend previous
characterizations obtained by the second author.

1. Introduction and preliminaries results

Let B(H) be the C∗-algebra of all bounded linear operators acting on a complex
Hilbert space H , and let N(H),and S (H) denote the class of all normal operators
and the class of all self-adjoint operators in B(H), respectively.

We denote by

• I(H), the set of all invertible elements in B(H),
• S0(H) = S (H) ∩ I(H), the set of all invertible self-adjoint operators in
B(H),
• N0(H), the set of all invertible normal operators in B(H),
• Ur(H), the set of all unitary reflection operators in B(H),
• R(H), the set of all operators with closed ranges in B(H),
• x⊗y (where x, y ∈ H), the operator on H defined by (x⊗ y) z = 〈z, y〉x,

for every z ∈ H.

For S ∈ B(H), let R(S) and ker(S) denote the range and the kernel of S,
respectively. It is known that for every operator S ∈ R(H), there exits an
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operator X ∈ B(H) satisfying the following two equations SXS = S and XSX =
X, then X is called a generalized inverse of S and so SX and XS are idempotents.
We recall that in general the generalized inverse is not unique. But there exits a
unique generalized inverse X such that SX and XS are orthogonal projections.
In this case, X is called the More–Penrose inverse S and it is denoted by S+.
In this case, SS+ and S+S are orthogonal projections onto R(S) and R(S∗),
respectively, and hence S∗ = S+SS∗ = S∗SS+. We say that an operator S ∈
R(H) is EP, if R(S) = R(S∗) (or equivalently S+S = SS+). Note that any
normal operator with closed range is EP, but the converse is not true even in a
finite dimensional space.

The ascent and descent of S ∈ B(H) are respectively defined by

asc(S) = min
{
p ∈ N∪{0} : ker(Sp) = ker(Sp+1)

}
and

dsc(S) = min
{
p ∈ N∪{0} : R(Sp) = R(Sp+1)

}
if they are finite, they are equal, and their common value is called the index of S
and it is denoted by ind(S).

For every S in R(H), we associate the 2× 2 matrix representation

[
S1 S2

0 0

]
of S with respect to the orthogonal direct sum H = R(S) ⊕ KerS∗. For S ∈
R(H), it is easy to see that ind(S) ≤ 1 if and only if S1 is invertible, and S is an
EP operator if and only if S2 = 0 (and therefore S1 is invertible).

In 1979, McIntosh [5] has proved the following operator inequality

∀A,B,X ∈ B(H), ‖A∗AX +XBB∗‖ ≥ 2 ‖AXB‖ . (1.1)

An operator inequality equivalent to (1.1) was proved by Corach–Porta–Recht [2]
with a different motivation. It was given as follows

∀S ∈ S0(H), ∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖ .
Based on this last inequality, the second author was interested to characterize
some distinguished classes of operators (invertible self-adjoint operator, unitary
reflection operator, invertible normal operator) in terms of operator inequalities.
We cite here some of these characterizations:

(·) The following property ([6])

∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖ (S ∈ I(H))

characterizes the class C∗S0(H), subclass of N0(H) characterized by the spec-
trum of each of its operator is included in some straight line passing through the
origin.

(··) The following property ([7])

∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ = 2 ‖X‖ (S ∈ I(H))

characterizes the class C∗Ur(H), subclass of N0(H) for which the spectrum of
each of its operator is included in {−λ, λ} for some nonzero complex number λ.

(· · ·) The following property ([7])

∀X ∈ B(H),
∥∥SXS−1∥∥ +

∥∥S−1XS∥∥ ≥ 2 ‖X‖ (S ∈ I(H))
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characterizes the class N0(H), the class of all invertible normal operators. For
more other characterizations of subclasses of normal operators in term of operator
inequalities, we may see [7, 8, 9, 1].

In this paper, we are interested in the general form of each of the above three
properties in two manners. Firstly, in the above three properties, we replace in
each of left terms of the inequalities, we replace S−1 by S+ and we replace the
domain I(H) of each property by the new domain R(H), so we obtain the first
three following general forms:

∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ (S ∈ R(H)), (1.2)

∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ = 2
∥∥SS+XS+S

∥∥ (S ∈ R(H)),

∀X ∈ B(H),
∥∥SXS+

∥∥ +
∥∥S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ (S ∈ R(H)) . (1.3)

Secondly, we replace X by SXS, and I(H) by B(H), so we obtain the second
following three general forms::

∀X ∈ B(H),
∥∥S2X +XS2

∥∥ ≥ 2 ‖SXS‖ (S ∈ B(H)), (1.4)

∀X ∈ B(H),
∥∥S2X +XS2

∥∥ = 2 ‖SXS‖ (S ∈ B(H)), (1.5)

∀X ∈ B(H),
∥∥S2X

∥∥ +
∥∥XS2

∥∥ ≥ 2 ‖SXS‖ (S ∈ B(H)) . (1.6)

In this note, we shall show that:
(i) each of the two properties (1.2) and (1.4) characterize the class of all self-

adjoint operators multiplying by scalars in each of the two conditions:
(a) ”S ∈ R(H) and ind(S) <∞”,
(b) dimH <∞ and the domain of each properties is all B(H).
(ii) each of the two properties (1.3) and (1.6) characterize the class of all normal

operators in each of the two conditions:
(a) ”S ∈ R(H) and ind(S) <∞”,
(b) dimH <∞ and the domain of each properties is all B(H),
(iii) the property (1.5) characterize the class of all unitary reflections multiply-

ing by scalars in the case of dimH <∞.
In this section, we present some preliminaries results. These results are needed

in section 2.
It is easy to see that if S satisfies the property (1.3), then it satisfies the

property (1.6). Indeed, assume that S satisfies the property (1.3). So we obtain

∀X ∈ B(H),
∥∥S2XSS+

∥∥ +
∥∥S+SXS2

∥∥ ≥ 2
∥∥SS+SXSS+S

∥∥ = 2 ‖SXS‖ .

Since ‖SS+‖ = ‖S+S‖ = 1 and using the triangular inequality, we deduce the
following inequality

∀X ∈ B(H),
∥∥S2X

∥∥ +
∥∥XS2

∥∥ ≥ 2 ‖SXS‖ .

Hence S satisfies the property (1.6).
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Proposition 1.1. Let S, T ∈ R(H). Then the following inequality holds:

∀X ∈ B(H),
∥∥S∗XT+ + T+XS∗

∥∥ ≥ 2
∥∥SS+XT+T

∥∥ .
Proof. First we prove that the inequality holds for S = T . Let X ∈ B(H). From
inequality (1.1), we obtain∥∥S∗XS+ + S+XS∗

∥∥ =
∥∥S∗SS+XS+ + S+XS+SS∗

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ .
So the inequality for S, T follows immediately from the first step and by using
the known Berberian method. �

Proposition 1.2. (i) The property (1.2) is satisfied for every self-adjoint operator
in R(H),

(ii) The property (1.4) is satisfied for every self-adjoint operator in B(H),
(iii) The property (1.3) is satisfied for every normal operator in R(H),
(iv) The property (1.6) is satisfied for every normal operator in B(H).

Proof. (i) follows immediately from Proposition 1.1.
(ii) follows immediately from inequality (1.1).
(iii) Let S be a normal operator in R(H) and let X ∈ B(H).
Since S is normal, then ‖SXS+‖ = ‖S∗XS+‖ and ‖S+XS‖ = ‖S+XS∗‖. so

it follows that :∥∥SXS+
∥∥ +

∥∥S+XS
∥∥ =

∥∥S∗XS+
∥∥ +

∥∥S+XS∗
∥∥ ≥ ∥∥S∗XS+ + S+XS∗

∥∥ .
Hence, by Proposition 1.1, we obtain∥∥SXS+

∥∥ +
∥∥S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ .
(iv) Let S be a normal operator in B(H) and let X ∈ B(H). Since S is normal

then ‖S2X‖ = ‖S∗SX‖ and ‖XS2‖ = ‖XSS∗‖, so we obtain∥∥S2X
∥∥ +

∥∥XS2
∥∥ = ‖SS∗SX‖+ ‖XSS∗‖ ≥ ‖SS∗SX +XSS∗‖ .

Thus, the result follows immediately from inequality (1.1). �

2. Characterizations of classes of operators by operator
inequalities

In this section, we consider S ∈ R(H) and

[
S1 S2

0 0

]
be the 2 × 2 matrix

representation of S with respect to the orthogonal direct sum H = R(S)⊕KerS∗.

Theorem 2.1. Assume that ind(S) < ∞. Then the following properties are
equivalent:

(i) S is normal,
(ii) ∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≥ 2 ‖SS+XS+S‖ ,
(iii) ∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ 2 ‖SXS‖.

Proof. The implication (i) ⇒ (ii) holds (see Proposition 1.2).
The implication (ii) ⇒ (iii) holds (see introduction).
(iii) ⇒ (i): Assume that (iii) holds.
All 2 × 2 matrices given below are given with respect to the decomposition

H = R(S)⊕KerS∗. We prove that ind(S) ≤ 1.
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Assume that ind(S) > 1. By choosing X = x ⊗ y, for x, y ∈ (H)1, then using
(iii) we obtain

∀x, y ∈ (H)1 :
∥∥S2x

∥∥ +
∥∥(S∗)2 y

∥∥ ≥ 2 ‖Sx‖ ‖S∗y‖ . (2.1)

Since ind(S) > 1, then KerS2 6= KerS. Hence there exists x ∈ (H)1 such that
S2x = 0 and Sx 6= 0. Using (2.1), we obtain ‖(S∗)2y‖ ≥ k ‖S∗y‖, for every y ∈ H
(where k = 2 ‖Sx‖ > 0). Thus, S2(S∗)2 ≥ k2SS∗, and so that R(S2) = R(S)
(see [4]). Contradiction with ind(S) > 1. So we obtain ind(S) ≤ 1 and hence S1

is invertible.
Let X ∈ B(H) given by X = S−21 ⊕ 0. By a simple computation, we

obtain S2X = I1 ⊕ 0, and XS2 = SXS =

[
I1 S−11 S2

0 0

]
, where I1 is the

identity operator on R(S). So that ‖S2X‖ = 1 and ‖XS2‖2 = ‖SXS‖2 =∥∥I1 +
(
S−11 S2

) (
S−11 S2

)∗∥∥. Applying (iii) for S and X, then we obtain 1 ≥∥∥I1 +
(
S−11 S2

) (
S−11 S2

)∗∥∥. Hence
(
S−11 S2

) (
S−11 S2

)∗
= 0, since

(
S−11 S2

) (
S−11 S2

)∗
is a positive operator and so

∥∥I1 +
(
S−11 S2

) (
S−11 S2

)∗∥∥ > 1 if
(
S−11 S2

) (
S−11 S2

)∗ 6=
0. Thus S2 = 0, so that S = S1⊕0. Applying (iii), for S andX = X1⊕0 (whereX1

is an arbitrary operator on R(S)), so we obtain ‖S2
1X1‖+‖X1S

2
1‖ ≥ 2 ‖S1X1S1‖,

for every bounded operator X1 on R(S), and where S1 is invertible. Hence the
inequality

∥∥S1X1S
−1
1

∥∥+
∥∥S−11 X1S1

∥∥ ≥ 2 ‖X1‖ holds, for every bounded operator
X1 on R(S). So we obtain that S1 is an invertible normal operator on R(S).
Hence, S is normal. �

Theorem 2.2. Assume that dimH <∞. Then the following properties are equiv-
alent:

(i) S is normal,
(ii) ∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≥ 2 ‖SS+XS+S‖ ,
(iii) ∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ 2 ‖SXS‖.

Proof. The two implications (i)⇒ (ii) and (ii)⇒ (iii) hold (see the above proof).
(iii) ⇒ (i): Assume (iii) holds. We shall prove that Ker (S∗)2 = KerS∗.

Assume that Ker (S∗)2 6= KerS∗. Using the same argument as used in the above
proof, there exists y ∈ (H)1 such that (S∗)2 y = 0 and S∗y 6= 0. Using (2.1),
we obtain ‖S2x‖ ≥ k ‖Sx‖, for every x ∈ H (where k = 2 ‖S∗y‖ > 0). Hence
‖S1u‖ ≥ k ‖u‖, for every u ∈ R(S). Thus S1 is injective. So that S1 is invertible
(or equivalently ind(S) ≤ 1). Using Theorem 2.1, we deduce that S is normal.
Then S∗ is also normal, and so Ker (S∗)2 = KerS∗. Contradiction. Therefore,
we obtain that Ker (S∗)2 = KerS∗.

Using the same argument as used above and since S∗ satisfies (iii), we find
that KerS2 = KerS.

So, we obtain that KerS2 = KerS and R(S2) = R(S). Then ind(S) ≤ 1. So,
using Theorem 2.1, S is normal. �

Theorem 2.3. Assume that ind(S) < ∞. Then the following properties are
equivalent:

(i) S ∈ CS (H),
(ii) ∀X ∈ B(H), ‖SXS+ + S+XS‖ ≥ 2 ‖SS+XS+S‖ ,
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(iii) ∀X ∈ B(H), ‖S2X +XS2‖ ≥ 2 ‖SXS‖.

Proof. The two implications (i) ⇒ (ii) and (i) ⇒ (iii) hold from Proposition 1.2.
Assume now that (ii) or (iii) holds.
Then applying the triangular inequality, we obtain from Theorem 2.2 that S

is normal. Then S =

[
S1 0
0 0

]
, where S1 is invertible. Applying (ii) or (iii) for

S and X = X1 ⊕ 0 (where X1 is an arbitrary operator on R(S)), so we obtain
‖S2

1X1 +X1S
2
1‖ ≥ 2 ‖S1X1S1‖, for every bounded operator X1 on R(S), and

where S1 is invertible. Hence the inequality
∥∥S1X1S

−1
1 + S−11 X1S1

∥∥ ≥ 2 ‖X1‖
holds, for every bounded operator X1 on R(S). So we obtain that S1 is an
invertible self-adjoint operator on R(S) multiplying by a non-zero scalar. Hence
S ∈ CS (H). �

Theorem 2.4. Assume that dimH < ∞. Then the following properties are
equivalent:

(i) S ∈ CS (H),
(ii) ∀X ∈ B(H), ‖SXS+ + S+XS‖ ≥ 2 ‖SS+XS+S‖ ,
(iii) ∀X ∈ B(H), ‖S2X +XS2‖ ≥ 2 ‖SXS‖.

Proof. The proof is similar to the previous proof. �

Theorem 2.5. Assume that dimH < ∞. Then the following two properties are
equivalent:

(i) S ∈ CUr(H),
(ii) ∀X ∈ B(H), ‖S2X +XS2‖ = 2 ‖SXS‖.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (i): Assume (ii) holds. From Theorem 2.4, S is of the form S = λ0T ,

where λ0 ∈ C and T is a self-adjoint operator in B(H).
We may assume without loss of the generality that S 6= O. Thus the following

equality holds

∀X ∈ B(H),
∥∥T 2X +XT 2

∥∥ = 2 ‖TXT‖ . (2.2)

Since T is self-adjoint, then there exists an eigenvalue λ1 of T such that |λ1| =
‖T‖. Let λ be an arbitrary eigenvalue of T . Then there exist two unit vectors
x, y ∈ H such that Tx = λ1x and Ty = λy. By taking X = x ⊗ y in (2.2), we
obtain that λ2 + λ21 = 2 |λ| |λ1|. Hence |λ| = |λ1|. So we have σ( T

‖T‖) ⊂ {−1, 1}
and where T

‖T‖ is self-adjoint. Thus T
‖T‖ is a unitary reflection. Therefore S =

(λ0 ‖T‖) T
‖T‖ . �

Corollary 2.6. Assume that dimH <∞. Then the following two properties are
equivalent:

(i) S is an EP operator with its nonzero part is a unitary reflection on R(S)
multiplying by a nonzero scalar,

(ii) ∀X ∈ B(H), ‖SXS+ + S+XS‖ = 2 ‖SS+XS+S‖.

Proof. (i) ⇒ (ii). This implication is obvious.
(ii) ⇒ (i).
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Assume that (ii) holds.
Then from Theorem 2.4, S = λT for some scalar λ and some self-adjoint

operator T ∈ B(H). Then T = T1⊕ 0 with respect to the orthogonal direct sum
H = R(T ) ⊕ KerT and T1 is invertible. So from (ii), we obtain the following
inequality

∀X ∈ B(R(T )),
∥∥T1XT−11 + T−11 XT1

∥∥ = 2 ‖X‖ .
Then T1 is a unitary reflection operator on R(T ) multiplying by a nonzero

scalar. Hence S satisfies (i). �

Remark 2.7. 1. The results presented in this paper are extensions of the results
of Khosravi [3].

2. Proposition 1.1, which is showed with an easy and direct proof, was given
in [3].

3. Theorem 2.3 was given in [3] with the restricted condition ”S is an EP
operator”, and without inequality (iii).

4. Does the characterizations given in Theorem 2.1 and Theorem 2.3 remain
true without the assumption ”ind(S) <∞”.

5. Does the characterizations given in Theorem 2.1 (without the condition (ii))
and Theorem 2.3 (without the condition (ii)) remain true without the assumption
”S ∈ R(H) and ind(S) <∞”.
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