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Communicated by L.-E. Persson

Abstract. In the present work we deal with the approximation properties
of certain linear polynomial operators in rearrangement invariant quasi Ba-
nach function spaces. We obtain some Jackson type direct theorem and sharp
converse theorem of trigonometric approximation with respect to fractional
positive order moduli of smoothness in these spaces.

1. Introduction and the Main Results

Approximation by trigonometric polynomials in rearrangement invariant Ba-
nach function spaces and some rearrangement invariant quasi Banach function
spaces was investigated by many mathematicians. Denseness problems of the
trigonometric system in the Orlicz class ϕ (L) was obtained in [26]. Direct
and converse theorems of trigonometric approximation the Lebesgue spaces Lp,
0 < p < 1, was obtained by the intermediate approximation in [25]. Also there
is a different [22] method to obtain direct theorem of trigonometric approxima-
tion in Lp, 0 < p < 1, by means of linear polynomial operators. For a complete
discussions of the problems of approximation theory for Lp, 0 < p < ∞, and
rearrangement invariant Banach function spaces we can refer to the book [6]. For
the variable exponent Lebesgue spaces similar problems of approximation theory
was considered in [2, 1, 3].

In this work we investigate the approximation properties of certain linear poly-
nomial operators in rearrangement invariant quasi Banach function spaces. We
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obtain some Jackson type direct theorem and sharp converse theorem of trigono-
metric approximation with respect to fractional order moduli of smoothness in
these spaces. We give some definitions.

Let M be the set of all measurable functions defined on T := [0, 2π] and
let M+ be the subset of functions from M whose values lie in [0,∞]. By χE
we denote the characteristic function of a measurable set E ⊂ T. A mapping
ρ : M+ → [0,∞] is called a function norm if for all constants a ≥ 0, for all
functions f, g, fn (n = 1, 2, 3, . . .), and for all measurable subsets E of T, the
following properties hold:

(i) ρ (f) = 0 iff f = 0 a.e.; ρ (af) = aρ (f); ρ (f + g) ≤ ρ (f) + ρ (g),
(ii) if 0 ≤ g ≤ f a.e., then ρ (g) ≤ ρ (f), (iii) if 0 ≤ fn ↑ f a.e., then

ρ (fn) ↑ ρ (f),
(iv) ρ (χE) <∞ holds for every set E having a finite Lebesgue measure |E| <
∞,

(v)
∫
E
f (x) dx ≤ CE ρ (f) holds for every set E having a finite Lebesgue

measure |E| < ∞, with a constant CE ∈ (0,∞), depending on E and ρ but
independent of f .

If ρ is a function norm, its associate norm ρ′ is defined on M+ by

ρ′ (g) := sup

{∫
T

f (x) g (x) dx : f ∈M+, ρ (f) ≤ 1

}
, g ∈M+.

If ρ is a function norm, then ρ′ is itself a function norm [5, p. 8, Th. 2.2]. Let ρ
be a function norm. The collection of functions

X := X (ρ) := {f ∈M : ρ (|f |) <∞}

is called Banach function space (shortly BFS). For each f ∈ X we define

‖f‖X := ρ (|f |) .

A Banach function space X equipped with the norm ‖·‖X is a Banach space [5,
p. 3,5, Ths. 1.4 and 1.6]. Let ρ′ be the associate norm of a function norm ρ.
The Banach function space X (ρ′) determined by the function norm ρ′ is called
the associate space of X = X (ρ) and is denoted by X ′. It is well-known [5, p. 9]
that

‖f‖X = sup

{∫
T

|f (x) g (x)| dx : g ∈ X ′, ‖g‖X′ ≤ 1

}
(1.1)

hold. The distribution function µf of a measurable function f is defined as

µf (λ) = meas {x ∈ [0, 2π] : |f (x)| > λ} , λ ≥ 0.

A Banach function norm is rearrangement invariant if ρ (f) = ρ (g) for every pair
of functions f , g which are equimeasurable, that is µf (λ) = µg (λ).

Given a Banach function space X, for each r ∈ (0,∞), we define Xr :=
{f ∈M : f r ∈ X} and r-norm as

‖f‖Xr := ‖|f |r‖1/rX .

The Xp spaces and generalized Orlicz spaces have been studied and used in [17,
20, 21, 18, 13, 11, 12]. Hardy type inequalities in Xp are investigated in [10].
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Throughout this work by C, c, ci we denote the constants which are absolute
or depend only on the parameters given in their brakets.

A quasi Banach function norm is a mapping ρ :M+ → [0,∞] such that it sat-
isfies (ii)-(iv) of above definition of function norm but (i) satisfies as a quasinorm,
namely, ρ (f) = 0 iff f = 0 a.e.; ρ (af) = aρ (f); ρ (f + g) ≤ c (ρ (f) + ρ (g)). If a
quasi Banach function norm ρ is rearrangement invariant then the collection of
functions X (ρ) = {f ∈M : ρ (|f |) <∞} will be called rearrangement invariant
quasi Banach function space (shortly RIQBFS). A quasi BFS X is said to be
p-convex for some p ∈ (0, 1] if there is a c such that for all f1, . . . , fN ∈ X we
have ∥∥∥∥∥∥

(
N∑
i=1

|fi|p
)1/p

∥∥∥∥∥∥
X

≤ c

(
N∑
i=1

‖fi‖pX

)1/p

. (1.2)

In this case the condition (1.2) is equivalent to the fact that X1/p is a rearrange-
ment invariant BFS. From (1.1) one can be see that ‖·‖X be equivalently repre-
sented [8] as

‖f‖X � sup

{(∫
T

|f (x)|p g (x) dx

)1/p

: g ≥ 0, ‖g‖Y ′ ≤ 1

}
(1.3)

where Y ′ is the associate space of the rearrangement invariant BFS Y = X1/p.
There are examples [9] of quasi BFS which are not p-convex for any p > 0.
A (x) � B (x) will be mean that there exist constants c and C such that

cA (x) ≤ B (x) ≤ CA (x) holds.
Let X be quasi BFS. A function f ∈ X is said to have absolutely continuous

norm if

lim
n→∞

‖fχAn‖X = 0

for every decreasing sequence of measurable sets (An) with χAn → 0 a.e. If every
f ∈ X has this property we will say X has absolutely continuous norm.

Hereafter throughout this work we will assume that X := X (AC, p) is a
RIQBFS which has absolutely continuous norm and p-convex for some p ∈ (0, 1].
These assumptions on the function space are not very restrictive. For example
Orlicz spaces, classical Lorentz spaces Lpq, p, q ∈ (0,∞) (in particular Lp spaces
with p ∈ (0, 1)), Zygmund spaces Lp (logL)α, p ∈ (0,∞), α ∈ R, Lorentz Λ spaces
and Marcinkiewicz spaces satisfy [8] these conditions. For a complete treatise of
rearrangement invariant BFS and RIQBFS we refer to [16, 5, 15, 7, 14, 19].

Remark 1.1. Let X be a RIQBFS. The following conditions are equivalent:
(i) The set of trigonometric polynomials is dense inX. (ii) The set of continuous

functions is dense in X. (iii) Translation operator Thf (x) := f (x+ h) is a
bounded operator in X, namely,

‖Thf‖X ≤ c ‖f‖X
for every f ∈ X and h ∈ R.

(iv) X has absolutely continuous norm.
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These properties are proved for rearrangement invariant BFS in [5, p. 157,
Lemma 6.3] and they hold also for RIQBFS X which has absolutely continuous
norm.

Let x, h ∈ R, α ∈ R+ := (0,∞), f ∈ X and we set

∆α
hf (x) :=

∞∑
k=0

(−1)k
(
α
k

)
f (x+ (α− k)h)

with Binomial coefficients

(
α
k

)
:= α(α−1)...(α−k+1)

k!
for k ≥ 1 and

(
α
0

)
:= 1.

If 1
α+1

< p < 1, then using [24, p.14]∣∣∣∣( α
k

)∣∣∣∣ ≤ c (α)

kα+1
, k ∈ Z+

we obtain
∞∑
k=0

∣∣∣∣( α
k

)∣∣∣∣p ≤ c (α, p)
∞∑
k=0

c (α)

kp(α+1)
<∞. (1.4)

On the other hand if nonnegative g belongs to Y ′, the associate space of the
rearrangement invariant BFS Y = X1/p, then using Levi’s Monotone Convergence
Theorem and Remark 1.1 (iii) we have∫

T

∣∣∣∣∣
∞∑
k=0

(−1)k
(
α
k

)
f (x+ (α− k)h)

∣∣∣∣∣
p

g (x) dx

≤ lim
j→∞

∫
T

j∑
k=0

∣∣∣∣( α
k

)
f (x+ (α− k)h)

∣∣∣∣p g (x) dx


≤ c

(
∞∑
k=0

∣∣∣∣( α
k

)∣∣∣∣p
) sup

g≥0,‖g‖Y ′≤1

∫
T

|f (x)|p g (x) dx


and hence from (1.3) and (1.4)

‖∆α
hf‖X ≤ c ‖f‖X . (1.5)

This last inequality signifies that if f ∈ X, α ∈ R+, (α + 1)−1 < p < 1 and h ∈ R,
then ∆α

hf ∈ X.

Now, if α ∈ R+, f ∈ X, (α + 1)−1 < p < 1 and h ∈ R, then we can define the
α-th modulus of smoothness of a function f as

ωα (f, δ)X := sup
0<h≤δ

‖∆α
hf‖X , δ ≥ 0.

Remark 1.2. The α-th modulus of smoothness ωα (f, δ)X , α ∈ R+, (α + 1)−1 < p,
of f ∈ X =X (AC, p) has the following properties.

(i) ωα (f, δ)X is non-negative and non-decreasing function of δ ≥ 0. (ii)
ωpα (f1 + f2, ·)X ≤ ωpα (f1, ·)X + ωpα (f2, ·)X . (iii) lim

δ→0+
ωα (f, δ)X = 0.
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By means of Remark 1.1 (ii) and (iv) let

En (f)X := inf
T∈Tn
‖f − T‖X , f ∈ X, n = 0, 1, 2, . . . ,

where Tn be the class of trigonometric polynomials of degree not greater than n.
We denote by Xα, α ∈ R+, the linear space of 2π-periodic real valued functions

f ∈ X such that f (α) ∈ X a.e.
We say that a function g = f (α), α ∈ R+, is the αth (Grunwald-Letnikov)

derivative of f ∈ Xα if there is a function g ∈ X such that

lim
h→0+

∥∥∥∥∆α
h (f)

hα
− g
∥∥∥∥
X

= 0.

If a.e. equal functions are identified, then the last condition determines αth
derivative uniquely. Also αth derivative is additive with respect to finite number
of functions.

The αth Weyl’s derivative (α ∈ R+) of a trigonometric polynomial

Tn (x) =
n∑

υ=−n

γυe
iυx, n ≥ 1, x ∈ R

of class Tn is defined as

T {α}n (x) =
∑
υ∈Z∗n

γυ (iυ)α eiυx

a.e. on R, where Z∗n := {±1,±2, . . . ,±n} and (iυ)−α := |υ|−α e(−1/2)πiαsignυ as
principal value.

Remark 1.3. Let

Tn (x) =
n∑

υ=−n

γυe
iυx, (n ≥ 1)

be a trigonometric polynomial of class Tn with complex coefficients γυ. Then for
every α ∈ R+ and x ∈ R we have

T {α}n (x) = T (α)
n (x) .

Using Dominated Convergence Theorem this follows from the following equal-
ities in X =X (AC, p)

lim
h→0+

∥∥∥∥∆α
hTn
hα

− T {α}n

∥∥∥∥p
X

= lim
h→0+

∥∥∥∥∥∑
υ∈Zn

γυe
iυx

(
eiυαh/2

(
2i

sin (υh/2)

h

)α
− (iυ)α

)∥∥∥∥∥
p

X

=

∥∥∥∥∥∑
υ∈Zn

γυe
iυx

(
lim
h→0+

(
iυ

sin (υh/2)

υh/2

)α
− (iυ)α

)∥∥∥∥∥
p

X

= 0.

Throughout this work we will denote by qX the upper Boyd’s indice of X. Let
us denote by [x] the integer part of a real number x and {x} := x− [x] .

For α, t ∈ R+ and f ∈ X we define for n = 1, 2, 3, . . . , the Polynomial K-
functional

Kα (f, 1/n,X,Xα) := infT∈Tn
{
‖f − T‖X + n−α

∥∥T (α)
∥∥
X

}
.
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The main results of this work are

Theorem 1.4. If α ∈ R+, f ∈ X, p−1 < min {α + 1, 2− {α}} and qX <∞, then
the equivalance

ωα (f, 1/n)X � Kα (f, 1/n,X,Xα)

holds.

The following Jackson type direct theorem of trigonometric approximation
hold.

Corollary 1.5. If α ∈ R+, f ∈ X, p−1 < min {α + 1, 2− {α}} and qX < ∞,
then there exists a constant c > 0 dependent only on α and X such that for
n = 1, 2, 3, . . .

En (f)X ≤ cωα

(
f,

1

n

)
X

holds.

The following converse estimate of trigonometric approximation holds.

Theorem 1.6. If α ∈ R+, f ∈ X, (α + 1)−1 < p and qX < ∞, then for n =
1, 2, 3, . . .

ωα

(
f,
π

n

)
X
≤ c

nα

(∑n

ν=0
(ν + 1)pα−1Ep

ν (f)X

)1/p
(1.6)

hold, where the constant c > 0 dependent only on α and X.

Corollary 1.7. Under the conditions of Theorem 1.4 the estimate

En (f)X = O
(
n−σ

)
, 1 > σ > 0, n = 1, 2, . . . ,

holds if and only if
ωα (f, δ)X = O (δσ) .

Corollary 1.8. Under the conditions of Theorem 1.4 the converse inequality
(1.6) is sharp in the sense that

sup
En(f)Lp≤1/n

ω1 (f, δ)Lp � β (ln (1/δ))1/p , 0 < p < 1. (1.7)

Exactness of (1.7) can be seen by 2π periodic function f (x) = |x|1−(1/p), |x| ≤
π.

Theorem 1.9. Let f ∈ X and qX <∞. If β ∈ (0,∞) and
∞∑
ν=1

νpβ−1Ep
ν (f)X <∞ (1.8)

then the derivative f (β) ∈ X exists. Further, denoting by Tn ∈ Tn, n ≥ 1, the
best approximating polynomial of f in ‖·‖X metric we have∥∥∥f (β) − T(β)

n

∥∥∥
X
≤ c

nβEn (f)X +

(
∞∑

ν=n+1

νpβ−1Ep
ν (f)X

)1/p


where the constant c > 0 dependent only on β and X.
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As a corollary of Theorems 1.9 and 1.6

Corollary 1.10. Let f ∈ X, β ∈ (0,∞), qX <∞ and

∞∑
ν=1

νpα−1Ep
ν (f)X <∞

for some α > 0. In this case for n = 1, 2, . . ., there exists a constant c > 0
dependent only on α, β and X such that

ωβ

(
f (α),

1

n

)
X

≤ c

 1

nβ

(
n∑
ν=0

(ν + 1)p(α+β)−1Ep
ν (f)X

)1/p

+

+

(
∞∑

ν=n+1

νpα−1Ep
ν (f)X

)1/p


hold.

2. Linear Polynomial Operators in X

Linear polynomial operators are powerful approximants in approximation the-
ory and they are commonly used to solve various approximation problems. For
example, among others, in [22] the linear operators Vn,λ of a real parameter λ

Vn,λ (f, x) =
2

2N + 1

2N∑
i=0

f
(
tiN + λ

)
W (l)
n

(
x− tiN − λ

)
, f ∈ Lp, 0 < p < 1, x ∈ R

are defined and used to prove a direct theorem of trigonometric polynomial ap-

proximation in Lp, 0 < p < 1. Here N :=

{
0 ; n = 0,
n (l + 1)− l ; n = 1, 2, 3, . . .,

,

tiN = 2πi/ (2N + 1), i = 0, 1, 2, . . . , 2N , n = 0, 1, 2, 3, . . . and W
(l)
n ∈ TN is certain

even trigonometric polynomial. This polynomial operator has the following useful
properties for λ ∈ R and n = 0, 1, 2, 3, . . .:

Remark 2.1. i) Vn,λ ∈ Tn; ii) Vn,λ (T, ·) = T (·) for T ∈ Tn; iii) Vn,λ+t1N = Vn,λ; iv)

Th ◦ Vn,λ = Vn,λ−h ◦ Th for h ∈ R and v) Tt1N ◦ Vn,λ = Vn,λ ◦ Tt1N , where f1 ◦ f2
denotes composition of functions f1 and f2.

In this section, on the bases of these facts we will use the operators Vn,λ (f, ·)
as an apparatus of approximation to f ∈ X and prove some auxiliary lemmas.

Lemma 2.2. If f ∈ X =X (AC, p), k = 1, 2, . . . and (α + 1)−1 < p, then there
exists a constant c > 0 such that∫

T

‖Vn,λ (f, ·)‖pX dλ

1/p

≤ c ‖f‖X

holds where n = 0, 1, 2, . . ..
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Proof. Since [22, Theorem 1.2]
π∫

0

x
∣∣W (k)

n (x)
∣∣p dx ≤ c (n+ 1)p−2 and

π∫
0

∣∣W (k)
n (x)

∣∣p dx ≤ c (n+ 1)p−1

we have∫
T

‖Vn,λ (f, ·)‖pX dλ =

∫
T

∥∥∥∥∥ 2

2N + 1

2N∑
i=0

f
(
tiN + λ

)
W (l)
n

(
· − tiN − λ

)∥∥∥∥∥
p

X

dλ

≤ c

∫
T

sup


∫
T

∣∣∣∣∣ 2

2N + 1

2N∑
i=0

f
(
tiN + λ

)
W (l)
n

(
x− tiN − λ

)∣∣∣∣∣
p

g (x) dx :

: g ≥ 0, ‖g‖X′ ≤ 1} dλ

≤ c

∫
T

(
2

2N + 1

)p 2N∑
i=0

sup


∫
T

∣∣f (tiN + λ
)
W (l)
n

(
x− tiN − λ

)∣∣p g (x) :

: g ≥ 0, ‖g‖X′ ≤ 1} dλ

≤ 4pc

(n+ 1)p

2N∑
i=0

sup


∫
T

∫
T

∣∣f (x− u)W (k)
n (u)

∣∣p du
 |g (x)| dx :

: g ≥ 0, ‖g‖X′ ≤ 1}

≤ 2
4pc

(n+ 1)p
‖f‖pX

π∫
0

∣∣W (k)
n (u)

∣∣p du ≤ C ‖f‖pX

and the result follows. �

Theorem 2.3 (Extrapolation Theorem). [8, Theorem 2.1] Let 0 < p0 < ∞ and
let F be a family of couples of nonnegative functions such that∫

T

f (x)p0 dx ≤ C

∫
T

g (x)p0 dx, (f, g) ∈ F

holds with the left hand side is finite. We suppose that X is a RIQBFS which is
p-convex for some p ∈ (0, 1] and qX <∞. Then

‖f‖X ≤ C ‖g‖X , (f, g) ∈ F
holds when the left hand side is finite.

Lemma 2.4. Let X be a RIQBFS which is p-convex for some p ∈ (0, 1]. If
Tn ∈ Tn, n ≥ 1, α ∈ R+, qX < ∞, 0 < h ≤ 2π/n, then there exist constants
c, C > 0 such that ∥∥T (α)

n

∥∥
X
≤ c

(
n

2 sin (nh/2)

)α
‖∆α

hTn‖X , (2.1)

and
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‖∆α
hTn‖X ≤ Chα

∥∥T (α)
n

∥∥
X

. (2.2)

Proof. Since the inequalities∥∥T (α)
n

∥∥
Lq
≤ c

(
n

2 sin (nh/2)

)α
‖∆α

hTn‖Lq

and

‖∆α
hTn‖Lq ≤ Chα

∥∥T (α)
n

∥∥
Lq

are hold for every q ∈ [1,∞) we obtain from the Extrapolation Theorem that∥∥T (α)
n

∥∥
X
≤ c

(
n

2 sin (nh/2)

)α
‖∆α

hTn‖X ,

‖∆α
hTn‖X ≤ Chα

∥∥T (α)
n

∥∥
X

.

�

Corollary 2.5. (i) Taking h = π/n in (2.1) we have∥∥T (α)
n

∥∥
X
≤ cnα

∥∥∆α
π/nTn

∥∥
X

(2.3)

and hence fractional Bernstein Inequality∥∥T (α)
n

∥∥
X
≤ cnα ‖Tn‖X . (2.4)

(ii) Combining (2.2) and (2.3) we have

ωα (Tn, π/n)X ≤ c
∥∥∆α

π/nTn
∥∥
X

. (2.5)

Lemma 2.6. If f ∈ X, qX < ∞ and k = 1, 2, . . ., then there exists a constant
c > 0 such that

I :=

∫
T

∫
T

‖[Vn,λ, Th] (f, x)‖pX dλdh

1/p

≤ cωk

(
f,

1

n+ 1

)
X

holds where n = 0, 1, 2, . . . and [A,B] (f, ·) = (A ◦B) (f, ·)− (B ◦ A) (f, ·).

Proof. Since [Vn,λ, Th] = Th ◦∆1
h;λ ◦ Vn,λ for h, λ ∈ R we get

‖[Vn,λ, Th] (f, ·)‖X =
∥∥∆1

h;λ ◦ Vn,λ (f, ·)
∥∥
X

for h, λ ∈ R.

Here and below ∆k
h;λ will denote kth difference operator with step h in variable

λ and ‖·‖X,λ will denote the quasinorm in the variable λ. Since

∫
T

∥∥∆1
hf (x)

∥∥p
X
dh ≤ Cm

(2π)/m∫
0

∥∥∆k
hf (x)

∥∥p
X
dh, k,m = 1, 2, . . .
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we have by Lemma 2.2 and (iii) of Remark 2.1 that

Ip ≤ c (2N + 1)

∫
T

t1N∫
0

∥∥∆2k
h;λ (Vn,λ (f (x)))

∥∥p
X,λ

dhdx

= c (2N + 1)

∫
T

t1N∫
0

∥∥∥∥∥ 2

2N + 1

2N∑
i=0

∆2k
h;λ

(
f
(
tiN + λ

)
W (l)
n

(
x− tiN − λ

))∥∥∥∥∥
p

X,λ

dhdx.

Using

∆k
h (f (x) g (x)) =

k∑
i=0

(
k
i

)
∆k−i
h f (x+ ih) ∆i

hg (x) , x, h ∈ R,

we have

Ip ≤ c (2N + 1)
2k∑
υ=0

(
2k
υ

)p ∫
T

t1N∫
0

∥∥∥∥∥ 2

2N + 1

2N∑
i=0

∆2k−υ
h;λ f

(
tiN + λ+ υh

)
×

×∆υ
h;λW

(k)
n

(
x− tiN − λ

)∥∥p
X,k

dhdx

≤ c (2N + 1)
2k∑
υ=0

(
2k
υ

)p ∫
T

t1N∫
0

∥∥∥∥∥ 2

2N + 1

2N∑
i=0

∆2k−υ
h;λ f

(
tiN + λ+ υh

)
×

×∆υ
−h;xW

(k)
n

(
x− tiN − λ

)∥∥p
X,λ

dhdx

≤ c (2N + 1)
2k∑
υ=0

(
2k
υ

)p t1N∫
0

∫
T

∥∥∆υ
−h ◦ Vn,λ ◦∆2k−υ

h ◦ T υh (f, x)
∥∥p
X
dλdh.

Since Vn,λ◦∆2k−υ
h (f, x) ∈ TN in x, by (2.3) we have for 0 ≤ h ≤ t1N , υ = 0, 1, . . . , k

and λ ∈ R that∥∥∆υ
−h ◦ Vn,λ ◦∆2k−υ

h ◦ T υh
∥∥
X
≤ c

∥∥∥∆υ
t1N
◦ Vn,λ ◦∆2k−υ

h ◦ T υh
∥∥∥
X

= c
∥∥∥Vn,λ ◦ T υh ◦∆υ

t1N
◦∆2k−υ

h

∥∥∥
X

.

Then from (iv) of Remark 2.1 and Lemma 2.2

Ip ≤ c (2N + 1)
2k∑
υ=0

(
2k
υ

)p t1N∫
0

∫
T

∥∥∥Vn,λ ◦ T υh ◦∆υ
t1N
◦∆2k−υ

h (f, ·)
∥∥∥p
X
dλdh

≤ c (2N + 1)
2k∑
υ=0

(
2k
υ

)p t1N∫
0

∥∥∥∆υ
t1N
◦∆2k−υ

h (f, ·)
∥∥∥
X
dh ≤ c

(
ωk
(
f, t1N

)
X

)p
and Lemma 2.6 is proved. �



APPROXIMATION IN R. I. QUASI BANACH FUNCTION SPACES 123

Lemma 2.7. If f ∈ X, qX < ∞ and k = 1, 2, . . ., then there exists a constant
c > 0 such that(2N + 1)

t1N∫
0

∫
T

∥∥[Rn,λ,∆
1
h

]
(f, ·)

∥∥p
X
dλdh


1/p

≤ cωk

(
f,

1

n+ 1

)
X

holds where Rn,λ := Vn,λ − I, n = 0, 1, 2, . . . and I is identity operator.

Proof. By (iv) of Remark 2.1 and any real λ we have

∫
T

‖[Vn,λ, Th] (f, ·)‖pX dh =
2N∑
i=0

ti+1
N∫

tiN

‖[Vn,λ, Th] (f, ·)‖pX dh

=
2N∑
i=0

t1N∫
0

∥∥∥[Vn,λ, Th+tiN] (f, ·)
∥∥∥p
X
dh =

2N∑
i=0

t1N∫
0

∥∥∥TtiN ◦ [Vn,λ, Th] (f, ·)
∥∥∥p
X
dh

= (2N + 1)

t1N∫
0

‖[Vn,λ, Th] (f, ·)‖pX dh

= (2N + 1)

t1N∫
0

‖((Vn,λ − I) ◦ (Th − I)− (Th − I) ◦ (Vn,λ − I)) (f, ·)‖pX dh

= (2N + 1)

t1N∫
0

∥∥[Rn,λ,∆
1
h

]
(f, ·)

∥∥p
X
dh.

Hence Lemma 2.6 completes the proof. �

We define the following two auxiliary functions

Λk (f, δ)X :=
1

δ

δ∫
0

∥∥∆k
h (f, ·)

∥∥
X
dh,

Ωk (f, δ)X :=
1

δk

δ∫
0

· · ·
δ∫

0

∥∥(∆1
h1
◦ · · · ◦∆1

hk

)
(f, ·)

∥∥
X
dh1 · · · dhk

and prove that these are equivalent to moduli of smoothness ωk (f, ·)X of f ∈ X.

Lemma 2.8. If f ∈ X, qX <∞ and k = 1, 2, . . ., then

ωk (f, δ)X ≤ c1Ωk (f, δ)X ≤ c2Λk (f, δ)X ≤ c3ωk (f, δ)X . (2.6)
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Proof. First inequality can be obtained [6, p. 184] from

∆k
h (f, x) =

r∑
j=1

(−1)j
[
∆r
js (f, x+ jh)−∆k

h+js (f, x)
]

, s ∈ R.

For the second inequality we obtain

∥∥∆k−1
t ∆1

hf (x)
∥∥
X
≤ c

(∥∥∆k
t f (x)

∥∥p
X

+
k−1∑
υ=0

∥∥∆k
h+υtf (x)

∥∥p
X

)
, k = 2, 3, . . . .

These inequalities follow from

∆k−1
t ◦∆1

h = − 1

γk

βk∑
i=1

α
(k)
i Di−1 ◦∆1

h ◦∆k
t +

1

kγk
T(1−k)h ◦ E

where βk =
∑k−2

υ=0 υ (υ + 1) , k = 2, 3, . . . , α
(k)
i are nonnegative integers with

α
(k)
βk

= 1, γk =
∑βk

i=0 α
(k)
i , Di =

(
k
i

)
Tih ◦∆k−i

h ◦∆i
t, E =

∑βk
i=0 Tit ◦ kT(k−1)h ◦

∆k−1
t ◦∆1

h.
Let us assume that the second inequality in (2.6) holds for k = s − 1, s =

2, 3, . . .. Then

Ωp
s (f, δ)X =

1

δ

δ∫
0

Ωp
s−1
(
∆1
hf, δ

)
X
dh ≤ c

δ

δ∫
0

Λp
s−1
(
∆1
hf, δ

)
X
dh

=
c

δ2

δ∫
0

δ∫
0

∥∥∆s−1
t ∆1

hf (x)
∥∥p
X
dtdh

≤ c

δ2

2δ2Λp
s (f, δ)X +

s−1∑
υ=0

δ∫
0

δ∫
0

∥∥∆s
h+υtf (x)

∥∥p
X
dtdh

 .

Using transformation u = h and µ = (h+ υt) / (υ + 1) we get for υ = 1, 2, 3, . . .

δ∫
0

δ∫
0

∥∥∆s
h+υtf (x)

∥∥p
X
dtdh ≤ υ + 1

υ

δ∫
0

δ∫
0

∥∥∆s
(υ+1)µf (x)

∥∥
X
dudµ

≤ υ + 1

υ
δ

δ∫
0

∥∥[I + Tµ + . . .+ Tυµ]s ◦∆s
µf (x)

∥∥p
X
dµ ≤ cδ2Λp

s (f, δ)X

and hence required inequality follows. The last inequality in (2.6) is obvious. �

At this stage we need a Jackson type theorem for integer order moduli of
smoothness to obtain fractional order ones (Corollary 1.5).



APPROXIMATION IN R. I. QUASI BANACH FUNCTION SPACES 125

Lemma 2.9. If f ∈ X, qX < ∞ and k = 1, 2, . . ., then there exists a constant
c > 0 such that

En (f)X ≤ cωk

(
f,

1

n+ 1

)
X

holds where n = 0, 1, 2, . . ..

Proof. It is easily seen that

∆1
h1
◦ · · · ◦∆1

hs ◦Rn;λ = (2.7)

= Rn;λ ◦∆1
h1
◦ · · · ◦∆1

hs +
∑s

i=0
∆1
h1
◦ · · · ◦

[
∆1
hi
, Rυ;λ

]
◦ · · · ◦∆1

hs

for s = 1, 2, 3, . . . and λ, h1,. . . , hs ∈ R. We prove that if k = 1, 2, . . ., then

Ik ≡
∫
T

· · ·
∫
T

‖Rυ;λ1 ◦ · · · ◦Rυ;λk (f, x)‖pX dλ1 · · · dλk ≤ cΩp
k

(
f, t1N

)
X

. (2.8)

We suppose that k = 1. By (ii) of Remark 2.1 and Lemma 2.2 we find that∫
T

‖f (x)− Vn,λ (f, x)‖pX dλ =

∫
T

‖(f (x)− t∗n (x))− Vn,λ (f − t∗n, x)‖pX dλ

≤ cEn (f)X +

∫
T

‖Vn,λ (f − t∗n, x)‖pX dλ ≤ c (En (f)X)p (2.9)

where t∗n is the best approximating trigonometric polynomial to f ∈ X.
On the other hand

2π (EN (f)X)p ≤
∫
T

‖f (x)− Vn,λ (f, x)‖pX dλ

≤ c (n+ 1)1−p
π∫

−π

‖f (·+ h)− f (·)‖pX
∣∣W (k)

n (h)
∣∣p dh ≤

≤ c (n+ 1)1−p ωp1

(
f,

1

n+ 1

)
X

π∫
−π

(1 + n |h|)
∣∣W (k)

n (h)
∣∣p dh

≤ c

(
ω1

(
f,

1

n+ 1

))p
. (2.10)

Hence from (2.9), (2.10) and Lemma 2.8 we get

I1 ≤ c (En (f)X)p ≤ c

(
ω1

(
f,

1

n+ 1

)
X

)p
≤ c

(
ω1

(
f, t1N

)
X

)p
(2.11)

≤ c
(
Ω1

(
f, t1N

)
X

)p
.

This is (2.8) for k = 1. Now we suppose that (2.8) holds for k = s Then from
(2.7), (2.11) and Lemmas 2.7 and 2.8

Is+1 ≤ c

2π∫
0

(
Ωs

(
Rn;λ (f) , t1N

)
X

)p
dλ
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≤ c (2N + 1)s


t1N∫
0

· · ·
t1N∫
0

∫
T

∥∥Rn;λ ◦∆1
h1
◦ · · ·∆1

hs (f, x)
∥∥p
X
dλdh1 · · · dhs


+

s∑
i=1

t1N∫
0

· · ·
t1N∫
0

∫
T

∥∥∆1
h1
◦ · · · ◦

[
∆1
hi
, Rυ;λ

]
◦ · · · ◦∆1

hs (f, x)
∥∥p
X
dλdh1 · · · dhs

≤ c (2N + 1)s


t1N∫
0

· · ·
t1N∫
0

Ωp
1

(
∆1
h1
◦ · · ·∆1

hs (f) , t1N
)
dh1 · · · dhs

+
s∑
i=1

(2N + 1)1−i
t1N∫
0

· · ·
t1N∫
0

∥∥[∆1
hi
◦Rυ;λ

]
◦ · · · ◦∆1

hs (f, x)
∥∥p
X
dλdhi+1 · · · dhs


≤ cΩs+1

(
f, t1N

)
X

+ c (2N + 1)s
s∑
i=1

(2N + 1)−i×

×
t1N∫
0

· · ·
t1N∫
0

Ωp
s+1

(
∆1
hi+1
◦ · · ·∆1

hs (f) , t1N

)
dhi+1 · · · dhs ≤ cΩp

s+1

(
f, t1N

)
X

.

Since for any real λ1, · · · , λk
Rυ;λ1 ◦ · · · ◦Rυ;λk (f, x) = T (x) + (−1)k f (x)

we obtain
Ep
N (f)X ≤ Ik ≤ Ωp

k

(
f, t1N

)
X
≤ cωpk

(
f, t1N

)
X

and this completes the proof. �

3. Proofs of the Main Results

Proof of Theorem 1.4. Starting with upper inequality we take a t ∈ (0, 2π). Then
there exists n ∈ Z+ such that π/n < t ≤ 2π/n. Let t∗n be the best approximating
trigonometric polynomial to f ∈ X.

Using Lemma 2.9 we get

En (f)X = ‖f − t∗n‖X ≤ cω[α]+1

(
f,

1

n

)
X

= c sup
0<h≤(1/n)

∥∥∥∆
[α]+1
h f

∥∥∥
X

= c sup
0<h≤(1/n)

∥∥∥∆
1−{α}
h (∆α

hf)
∥∥∥
X
≤ c sup

0<h≤(1/n)
‖∆α

hf‖X

≤ c sup
0<h≤(π/n)

‖∆α
hf‖X = cωα

(
f,
π

n

)
X
. (3.1)

From (2.3) and (3.1) we have∥∥t∗(α)n

∥∥
X
≤ c2−αnα

∥∥∆α
π/nt

∗
n

∥∥
X
≤

≤ c (π/t)α
{
c (α,X) ‖f − t∗n‖X +

∥∥∆α
π/nf

∥∥
X

}
≤ c (α,X) t−αωα

(
f,
π

n

)
X
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and therefore

Kα (f, t,X,Xα) ≤ ‖f − t∗n‖X + tα
∥∥t∗(α)n

∥∥
X
≤ c (α,X)ωα (f, t)X .

The lower inequality is easy. �

Proof of Theorem 1.6. Let Tn ∈ Tn be the best approximating polynomial of f
and let m ∈ Z+. We write

U0 (x) = T1 (x)− T0 (x) , Uυ (x) = T2υ (x)− T2υ−1 (x) , υ ≥ 1. (3.2)

Then

T2m (x) = T0 (x) +
m∑
ν=0

Uυ (x) .

In this case

ωpα (f, π/n)X ≤ ωpα (f − T2m , π/n)X + ωpα (T2m , π/n)X ,

ωpα (f − T2m , π/n)X ≤ cEp
2m (f)X

and

ωpα (T2m , π/n)X ≤ ωpα (U0, π/n)X +
m∑
ν=1

ωpα (Uυ, π/n)X

≤ c
(π
n

)pα(
‖U0‖pX +

m∑
ν=1

2υpα ‖Uυ‖pX

)
.

On the other hand

‖U0‖pX ≤ cEp
0 (f)X

and

‖Uυ‖pX ≤ 2Ep
2υ−1 (f)X .

It is easily seen that

2υpαEp
2υ−1 (f)X ≤ c

2υ−1∑
µ=2υ−2+1

µpα−1Ep
µ (f)X , ν = 2, 3, . . . (3.3)

and therefore

ωpα (T2m , π/n)X ≤ c
(π
n

)pα{
Ep

0 (f)X +
m∑
υ=1

2υpαEp
2υ−1 (f)X

}
.

If we choose 2m−1 ≤ n < 2m, then

ωpα (T2m , π/ (n+ 1))X ≤
c (α,X)

npα

n∑
υ=0

(ν + 1)pα−1Ep
υ (f)X

and

Ep
2m (f)X ≤ Ep

2m−1 (f)X ≤
c

nαp

n∑
υ=0

(ν + 1)pα−1Ep
υ (f)X .

Last two inequalities complete the proof. �
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Proof of Theorem 1.9. By Levi’s theorem and (3.2)∥∥∥∥∥T0 (x) +
∞∑
υ=0

Uυ (x)

∥∥∥∥∥
p

X

= lim
r→∞

∥∥∥∥∥T0 (x) +
r∑

υ=0

Uυ (x)

∥∥∥∥∥
p

X

≤ c ‖T0 (x)‖pX + c lim
r→∞

r∑
υ=0

‖Uυ (x)‖pX ≤ cEp
0 (f)X + c

∞∑
υ=1

Ep
2υ−1 (f)X <∞.

From (1.8) and (3.3) the last series converges and therefore

f (x) = lim
r→∞

T2r (x) = T0 (x) +
∞∑
υ=0

Uυ (x) a.e.

Analogously using Levi’s Theorem∥∥∥∥∥
∞∑
υ=0

U (β)
υ (x)

∥∥∥∥∥
p

X

≤ c
∞∑
υ=0

∥∥U (β)
υ (x)

∥∥p
X
≤ c

∞∑
υ=0

2υpβ ‖Uυ (x)‖pX

≤ c

(
Ep

0 (f)X +
∞∑
υ=1

2υpβEp
2υ−1 (f)X

)
<∞

and the series
∞∑
υ=0

U (β)
υ (x)

converges a.e., its sum g is of class X. Now we prove that g = f (β) a.e.
For 0 6= h ∈ R we have∥∥∥∥∥∆β

hf (x)

hβ
− g (x)

∥∥∥∥∥
p

X

≤ c

∥∥∥∥∥ 1

hβ

N∑
k=0

(−1)k
(
β
k

)
f (x+ (β − k)h)− g (x)

∥∥∥∥∥
p

X

+c

∥∥∥∥∥ 1

hβ

∞∑
k=N+1

(−1)k
(
β
k

)
f (x+ (β − k)h)

∥∥∥∥∥
p

X

:= c (I1 + I2)

In this case

I2 ≤
1

|h|βp
∞∑

k=N+1

∣∣∣∣( β
k

)∣∣∣∣p ‖f‖pX
and hence

lim
N→∞

I2 = 0.

Now by Levi’s theorem

I1 =

∥∥∥∥∥ 1

hβ

∞∑
υ=0

N∑
k=0

(−1)k
(
β
k

)
Uυ (x+ (β − k)h)− g (x)

∥∥∥∥∥
X

≤ c
∞∑
υ=0

∥∥∥∥∥ 1

hβ

N∑
k=0

(−1)k
(
β
k

)
Uυ (x+ (β − k)h)− U (β)

υ (x)

∥∥∥∥∥
p

X

=: YN .
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The last series converges uniformly in N ≥ 1, because its υth term doesn’t exceed

1

|h|βp
∞∑
k=0

∣∣∣∣( β
k

)∣∣∣∣p (‖Uυ‖pX +
∥∥U (β)

υ

∥∥p
X

)
≤ c

(
1

|h|βp
+ 1

)
2υpβEp

2υ−1 (f)X .

From Lebesgue Dominated convergence theorem we have

lim
N→∞

YN =
∞∑
υ=0

∥∥∥∥∥∆β
hUυ (x)

hβ
− U (β)

υ (x)

∥∥∥∥∥
p

X

and then ∥∥∥∥∥∆β
hf

hβ
− g

∥∥∥∥∥
p

X

≤ c
∞∑
υ=0

∥∥∥∥∥∆β
hUυ
hβ

− U (β)
υ

∥∥∥∥∥
p

X

≤ c
s∑

υ=0

∥∥∥∥∥∆β
hUυ
hβ

− U (β)
υ

∥∥∥∥∥
p

X

+ c
∞∑

υ=s+1

∥∥∥∥∥∆β
hUυ
hβ

∥∥∥∥∥
p

X

+ c
∞∑

υ=s+1

∥∥U (β)
υ

∥∥p
X

≤ c
s∑

υ=0

∥∥∥∥∥∆β
hUυ
hβ

− U (β)
υ

∥∥∥∥∥
p

X

+ c
∞∑

υ=s+1

2υpβEp
2υ−1 (f)X .

For given positive ε the last term is less than ε for sufficiently large s. By Remark
1.3 we get

lim
h→0+

∥∥∥∥∥∆β
hUυ
hβ

− U (β)
υ

∥∥∥∥∥
X

= 0

and therefore

lim
h→0+

∥∥∥∥∥∆β
hf

hβ
− g

∥∥∥∥∥
X

< ε.

This implies that g = f (β) a.e.
Let m ∈ Z+ be such that 2m−1 ≤ n < 2m. We have∥∥T (β)

n − f (β)
∥∥p
X

=

∥∥∥∥∥T (β)
n −

∞∑
υ=0

U (β)
υ

∥∥∥∥∥
p

X

≤ c
∥∥∥T (β)

n − T (β)
2m

∥∥∥p
X

+ c

∞∑
υ=m+1

∥∥U (β)
υ

∥∥p
X

≤ c

(
2mpβEp

n (f)X +
∞∑

υ=m+1

2υpβEp
2υ−1 (f)X

)

≤ c

(
nβpEp

n (f)X +
∞∑

µ=n+1

µpβ−1Ep
µ (f)X

)
and the result is proved. �
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