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Abstract. We consider the perturbation and expression for the generalized
inverse and Moore–Penrose inverse of closed linear operator under a weaker
perturbation condition. As a application, we also investigate the perturbation
for the Moore–Penrose inverse of closed EP operator. Some new and interest-
ing perturbation results and examples are obtained in this paper.

1. Introduction

It is well known that the perturbation analysis of Moore–Penrose inverses
and generalized inverses in Hilbert spaces and Banach spaces is very important
in practical applications in diverse fields like optimization, statistics, econom-
ics, games, programming, networks and so on [1, 3, 17, 19]. Many equivalent
conditions for Moore–Penrose and generalized inverse to have the simplest ex-
pression T+(I + δTT+)−1 have been obtained in the case of bounded operators
[5, 6, 7, 8, 9, 10, 11, 12, 14, 20, 21, 22, 24, 25]. As everyone knows, a large number
of the operators which arise naturally in applications (e.g mathematical physics,
quantum mechanics and partial differential equations) are unbounded[18] and
many of them have bounded inverses or bounded generalized inverses. So it is
necessary to extend the results of bounded operators to the unbounded case. It is
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worthy to point out that the differential operators or partial differential operators
are always unbounded closed linear operators.

In this paper, we explore the following general perturbation problem: Let T be
a closed linear operator with a bounded generalized inverse T+, what condition on
the small perturbation δT can guarantee that the generalized inverse (T + δT )+

exists and it has the simplest expression T+(I + δTT+)−1? Such problems in the
case of stable perturbation and in the case that the perturbation does not change
the null space have been studied in [10, 12, 16, 20, 25]. It should be noted that
the perturbation condition a‖T+‖ + b‖TT+‖ < 1, which implies ‖δTT+‖ < 1,
is always assumed[12, 20]. It is natural to ask whether this condition can be
relaxed. Motivated by the idea in [4, 8, 25], we give a certain answer to the
mentioned problem under a weaker perturbation condition. Utilizing this result,
we consider the perturbation for the Moore–Penrose inverse of closed EP operator
in Hilbert space. As an illustration, we give some examples of generalized inverses
of closed operator and Moore–Penrose inverse of closed EP operator. Our results
generalize and improve many well known results in this area.

2. Preliminaries

Let X and Y be Banach spaces. Let L(X, Y ), C(X, Y ) and B(X, Y ) denote
the linear space of all linear operators, the homogeneous set of all closed linear
operators with a dense domain and the Banach space of all bounded linear oper-
ators from X into Y , respectively. We write C(X), B(X) as C(X,X), B(X,X),
respectively. For any T ∈ L(X, Y ), we denote by D(T ), N(T ) and R(T ) the
domain, the null space and respectively, the range of T . The identity operator
will be denoted by I.

To make precise what is meant by a “small” perturbation in the case of un-
bounded operators, we need the concept of T−boundedness[13].

Definition 2.1. [13] Let T and P be linear operators with the same domain
space such that D(T ) ⊂ D(P ) and

‖Pu‖ ≤ a‖u‖+ b‖Tu‖ (u ∈ D(T )),

where a, b are nonnegative constants, then we say P is relatively bounded with re-
spect to T or simply T -bounded. The greatest low bound of all possible constants
b is called the relative bound of P with respect to T or simply the T -bound.

Regarding the stability of closed operator, we have

Lemma 2.2. [13] Let T and P be two linear operators from X into Y . Let P be
T−bounded with the T−bound smaller than 1. Then S = T +P is closable if and
only if T is closable; in this case, the closures of T and S have the same domain.
In particular S is closed if and only if T is.

Let us introduce the concept of the generalized inverse for closed operator.

Definition 2.3. An operator T ∈ C(X, Y ) is said to possess a generalized inverse
if there exists an operator S ∈ B(Y,X) such that R(S) ⊂ D(T ) and (1) S is an
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inner inverse of T , i.e., TSTx = Tx, for all x ∈ D(T ); (2) S is an outer inverse
of T , i.e., STSy = Sy, for all y ∈ Y ; (3) ST is continuous.

We always denote the generalized inverse of T by T+. Concerning the existence
and properties on generalized inverses of closed operator, we can see [17].

Proposition 2.4. [17] T ∈ C(X, Y ) has a generalized inverse T+ ∈ B(Y,X) if
and only if N(T ) and R(T ) have topological complements in X and Y , i.e.,

X = N(T )⊕R(T+) and Y = R(T )⊕N(T+).

Further, it follows from the Closed Graph Theorem that TT+ is a projector onto
R(T ) along N(T+) such that R(TT+) = R(T ) and N(TT+) = N(T+). By (3)

in Definition 2.3, we know that T+T can be extended to a projector onto R(T+)
with the null space N(T ).

Definition 2.5. Let X and Y be two Hilbert spaces and T ∈ C(X, Y ). If the
topological decompositions in Proposition 2.4 are orthogonal, i.e.,

X = N(T )+̇R(T+) and Y = R(T )+̇N(T+),

where +̇ denotes the orthogonal direct sum, then the corresponding generalized
inverse is usually called the Moore–Penrose inverse.

The Moore–Penrose inverse of T is always denoted by T †. If the Moore–Penrose
inverse T † commutes with T , then T is called an EP (Equal Projections) operator
which has many nice properties[2, 15].

Definition 2.6. T ∈ C(X) is said to be an EP operator if T has a bounded
Moore–Penrose inverse T † and T † satisfies T †T = TT † on D(T ).

It is easy to see that if T has a bounded inverse, then it is an EP operator.

3. Main results

Unless other specified, X and Y denote two Banach spaces and let T ∈ C(X, Y )
with a generalized inverse T+ ∈ B(Y,X). Let δT ∈ L(X, Y ) be T–bounded with
T–bound b < 1 and satisfy

‖δTT+y‖ ≤ λ1‖y‖+ λ2‖(I + δTT+)y‖ (y ∈ Y ), (3.1)

where λ1, λ2 ∈ [0, 1). We start our investigation with the following lemmas, which
are preparation for the proof of our main results.

Lemma 3.1. [4] Let X be a Banach space and P ∈ B(X). If there exist two
constants λ1, λ2 ∈ [0, 1) such that

‖Px‖ ≤ λ1‖x‖+ λ2‖(I + P )x‖ (x ∈ X),

then I + P : X → X is bijective and its inverse (I + P )−1 ∈ B(X).

Lemma 3.2. The operator T = T + δT is closed, I + δTT+ is invertible and

B = T+(I + δTT+)−1 : Y → X

is an outer inverse of T .
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Proof. It follows from Lemma 2.2 that T is closed and for all y ∈ Y , by (3.1),

‖δTT+y‖ ≤ (λ1 + λ2)‖y‖/(1− λ2),
which means that δTT+ is bounded. By Lemma 3.1, I + δTT+ is invertible and
(I + δTT+)−1 ∈ B(Y ). Hence B = T+(I + δTT+)−1 : Y → X is a bounded
linear operator. To the end, we need to show that B is an outer inverse of T , i.e.,
BTB = B on Y . Indeed, R(B) = R(T+) ⊂ D(T ) = D(T ) and

(I + δTT+)TT+ = TT+ + δTT+ = (T + δT )T+ = TT+.

Therefore,

BTB = T+(I + δTT+)−1TT+(I + δTT+)−1

= T+TT+(I + δTT+)−1

= T+(I + δTT+)−1 = B.

�

Lemma 3.3. The operator I + T+δT : D(T )→ D(T ) is bijective and

B = T+(I + δTT+)−1 = (I + T+δT )−1T+ : Y → X

is a bounded operator with R(B) = R(T+) and N(B) = N(T+).

Proof. It follows from Lemma 3.2 that I + δTT+ : Y → Y is invertible and
B = T+(I + δTT+)−1 : Y → X is well defined. We first prove that I + T+δT :
D(T ) → D(T ) is injective. In fact, if x ∈ D(T ) satisfies (I + T+δT )x = 0, then
x = −T+δTx ∈ R(T+) and (I + T+δT )T+δTx = −(I + T+δT )x = 0. This
implies that T+(I+δTT+)δTx = 0 and y , (I+δTT+)δTx ∈ N(T+). Then y =
(I+ δTT+)y and so y = (I+ δTT+)−1y = δTx. Thus x = −T+δTx = −T+y = 0.
Next, we shall show that I + T+δT : D(T ) → D(T ) is surjective, i.e., for all
y ∈ D(T ), we need to find a x ∈ D(T ) such that (I + T+δT )x = y. Noting

BδTy + T+δTBδTy = (I + T+δT )BδTy = (I + T+δT )T+(I + δTT+)−1δTy

= T+(I + δTT+)(I + δTT+)−1δTy = T+δTy,

we have (I + T+δT )(I −BδT )y = y which implies that x , (I −BδT )y satisfies
(I + T+δT )x = y. Therefore, I + T+δT : D(T ) → D(T ) is bijective. By
(I + T+δT )T+ = T+(I + δTT+), we can get that B is a bounded operator.
Obviously, we can see R(B) = R(T+) and N(B) = N(T+). �

We shall give the main theorem of this paper.

Theorem 3.4. Let X and Y be two Banach spaces. Let T ∈ C(X, Y ) with a
generalized inverse T+ ∈ B(Y,X). Let δT ∈ L(X, Y ) be T–bounded with T–bound
b < 1 and satisfy (3.1), then the following statements are equivalent:

(1) B = T+(I + δTT+)−1 = (I + T+δT )−1T+ : Y → X
is a generalized inverse of T = T + δT ;

(2) R(T ) ∩N(T+) = {0};
(3) Y = R(T )⊕N(T+);

(4) X = N(T )⊕R(T+);

(5) X = N(T ) +R(T+);
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(6) (I + δTT+)−1R(T ) = R(T );
(7) (I + δTT+)−1TN(T ) ⊂ R(T );
(8) (I + T+δT )−1N(T ) = N(T ). In this case, R(T ) is closed and

‖B − T+‖ ≤ ‖T+‖ · ‖(I + δTT+)−1‖ · ‖δTT+‖.

Proof. Obviously, we can see (1)⇒ (3), (1)⇒ (4), (4)⇒ (5) and (6)⇒ (7).
(2)⇒ (1). It follows from Lemmas 3.2 and 3.3 that B is well defined and it is

an outer inverse of T with N(B) = N(T+) and R(B) = R(T+). We claim that
B is an inner inverse of T and BT is bounded. In fact, for any x ∈ D(T ), we
have B(Tx−TBTx) = BTx−BTBTx = 0, which implies Tx−TBTx ∈ N(B).
Thus

Tx− TBTx ∈ R(T ) ∩N(B) = R(T ) ∩N(T+) = {0}.
i.e., TBTx = Tx. Since T+T = B(I + δTT+)T = BT + BδTT+T and δT (I −
T+T ) is bounded, we get that

BT = BT +BδT = T+T −BδTT+T +BδT

= T+T +BδT (I − T+T )

is bounded. Therefore, B is a generalized inverse of T .
(3)⇒ (6). Since B is an outer inverse of T with N(B) = N(T+), TB : Y → Y

is the projector of Y onto R(TB) and

Y = R(TB)⊕N(TB) = R(TB)⊕N(B) = R(TB)⊕N(T+).

By Y = R(T ) ⊕ N(T+) and R(TB) ⊂ R(T ), we can get R(TB) = R(T ). Then
for all x ∈ D(T ), there exists a y ∈ Y satisfying Tx = TBy. Hence

(I + δTT+)−1Tx

= (I + δTT+)−1TT+(I + δTT+)−1y

= (I + δTT+)−1(I + δTT+)TT+(I + δTT+)−1y

= TT+(I + δTT+)−1y ∈ R(T ).

Thus (I + δTT+)−1R(T ) ⊂ R(T ). On the other hand,

(I + δTT+)R(T ) = (I − TT+ + TT+)R(T ) = TT+R(T ) ⊂ R(T ).

(5) ⇒ (7). For all x ∈ N(T ) ⊂ X, we can set x = x1 + x2, where x1 ∈ N(T ),

x2 ∈ R(T+). Then x2 = x− x1 ∈ D(T ) and x2− T+Tx2 ∈ R(T+)∩N(T ) = {0},
i.e., x2 = T+Tx2. Thus

(I + δTT+)−1Tx = (I + δTT+)−1Tx2 = (I + δTT+)−1TT+Tx2

= (I + δTT+)−1(I + δTT+)TT+Tx2 = Tx2 ∈ R(T ).

(7) ⇒ (1). As in (2) ⇒ (1), we only show B is an inner inverse of T . Indeed,
for all x ∈ D(T ),

(I − TT+)(I + δTT+)−1TT+Tx

= (I − TT+)(I + δTT+)−1(T + δT )T+Tx

= (I − TT+)(I + δTT+)−1(I + δTT+)Tx = 0
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and by (7), (I + δTT+)−1T (I − T+T )x ∈ R(T ) and

(T − TBT )x = (I − TB)Tx = (I + δTT+ − TT+)(I + δTT+)−1Tx

= (I − TT+)(I + δTT+)−1T (T+T + I − T+T )x

= (I − TT+)(I + δTT+)−1T (I − T+T )x = 0.

(7)⇒ (8). For any x ∈ N(T ), then (I + T+δT )x = x− T+Tx ∈ N(T ). Hence
(I + T+δT )N(T ) ⊆ N(T ). Conversely, if x ∈ N(T ), then by (7), there exists a
y ∈ X such that Tx = (I + δTT+)Ty = TT+Ty, i.e., x− T+Ty ∈ N(T ). Hence

(I + T+δT )(x− T+Ty) = (I − T+T )(x− T+Ty) = x.

This impliesN(T ) ⊆ (I+T+δT )N(T ). Thus, by Lemma 3.3 , (I+T+δT )−1N(T ) =
N(T ).

(8) ⇒ (2). Let y ∈ R(T ) ∩N(T+), then there exists x ∈ X such that y = Tx
and T+Tx = 0. Hence

T (I + T+δT )x = Tx+ TT+δTx = Tx+ TT+Tx− TT+Tx = 0,

which implies (I + T+δT )x ∈ N(T ). By (8), x ∈ N(T ) and so y = Tx = 0.

In this case, R(T ) = R(TB) = N(I − TB) is closed and

‖B − T+‖ = ‖T+(I + δTT+)−1 − T+‖
≤ ‖T+‖ · ‖(I + δTT+)−1 − I‖
≤ ‖T+‖ · ‖(I + δTT+)−1‖ · ‖δTT+‖.

�

Remark 3.5. (1) In Theorem 3.4, we assume the condition T–bound b < 1 to
guarantee that T is closed and the inequality (3.1) to guarantee that I + δTT+

is invertible. The role of these two conditions are independent.
(2) If a‖T+‖+ b‖TT+‖ < 1, then ‖δTT+‖ < 1. Let λ1 = ‖δTT+‖ and λ2 = 0

in Theorem 3.4, then we can obtain the previous results in [12, 20, 25]. Also,
Theorem 3.4 extends the main results in [5, 6, 7, 8, 9, 11, 14, 21, 24] to the case
of closed linear operators.

Corollary 3.6. If N(T ) ⊂ N(δT ) or R(δT ) ⊂ R(T ), then

B = T+(I + δTT+)−1 = (I + T+δT )−1T+ : Y → X

is a generalized inverse of T = T + δT .

Proof. If N(T ) ⊂ N(δT ), then N(T ) ⊂ N(T ). By condition (7) in Theorem
3.4, B is a generalized inverse of T . If R(δT ) ⊂ R(T ), then R(T ) ⊂ R(T ). By
R(T ) ∩N(T+) = {0} and (2) in Theorem 3.4, we can get what we desired. �

Remark 3.7. Corollary 3.6 is a generalization of main results in [20, 22, 25].
It should be noted that the proof in [20, 25] relies heavily on the condition
N(T ) ⊂ N(δT ) and their methods cannot be used to deal with the range pre-
serving perturbations.

In the following, we shall consider the perturbation of Moore–Penrose inverse.



64 Q. HUANG, L. ZHU, J. YU

Theorem 3.8. Let X and Y be two Hilbert spaces. Let T ∈ C(X, Y ) with the
Moore–Penrose inverse T † ∈ B(Y,X). Let δT ∈ L(X, Y ) be T–bounded with
T–bound b < 1 and satisfy

‖δTT †y‖ ≤ λ1‖y‖+ λ2‖(I + δTT †)y‖ (y ∈ Y ), (3.2)

where λ1, λ2 ∈ [0, 1). Then

B = T †(I + δTT †)−1 = (I + T †δT )−1T † : Y → X

is the Moore–Penrose inverse of T = T + δT if and only if

R(T ) = R(T ) and N(T ) = N(T ).

Proof. If R(T ) = R(T ) and N(T ) = N(T ), then by Corollary 3.6, B is a gener-
alized inverse of T and so

X = N(T )⊕R(B) and Y = R(T )⊕N(B). (3.3)

Since X = N(T )+̇R(T †), Y = R(T )+̇N(T †), R(T †) = R(B) and N(T †) = N(B),
we get

X = N(T )+̇R(B) and Y = R(T )+̇N(B),

i.e., the topological decomposition in (3.3) is orthogonal. Thus B is the Moore–
Penrose inverse of T . Conversely, if B is the Moore–Penrose inverse of T , then

X = N(T )+̇R(B) and Y = R(T )+̇N(B),

i.e., N(T ) = R(B)⊥ and R(T ) = N(B)⊥. Noting N(T ) = R(T †)⊥, R(T ) =

N(T †)
⊥

, R(T †) = R(B) and N(T †) = N(B), we can get R(T ) = R(T ) and
N(T ) = N(T ). �

Remark 3.9. From Theorem 3.8, we can get Theorem 3.1 in [7] and Theorem 3.2
in [12]. It should be noted that our proof is straightforward and concise.

In the following, we shall consider the stable perturbation for the Moore–
Penrose inverse of closed EP operator. The next lemma is inspired from [2, 15].

Lemma 3.10. Let X be a Hilbert space and T ∈ C(X). Then T is an EP
operator if and only if

X = N(T )+̇R(T ).

Furthermore, if T is Moore–Penrose invertible, then T is an EP operator if and
only if

N(T ) = N(T †) and R(T ) = R(T †).

Proof. If X = N(T )+̇R(T ), then T has a bounded Moore–Penrose inverse T † ∈
B(X) such that N(T ) = N(T †) and R(T ) = R(T †). Hence for all x ∈ D(T ),
T †Tx ∈ R(T †) ⊂ R(T ), x− T †Tx ∈ N(T ) = N(T †) and so TT †(T †Tx) = T †Tx,
TT †(x − T †Tx) = 0. Thus T †Tx = TT †x, i.e, T †T = TT † on D(T ). Therefore,
T is an EP operator. Conversely, if T is an EP operator, then

X = N(T )+̇R(T †) = R(T )+̇N(T †)

and TT † = T †T on D(T ). Hence, TT † is exactly the unique extended orthogonal

projector of T †T onto R(T †) with the null space N(T ). While TT † itself is the
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orthogonal projector onto R(T ) with the null space N(T †), we get R(T ) = R(T †)
and N(T ) = N(T †). Therefore, X = N(T )+̇R(T ). �

Theorem 3.11. Let X be a Hilbert space. Let T ∈ C(X) be an EP operator
with the Moore–Penrose inverse T † ∈ B(X). Let δT ∈ L(X) be T -bounded with
T -bound b < 1 and satisfy (3.2), then T = T + δT is an EP operator and

B = T †(I + δTT †)−1 = (I + T †δT )−1T † : Y → X

is its Moore–Penrose inverse if and only if R(T ) = R(T ) and N(T ) = N(T ).

Proof. It follows from Theorem 3.8 that we can obtain the necessity. Conversely,
if R(T ) = R(T ) and N(T ) = N(T ), then by Theorem 3.8, B is the Moore–Penrose
of T . From Lemmas 3.3 and 3.10, we have

N(T ) = N(T ) = N(T †) = N(B)

and
R(T ) = R(T ) = R(T †) = R(B).

Hence by Lemma 3.10 again, T is an EP operator. �

Theorem 3.12. Under the assumptions of Theorem 3.11, if T = T + δT is an
EP operator, then the following statements are equivalent:
(1) B = T †(I + δTT †)−1 is the Moore–Penrose inverse of T ;
(2) R(T ) = R(T );
(3) N(T ) = N(T ).

Proof. Since both T and T are EP operators, N(T ) = R(T )⊥, R(T ) = N(T )⊥,

N(T ) = R(T )
⊥

and R(T ) = N(T )
⊥

. By Theorem 3.11, we can get what we
desired. �

Remark 3.13. It seems that Theorems 3.11 and 3.12 are new even in the case of
bounded linear operators.

To illustrate our theorems, we give two examples.

Example 3.14. Let X = C[0, 1] be the Banach space of all continuous functions
on the interval [0, 1]. Define the linear operator T by

Tf = f ′′ (f ∈ C2[0, 1])

and δT by
δTf = −f ′ (f ∈ C1[0, 1]),

then T and δT are densely defined closed operators and δT is T−bounded with
T−bound 0[13]. It can be verified that R(T ) = R(δT ) = X, N(T ) = {c1x + c2 :
c1 and c2 are constant numbers} and N(δT ) = {constant functions}. We also can
see

X = N(T )⊕X1,

where X1 = {f ∈ C[0, 1] : f(0) = f ′(0) = 0} is a subspace of X. Hence T has a
bounded generalized inverse T+ : X → X1 ⊂ X defined by

(T+f)(x) =

∫ x

0

(

∫ t

0

f(s)ds)dt (f ∈ X).
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Thus

(δTT+f)(x) = −
∫ x

0

f(s)ds (f ∈ X).

It is easy to verify ‖δTT+‖ = 1. Let α ∈ (1
4
, ln 4

3
), then 0 < (1− α)eα < 1 and

0 < αeα < 1. In the following, we shall show

‖δTT+f‖ ≤ (1− α)eα‖f‖+ αeα‖(I + δTT+)f‖ ∀f ∈ X.
In fact, we put F (x) =

∫ x
0
f(s)ds and it suffices to show

max
0≤x≤1

|F (x)| ≤ (1− α)eα max
0≤x≤1

|f(x)|+ αeα max
0≤x≤1

|f(x)− F (x)|.

Set

G(x) = e−αxF (x),

then for all x ∈ [0, 1], we have

G(x) = G(x)−G(0) = G′(ξ)x ξ ∈ [0, x]

= e−αξ[f(ξ)− αF (ξ)]x

= αxe−αξ[f(ξ)− F (ξ)] + (1− α)xe−αξf(ξ)

and so

F (x) = αxeα(x−ξ)[f(ξ)− F (ξ)] + (1− α)xeα(x−ξ)f(ξ).

Hence for all x ∈ [0, 1],

|F (x)| ≤ αeα max
0≤x≤1

|f(x)− F (x)|+ (1− α)eα max
0≤x≤1

|f(x)|.

Thus

max
0≤x≤1

|F (x)| ≤ αeα max
0≤x≤1

|f(x)− F (x)|+ (1− α)eα max
0≤x≤1

|f(x)|.

Therefore, by R(T ) = R(T ) and Theorem 3.4 (or Corollary 3.6), T = T + δT has
a bounded generalized inverse T+(I + δTT+)−1. That is, for all f ∈ C[0, 1], the
differential equation

y′′ − y′ = f

has a solution y = T+(I + δTT+)−1f .

Remark 3.15. It should be noted that N(T ) * N(δT ) and N(T ) 6= N(T ) in
Example 3.14. And we also can verify

[T+(I + δTT+)−1f ](x) =

∫ x

0

[e−t
∫ t

0

esf(s)ds]dt

=

∫ x

0

(1− es−x)f(s)ds,

which exactly is a bounded generalized inverse of T .

Example 3.16. Let

L2[0, 1] = {f, f measurable complex− valued on [0, 1],

∫
[0,1]

|f(x)|2dx <∞ }
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be the Hilbert space with the inner product

〈f, g〉 =

∫
[0,1]

f(x)g(x)dx, f, g ∈ L2[0, 1].

Set t : [0, 1]→ C by

t(x) =

{
1 x = 0

1√
x

0 < x ≤ 1

and define the maximal operator of multiplication T by t on L2[0, 1], i.e.,

Tf = tf, for f ∈ D(T ) = {f ∈ L2[0, 1], tf ∈ L2[0, 1]},
then T is a densely defined closed linear operator[23]. Since |t(x)| ≥ 1, ∀x ∈ [0, 1],
R(T ) = L2[0, 1] and T has a bounded inverse T−1 : L2[0, 1]→ L2[0, 1] defined by

T−1g = t1g, ∀g ∈ L2[0, 1],

where

t1(x) =

{
1 x = 0√
x 0 < x ≤ 1.

Therefore, T is a closed EP operator on L2[0, 1].
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