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CONVEX MAJORANTS METHOD IN THE THEORY OF
NONLINEAR VOLTERRA EQUATIONS
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Abstract. The main solutions in the sense of Kantorovich of nonlinear Volterra
operator-integral equations are constructed. Convergence of the successive ap-
proximation method is established through studies of the majorant integral
equations and the majorant algebraic equations. Estimates are derived for
the solutions and for the intervals on the right margin of which the solution
of nonlinear Volterra operator-integral equation has blow-up or solution start
branching.

1. Introduction

Let us consider the following nonlinear continuous operator

Φ(ω1, . . . , ωn, u, t) : E1 × · · · × E1 × R1 → E2

of n + 1 variables ω1, . . . , ωn, u, which are abstract continuous functions of real
variable t with values in E1. Here E1, E2 are Banach spaces and

Φ(0, . . . , 0, u0, 0) = 0, Ki : R1 × . . . R1︸ ︷︷ ︸
i+1

×E1 × · · · × E1︸ ︷︷ ︸
i

→ E2
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are nonlinear continuous operators depending on u(s) = (u(s1), . . . , u(sn)) and
t, s1, . . . sn are real variables. Let

ωi(t) =

∫ t

0

· · ·
∫ t

0

Ki(t, s1, . . . , si, u(s1), . . . , u(si))ds1 . . . dsi, i = 1, n

and let us address the following operator-integral equation for t ∈ [0, T )

F (u, t) ≡ Φ

( t∫
0

K1(t, s, u(s))ds,

t∫
0

t∫
0

K2(t, s, s1, s2, u(s1), u(s2))ds1ds2, . . .

. . .

t∫
0

· · ·
t∫

0

Kn(t, s1, . . . sn, u(s1), . . . u(sn))ds1 . . . dsn, u(t), t

)
= 0. (1.1)

Unknown abstract continuous function u(t) maps into E1. Our objective is to find
the continuous solution u(t) → u0 from t → 0. For E1 = E2 = R1 the equation
(1.1) has been studied by many authors in number of cases (see [1, 3]). However,
to the best of our knowledge, the equation (1.1) has not yet been studied in
general case of the Banach spaces E1, E2 .

One of the common constructive methods in the theoretical and applied stud-
ies is method of majorants. Kantorovich in his work [6] studied the functional
equations in BK–spaces and converted the classical method of majorants into
its abstract form, which makes it’s methodology more clear and more unified.
In his monograph (readers may refer to [2, p. 467]) he specifically outlined the
role of the main solutions of nonlinear equations and role of the corresponding
majorants. The main solutions are unique by definition and can be constructed
using the successive approximations from the equivalent equation (2.1) starting
from zero initial estimate. The main continuous solution u+(t) in the points of
the interval [0, T ) satisfies the estimate ||u+(t)||E1 ≤ z(t) where z(t) is continuous
positive solution of the following majorant Volterra integral equation

z(t) = f

(∫ t

0

γ(z(s))ds

)
, z(t) ∈ C+

[0,T ). (1.2)

Here and below f, γ are monotone increasing continuous functions. If the trivial
solution u = 0 satisfies the equation (1.1) then this solution is the main solution.
This trivial case is excluded from the consideration below. If one continue the
main nontrivial solution u+(t) outside of the the interval [0, T ) (where we see the
convergence of the successive approximations) in the right hand side direction
from the margin point T then the solution u+(t) can go to ∞ or start branching
[9]. Obviously, there is a case when operator F satisfies the Lipschitz condition
for ∀u and the main solution is continuable on the whole interval [0,∞). If the
Lipschitz condition is not fulfilled, then in addition to the main solution the equa-
tion (1.1) can have arbitrarily many other continuous solutions which cross the
main solution.
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Example 1.1.

u(t) = p

∫ t

0

u
p−1

p (s), 1 < p < ∞ .

Here u1(t) = 0 is the main solution. Other continuous solutions: u2(t) = tp,

uc(t) =

{
0 −∞ ≤ t ≤ c
(t− c)p c ≤ t < ∞ .

The main solution u+(t) = 0 of this example is singular solution for the corre-

spondent Cauchy problem u̇ = pu
p−1

p , u(0) = 0.

The objective of this paper is to construct main solutions for the equation
(1.1) on the maximal interval [0, T ). The paper consists of two parts, illustrative
examples and conclusion. In the second part for the equation (1.1) existence
theorem is derived for the main solution u(t) → u0 when t → 0 with estimate
||u(t)||E1 when t ∈ [0, T ).

We propose the approach for construction of the approximations un(t) and
the interval [0, T ) on which they converge point-wise for ∀u0(t), if ||u0(t)||E ≤
z+(t), where z+(t) is the main nonnegative solution of the corresponding majorant
integral equation (1.2). The sufficient conditions are derived if lim

t→T
z+(t) = ∞

(or lim
t→T

dz+(t)
dt

= +∞), i.e. the main solution of the majorant equation (or its

derivative) has the blow-up limit (goes to ∞ for finite time T). Under such a
conditions the unknown solution u(t) of the equation (1.1) can also strives to
infinity during the finite time T ′ ≥ T or appear to be branching.

In the third part of this paper we demonstrate how to construct and employ
the following majorant algebraic systems{

r = R(r, t)
1 = R′

r(r, t)
(1.3)

for construction of the main solution of the equation (1.1). In the algebraic system
(1.3) R(0, 0) = 0, R′

r(0, 0) = 0, R(r, t) is the convex function wrt r. The algebraic
majorant systems (1.3) were also called as the Lyapunov majorants [4]. Such
majorants as well as more general algebraic majorants were used in mechanics
(readers may refer to [8, p.198–216] ) and for the construction of implicit functions
in spaces BK . It is to be noted that algebraic majorant systems has the unique
positive solution r∗, T ∗.

Using this approach one can define the guaranteed interval [0, T ∗], on which the
equation (1.1) has the main solution u(t) → 0 for t → 0 and radius of the sphere
S(0, r∗) in the space CE1

[0,T ∗], in which the main solution can be constructed using

the successive approximations which converge uniformly.

2. Integral majorants in construction of the main solution

Let’s consider the following equation

u = L(u), (2.1)



4 D.N. SIDOROV, N.A. SIDOROV

L(u) = A−1(Au − F (u, t)), which is equivalent to the equation (1.1). Here A
is continuously invertible operator from E1 into E2. If the operator F has the
Frechet derivative Fu(0, 0) and its invertible then we can assume A = Fu(0, 0).

Definition 2.1. If the approximations un(t) = L(un−1), u0 = 0 for t ∈ [0, T ∗)
strives to the solution u+(t) of the equation (2.1), then function u+(t) we call
Kantorovich main solution of the equation (1.1).

It is to noted that here we follow the monograph of Kantorovich (refer to [5],
p.467), where the term “the main solution of the functional equation” has been
formulated [5, 6]. Under the solution we will be assuming the main solution below
in this paper.

Let us study the operator F (u, t) − Au : CE1

[0,T ] → CE2

[0,T ]. Here CE1

[0,T ] and CE2

[0,T ]

are complete spaces.
We will get the estimate in norms of the spaces E1, E2:

(A) ||F (u, t)− Au||E2 ≤ f(
∫ t

0
γ(||u(s)||E1))ds), t ∈ [0, T ).

Let in the inequality (A) and below the following assumption be hold:
(B) γ, f are continuously – monotone increasing functions on the the segments
[0, z′] and [γ(0), γ(z′)], z ≤ ∞ correspondingly;
(C) for t ∈ [0, T ) exist the function z′(t) in the cone C+

[0,T ] such as

z′(t) ≥ f

(∫ t

0

γ(z′(s))ds

)
.

Remark 2.2. In the Lemmas 2.5 and 2.8 we propose the method to define the
margin T such as for t ∈ [0, T ) the condition (C) will be fulfilled. Because of
the condition (A) f(γ(0)t) ≥ 0. Zero is lower solution of the majorant integral
equation (1.2) and z′(t) is upper solution in the cone C+

[0,T ).

Under the conditions (C) and (B) we introduce the sequence

zn(t) = f

(∫ t

0

γ(zn−1(s))ds

)
, z0 = 0.

Then due to the Theorem 2.11 (see [5], p.464) for ∀n, t ∈ [0, T ) the inequalities

0 = z0(t) ≤ z1(t) ≤ · · · ≤ zn(t) ≤ z′(t)

are fulfilled. Hence the limit lim
n→∞

zn(t) = z+(t) exist. Since γ, f are continuous

functions and due to the Lebesgue theorem (see, e.g. , [7]) the limit exist

lim
n→∞

f

(∫ t

0

γ(zn(s))ds

)
= f

(∫ t

0

γ(z+(s))ds

)
.

Thus functionz+(t) appears to be continuous on [0, T ) and to be the main solution
of the majorant equation (1.2). Approximation zn(t) in the points of the interval
[0, T ) converge to z+(t), z+(t) ∈ C+

[0,T ].

Let us now proceed to the construction of the solution u+(t) of the equation
(1.1) using the successive approximations. Let the following condition (D) be
fulfilled in addition to conditions (A), (B) and (C).
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(D) ||F (u + ∆u, t)− F (u, t)− Au||E2 ≤ f

(∫ t

0
γ(||u(s)||E1 + ||∆u(s)||E1)ds

)
−

−f(
∫ t

0
γ(||u(s)||E1)ds).

Under the condition of the Frechet differentiability of the operators

F (u, t), f

( t∫
0

γ(z(s))ds

)
the verification of the inequality (D) can be replaced with verification of the
condition (E) (see below). Indeed, let mentioned Frechet derivatives exist and
continuous for t ∈ [0, T ) following the norms of linear bounded operators in
the spaces L(E1 → E2) and L(C+

[0,T ) → C+
[0,T )) correspondingly. Under such

assumption we assume functions f, γ has monotone increasing and continuous
derivatives and the Frechet differential f is defined by the formula

f ′z

( t∫
0

γ(z(s)ds

)
h ≡ f ′γ

( t∫
0

γ(z(s)ds

) t∫
0

γ′z(z(s))h(s)ds

for ∀h(s) ∈ C+
[0,T ].

Let in addition to the conditions (A) and (B) ∀V (t) ∈ CE1

[o,T ] the following

inequality be fulfilled

(E) ||(Fu(u, t) − A)V ||E2 ≤ f ′z

(
t∫

0

γ(||u(s)||E1ds

)
||V ||E1 , ||V ||E1 ∈ C+

[0,T ). Then

we have the following lemma

Lemma 2.3. Let the inequality (E) be fulfilled and the derivatives f ′γ, γ′z are
monotone increasing. Then inequality (D) be fulfilled.

Proof. Let us employ the Lagrange finite-increments formula ([9], p.367) and
conditions of the Lemma 2.3. Then we get the inequality

‖F (u + ∆u, t)− F (u, t)− A∆u‖E2

=‖
∫ 1

0

(Fu(u + Θ∆u, t)− A)dΘ∆u‖E2

≤
∫ 1

0

f ′γ

(∫ t

0

γ(‖u(s)‖E1 + Θ‖∆u(s)‖E1)ds

)
×

∫ t

0

γ′
(
‖u(s)‖E1 + Θ‖∆u(s)‖E1

)
‖∆u(s)‖E1dsdΘ

=f(

∫ t

0

γ(‖u(s)‖E1 + ‖∆u(s)‖E1)ds)− f(

∫ t

0

γ(‖u(s)‖E1)ds).

�

Let us now construct the approximations un(t) = L(un−1), u0 = 0 to solu-
tion u+(t). We follow the proof of the Theorem 2.22 ([5, p. 466]) and state the
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estimates ‖un+p(t) − un(t)‖E1 ≤ zn+p(t) − zn(t) for t ∈ [0, T ), where zn(t) =

f(
∫ t

0
γ(zn−1(s))ds), zn(t) ∈ C+

[0,T ), un(t) ∈ CE1

[0,T ), u0 = 0, z0 = 0.

It is to be noted here that similar estimates in different problem has been also
used in our paper [8] for studies of explicit mappings based on convex majorants
method.

Due to the conditions (A), (B) and (C) and following the above mentioned
approach the limit lim

n→∞
zn(t) = z+(t) exists for ∀t ∈ [0, T ), i. e. zn(t) is fun-

damental sequence in the each point t ∈ [0, T ). Hence the sequence of abstract
functions un(t) with values in the Banach space E1 for each t ∈ [0, T ) converges
in norms of the space E1 to function u+(t). Since the operator L(u) is continuous,
the equality u+(t) = L(u+) is fulfilled, i.e. u+(t) satisfies the equation (1.1) and
belongs to the space CE1

[0,T ).

Hence the following theorem be fulfilled

Theorem 2.4. Let for t ∈ [0, T ) the conditions (A), (B), (C) and (D) are
fulfilled. Then equation (1.1) in the space CE1

[0,T ) has main solution u+(t). More-

over, ‖u+(t)‖E1 ≤ z+(t), were z+(t) is main solution of majorant equation (1.2),
approximations un(t) = L(un−1), u0 = 0 converge to u+(t) in norm of the space

E1 for ∀t ∈ [0, T+), approximations zn(t) = f(
∫ t

0
γ(zn−1(s))ds), z0 = 0 converge

to z+(t).

In Theorem 2.4 T+ remains not defined. For the definition of T+ we reduce
the majorant integral equation (1.2) to the Cauchy theorem for separable dif-
ferential equation. For this objective we introduce the differentiable function

ω(t) =
t∫

0

γ(z(s))ds. Then dω(t)
dt

= γ(z(t)), ω(0) = 0, where z(t) = f(ω(t)). That

is why the Cauchy problem which is equivalent to the equation (1.2) is following{
dω
dt

= γ(f(ω(t)))
ω(0) = 0.

(2.2)

Lemma 2.5 and Lemma 2.8 define the estimate of the interval [0, T+), on which
the Cauchy problem (2.2) has the unique solution ω+(t) in space C+

[0,T+) and ap-

proximations ωn(t) =
t∫

0

γ(f(ωn−1(s)))ds, ω0 = 0 converge to this unique solution.

Lemma 2.5. Let γ(f(ω)) be continuous, strictly positive and monotone increas-

ing function. Let exists lim
ω→∞

ω∫
0

dω
γ(f(ω))

= T+. Then (2.2) in cone C+
[0,T+] has mono-

tone increasing solution ω+(t). The approximations ωn(t) =
t∫

0

ω(f(ωn−1(s)))ds,

ω0 = 0 converge to ω+(t), lim
t→T+

ω+(t) = ∞.

Proof. Let us separate the variables in (2.2) and reduce the Cauchy problem
to search for the positive monotone increasing branch of implicit function ω =
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ω(t), ω(0) = 0 from equation Φ(ω) = t, where Φ(ω) =
ω∫
0

dω
γ(f(ω))

. If γ(f(ω)) is ra-

tional fraction then antiderivative Φ(ω) can be explicitly constructed in terms of
logarithms, arctangents and rational functions. It is to be noted that under con-
ditions of the Lemma 2.3, function Φ(ω) is continuous and monotone increasing
on semi-axis [0,∞), i.e. Φ′ = 1

γ(f(ω))
> 0, lim

ω→0
Φ(ω) = 0, lim

ω→∞
Φ(ω) = T+. Hence

the mapping Φ : [0,∞) → [0, T+) is bijective, equation Φ(ω) = t for 0 ≤ t < T+

uniquely defines function ω+(t), which obviously satisfies the integral equation

ω(t) =

t∫
0

γ(f(ω(s)))ds.

Because of the monotone increasing of the functions f and γ, the approximations
ωn(t) =

∫ t

0
γ(f(ωn−1(s)))ds, ω0 = 0 for t ∈ [0, T+) converge to ω+(t). �

If γ(f(ω)) is rational fraction, then in number of cases the solution ω+(t) can be
explicitly constructed in complicated cases using the computer algebra systems
[1].

Remark 2.6. For known ω+(t) using the formula z+(t) = f(ω+(t)) we find the
solution of majorant integral equation (1.2). It is to be noted that under condi-

tions of the Lemma 2.5, approximations zn = f(
t∫

0

γ(zn−1(s)ds)), z0 = 0 converge

for t ∈ [0, T+) to the solution z+(t).

Remark 2.7. If under the conditions of Lemma 2.5 lim
ω→∞

ω∫
0

dω
γ(f(ω))

= ∞ then the

solution z+(t) is continuable on [0,∞). This result follows from the Theorem 2.7
([2], p. 148).

For example, let inequality

‖F (u, t)− Au‖E2 ≤ a

t∫
0

‖u(s)‖ds + b, a > 0, b > 0,

be fulfilled for ∀u, 0 ≤ t < ∞. Then majorant integral equation (1.2) will be linear

as follows z(t) = a
t∫

0

z(s)ds+b and has the unique solution z(t) = beat, 0 ≤ t < ∞.

It is to be noted that is this case γ(f(ω)) = aω + b, lim
ω→∞

ω∫
0

dω
aω+b

= ∞. If in this

case

‖F (u + ∆u, t)− F (u, t)− A∆u‖E2 ≤ a

t∫
a

‖∆u(s)‖E1ds,

then conditions of the theorem 1 are fulfilled on semi-axis 0 ≤ t < ∞ and equation
(1.1) will have the solution u+(t) in the space CE1

[0,∞), ‖u+(t)‖E1 ≤ beat. Obviously,

from this result not follows the fact that in area ‖u(t)‖E1 ≥ beat the equation (1.1)
does not have another solutions.
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Lemma 2.8. Let superposition γ(f(ω)) be continuous and strictly positive for

0 ≤ ω ≤ ω∗. Let limits lim
ω→ω∗

γ(f(ω)) = ∞ are exist. lim
ω→ω∗

ω∫
0

dω
γ(f(ω))

= T+.

Then Cauchy problem (2.2) for t ∈ [0, T+] in the cone C+
[0,T+] has continuous

monotone increasing solution ω+(t), and lim
t→T+

dω+

dt
= 0, approximations ωn(t) =∫ t

0
γ(fωn−1(s))ds, ω0 = 0 converge for 0 ≤ t ≤ T+ to the solution ω+(t).

Proof of the Lemma 2.8 follows from the bijectivity of mapping Φ : [0, ω∗] →
[0, Φ(ω∗)] for Φ(ω) =

∫ ω

0
dω

γ(f(ω))
, Φ(ω∗) = T+.

Remark 2.9. Under the conditions of Lemma 2.8 the point T+ is blow-up limit
of the derivative of solution z+(t) of majorant equation (1.2).

3. Algebraic majorants in construction of the main solution

Let in the equation (1.1) u0 = 0, I.e. Φ(0, . . . , 0) = 0. Our objective is
to construct continuous solution u+(t) with successive approximations un(t) =
L(un−1) in close interval [0, T+]. In the space CE1

[0,T+] we introduce the norm

‖u‖ = max
0≤t≤T+

‖u(t)‖E1 . We suppose, that operator F is Frechet differentiable

w.r.t. u Let for 0 ≤ t ≤ T, where T ≥ T+ and u ∈ S(0, r) ⊂ E1, inequalities be
fulfilled :
(A′) ‖F (u, t)− Au‖E2 ≤ f(r, t);
(E′) ‖F ′

u(u, t)− A‖E2 ≤ f ′r(r, t);
(G) Let functions f(r, t), f ′r(r, t) are positive r > 0, t > 0 and monotone in-
crease, f(0, 0) = 0, f ′r(0, 0) ∈ [0, 1), function f(r, t) convex w.r.t. r. Then alge-
braic equation r = ‖A−1‖f(r, t) according to Definition 5.1 from monograph [4,
p. 205]. will be the Lyapunov majorant for operator L(u). Because of monotone
increasing function f(r, t), fr(r, t) and convexity of the function f(r, t) system{

r = ‖A−1‖f(r, t)
1 = ‖A−1‖f ′r(r, t)

has unique positive solution r+, T+. Moreover, equation r = ‖A−1‖f(r, t) where
0 ≤ t ≤ T+ [4, p. 218] uniquely defined monotone increasing solution r∗ = r(t)
Approximations rn(t) = ‖A−1‖f(rn−1(t), t), r0 = 0, when 0 ≤ t ≤ T+ converge
to the function r(t). Corresponding approximations rn = ‖A−1‖f(rn−1, T

+), r0 =
0, converge to r+. Function r(t) is main solution of the Lyapunov majorante
equation. On the base of the Lemma 5.1 ([4, p. 206]) if ‖ui(t)‖E1 ≤ ri, i = 1, 2,
‖u2(t)− u1(t)‖ ≤ r2 − r1, then for 0 ≤ t ≤ T+

‖L(u2)− L(u1)‖E1 ≤ ‖A−1‖(f(r2, t)− f(r1, t)).

Apart from approximations rn(t) for solutions for Lyapunov majorante, we in-
troduce approximation un(t) = L(un−1), u0 = 0 of the main solution of the
equation (1.1). For arbitrary k and l ≥ k because of the conditions (A′), (E′)
and above mentioned inequality, we come to estimate ‖ul(t)− uk(t)‖E1 ≤ rl(t)−
rk(t) ≤ rl(T

+) − rk(T
+). Such that rl(T

+) monotone increasing sequence and
lim
l→∞

rl(T
+) = r+, then ‖ul(t)− uk(t)‖E1 ≤ ε for l, k ≥ N(ε) if t ∈ [0, T+]. Hence
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‖ul(t) − uk(t)‖E1 ≤ ε for l, k ≥ N(ε). Because of complete space CE1

[0,T+] exist

limit lim
l→∞

ul(t) = u+(t). Moreover, u+(t) continuous w.r.t. t, and approximation

un(t) = L(un−1), u0 = 0 converge on segment [0, T+] uniformly w.r.t. t. Then
follows

Theorem 3.1. Let Φ(0, . . . , 0) = 0, inequalities (A′), (E′) are satisfied when
t ∈ [0, T+], pair (r+, T+), r+ > 0, T+ > 0 satisfies algebraic system{

r = ‖A−1‖f(r, t)
1 = ‖A−1‖f ′r(r, t),

where function f(r, t) satisfies the condition (G). Then on [0, T+] equation (1.1)
has continuous solution u+(t) in space CE1

[0,T+]. More over, approximations un(t) =

L(un−1) converge uniformly w.r.t. t, max
0≤t≤T+

‖u+(t)‖ ≤ r+.

Example 3.2. Let us consider the following problem{
∂2u(x,t)

∂x2 +
∫ t

0
sin(t− τ + x)u2(x, τ)dτ = t

u
∣∣
x=0

= u
∣∣
x=1

= 0, 0 ≤ x ≤ 1, t ≥ 0.

We search for classical solution u → 0 for t → 0. Here E1 =
◦ (2)

C [0,1] – space of
twice differentiable w.r.t. x functions are zero on the margins [0, 1], E2 = C[0,1].

Au = ∂2u
∂x2,

operator A ∈ L(E1 → E2) has limited reverse A−1 =
1∫
0

G(x, s)[·]ds,

where

G(x, s) =

{
x(s− 1), 0 ≤ x ≤ s ≤ 1
s(x− 1), s ≤ x ≤ 1

and ‖A−1‖L(E1→E2) ≤ 1.

Following the Theorem 2.4, the corresponding majorant integral equation (1.2)

is following z(t) =
∫ t

0
z2(s)ds + t. Then function z+(t) = tan t for 0 ≤ t < π

2
is

the main solution of majorant integral equation. Therefore π
2

is point in which
there is a blow-up limit of the solution z+(t). Boundary problem on the base of
Theorem 1 has in space CE1

[0, π
2
) the solution u+(x, t), beside 0 ≤ t < π

2

max
0≤x≤1

(∣∣∣∣∂iu+(x, t)

∂xi

∣∣∣∣, i = 0, 1, 2

)
≤ tan t.

From other hand, if we follow the Theorem 2.4, we construct majorant algebraic

equation r = tr2+t. Function r+(t) = 1−
√

1−4t2

2t
for t ∈ [0, 0.5] is the main solution

of majorant algebraic equation.
According to the Theorem 2.4 we construct the following system{

r = tr2 + t
1 = 2tr

which has one positive solution T+ = 0.5, r+ = 1. Therefore according to the
theorem 3.1 we get guaranteed interval w.r.t. t of existence of the solution u+(x, t)
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of the boundary problem [0, 1/2] with estimate of the norm of the solution u+

such as

max
x∈[0,1], t∈[0,0.5]

{∣∣∣∣∂iu+(x, t)

∂xi

∣∣∣∣, i = 0, 1, 2

}
≤ 1, ‖u+‖E1 ≤ r+(t), 0 ≤ t ≤ 0.5.

Since 0.5 < π
2

then in this example integral majorant provide more precise esti-
mate u+, comparing to the algebraic one.

As the footnote let us notice that with studies of the equation (1.1) in BK spaces
and with introduction of the abstract norms in the Kantorovich sense it is possible
to get more fine systems of majorant integral and algebraic equations. Such a
majorants will characterize the solution of equation (1.1) more deeply. Majorant
algebraic equations possible to construct and it is possible to study the solutions
of the n-dimensional Volterra equations (1.1), namely for t ∈ Rn, n ≥ 2. As a
matter of fact, the algebraic majorants provides more rough estimates comparing
to the integral majorants, but its it is easier to construct and to employ the
algebraic majorants. Since the solution of the majorant integral equation has
blow-up limit, for numerical solution in the neighborhood of such points it make
sense to employ the adaptive meshes.
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