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ABSTRACT. In this work we prove improved converse theorems of trigonomet-
ric approximation in variable exponent Lebesgue spaces with some Mucken-
houpt weights.

1. INTRODUCTION AND THE MAIN RESULTS

In Approximation Theory there are converse estimates of trigonometric ap-
proximation determining membership of a function in some smoothness class (for
example Lipschitz class) in terms of the rate of approximation. As is well-known
the converse inequality

1 C1 - r—1
A=) < — 1 E, 1.1
o (1 n) < {ZO: (v +1) <f>p} (1)
of trigonometric approximation holds on Lebesgue spaces LP (T), 1 < p < oo,

or C'(T) (of continuous functions on T') for p = oo, ([19] p = oo, [21] p < 0)
where T :=[0,27), f € L? (T), 1 <p<oo,r,neN:={1,23,...}, Thf (o) :=

f(o+h) is translation operator, w, (f,d), := sup {||(Th —I)"fll,: 0<h < 5}
is the rth moduli of smoothness of the function f, I is identity operator, 7,, is
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the class of trigonometric polynomials of degree not greater than n, E, (f )p =
inf {H =T T e ’Z;} and ¢ is a constant depending only on r, p. Later various

generalizations and applications of (1.1) were obtained [16, 17, 18, 20]. In 1958
Timan proved [22] that an improvement of (1.1) also holds:

Ifl<p<oo, fel”(T), n,reN, ¢g=min{2,p} then

n 1/q
o(r3) <2 {ZE <f>p} (12

where ¢ is a constant depending only on 7 and p.

It was observed that the value min{2,p} in (1.2) is optimal [23]. See also
4,9, 10].

Considering similar problems in weighted function spaces (for example weighted
Lebesgue spaces LP, weighted variable exponent space, ...) we will need a different
moduli of smoothness. Moduli of this type was considered first by Hadjieva [(]
in Lebesgue space with Muckenhoupt A4,, 1 < p < oo, (see definition below)
weights: Let w € A,, 1 <p < oo, f € LP, r,n € N and let

z+h
1

onf (x) ::ﬁ/f(t)dtforheRandeT.

z—h
In this case defining the modulus

she proved [0] that

o(rh) <o {E (Pt Y07 'E, <f>p,w} (1)
pw v=1

where c3 is a constant depending only on r and p.
For further results [1, 3, 8, 14, 15].
On the other hand inequality (1.3) also has an improvement [11, 15]:

Ifl<p<oo,weA, feLll r,ne N, then there is a positive constant c,

w?

depending only on r and p such that

n 1/q
o(n2) < {Sermm,.) 1)
p,w

v=1

holds.

Using a weighted fractional moduli of smoothness [!] it was proved [2] that
(1.4) holds with r € R*. For weighted variable exponent Lebesgue spaces it was
proved [5] that (1.4) holds with » € R*. In the present work we prove that in the
right side of (1.4) 2r can be replaced by r (as in nonweighted case) for weighted



72 R. AKGUN, V. KOKILASHVILI

variable exponent Lebesgue spaces. We note that nonweighted fractional moduli
of smoothness in classical Lebesgue spaces was first introduced by Taberski and
Butzer in 1977.

We begin with some definitions. Let P be the class of Lebesgue measurable
functions p : T — (1,00) such that 1 < p, := ei‘g}fp (x) < p* := esssupp (x) <

zeT

oo. The conjugate exponent of p (z) is defined as p’ (z) :=p(x) / (p(x) — 1). We
define a class LQST') of 27 periodic measurable functions f : T' — C satisfying

/ 1 @) de < oo
T

for p € P where C is the complex plane.
The class Lg(') is a Banach space with the norm

. . f(x) p(z)
1l =l a>0: / ’T
T

A function w : T— [0, co] will be called a weight if w is measurable and almost
everywhere (a.e.) positive. For a 27 periodic weight w we denote by LP the
weighted Lebesgue space of 27 periodic measurable functions f : T' — C such
that fw'/P € LP(T). We set £, = wal/p”p for f € LP. We will denote by

Lf,('), the class of Lebesgue measurable functions f : T — C satisfying wf € L’Q’;).

der <1

Lﬁ(') is called weighted Lebesgue spaces with variable exponent and is a Banach

space with the norm || ||, . == llwf[lz .-
For given p € P the class of Weights w satisfying the condition [7]
1
[, = suprgms 17| <00
A D LY(B x
rO) IBI 7 N (yp)

—1
will be denoted by Ap.). Here pp := <|B| f L dx) and B is the class of all

intervals in T'.
The variable exponent p (z) is said to be satisfy Local log-Hélder continuity
condition if there is a positive constant c5 such that

P (21) = p(22)] < log (e + 1/ |z — 5])

We will denote by P'°¢ the class of those p € P satisfying (1.5).
Let f € LY and

for all 1,29 € T. (1.5)

x+h/2

Anf (z /f reT

xz—h/2

be Steklov’s mean operator. If p € P8 then it was proved in [7] that Hardy
Littlewood maximal operator M is bounded in LY if and only if w € A,,y.
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Therefore if p € P8 and w € Ay, then Aj, is bounded in o), Using these
facts and setting x, h € T', 0 < r we define via binomial expansion that

opf () = (An=1)" f ()

- h/2 h/2
1
= Z(—l)k(]:)ﬁ/---/f(.r—l—ul—i—...uk)dul...duk,
k=0 ~h/2  —h/2

() Ty or(r=1)..(r—k+1) oy LA R
WherefELw,(k).— o fork>1,<1>._rand<0)._1.

Since
( ¢ )‘ =
Z k
k=0

if p € P8 w ¢ Apy and f € Lf,('), then there exists a positive constant cg
depending only on r and p such that

Ho-;;pr(-),w < ¢ Hpr(),w <00 (16)

holds.

For 0 < r now we can define the fractional moduli of smoothness of index r for
peEPYE we Ay and f € LY as

[r]
Q (f,0),000 = sup |[JJT=An)eor f|| L 6>0,

0<h;,t<d i=1
p()»w

0
where Qo (f,6),) ., = [Ifll,(0i II (= Ap)oif =0ff for 0 <r <1;and [r]

denotes the integer part of the real number r.
We have by (1.6) that if p € P85, w € A, and f € LY then there exist a
positive constant ¢; depending only on r and p such that

QT (f, 6)p(.)’w S Cr Hf”p(),w :

If p e P and w € A4, then wP@ ¢ LY(T). This implies that the set of
trigonometric polynomials is dense [11] in L2, On the other hand if p € P'e
and w € A, then L2 c L (T).

For given f € L' (T), let

a02(f) + (ap (f)coskx + by (f)sinkx) = Z o, (f) e (1.7)

k=1 k=—oc0
be the Fourier series of f with ¢, (f) = (1/2) (ag (f) — ibx (f)). We set
Ly(T):={f € L' (T): co(f) =0 for the series in (1.7)}.

f ) -
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Let o € RT be given. We define fractional derivative of a function f € L} (T) as

FO @)= 3 e () ()"
k=—o00
provided the right hand side exists, where (ik)® := |k|* e(/ 2)miaSIgNk 49 principal

value. We will say that a function f € Lr0)

a € RT if there exists a function g € LY such that its Fourier coefficients satisfy

cr (9) = cx (f) (ik)®. In this case we will write f(®) = g.
Let W;E-),w p € P, a > 0 be the class of functions f € LY such that fl@ e

. Wpo‘(.)w becomes a Banach space with the norm
1w = 1l + 1A

We set B (f),,, = inf {Hf — Ty :T€ ’]}L} for f e L2V,

Our main results are

has fractional derivative of order

PO

Theorem 1.1. Ifp € P8, w=P0 ¢ A(p(‘))/ for some py € (1,p.), n €N, r € RT,

v :=min{2,p.} and f € LZ(’), then there exists a positive constant cg depending
only on r and p such that

n 1/v
1 C _
o (f’ _) <A VTR L (D
n p('),w n

v=1

holds.

Since x7 is convex for v = min {2, p,} we have

(Vl/r_lEy (f)p(.)*d),y — ((l/ — 1) ,/T—lEV (f)p(l)#d)'y <

(5 mne) - (Bwnon.)

Summing the last inequality with v =1,2,3,... we find

i { (VVT_IEV (f)p(.)7w>7 - ((V — 1)V E, (f>p(‘)7w>7} -

v=1

(S ) Ernn.)

and hence

n 1/~ n
{ZE <f>p<.>,w} <3 ()
v=1 v=1
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The last inequality signifies that Theorem 1.1 is a refinement of the converse

theorem (see [2, 3]). Furthermore, in some cases, inequalities in Theorem 1.1
gave more precise results:
If

then we have

and from Theorem 1.1

1 1
Qr y = .
<f n)p(~),w (nr

As a corollary of Theorem 1.1 we have the following improvements of Marchaud
inequality

Corollary 1.2. Under the conditions of Theorem 1.1 if r,l € RY, r < I, and
0 <t <1/2, then there exists a positive constant co depending only on r,l and p
such that

! v 1/~
hold. ¢
Theorem 1.3. Under the conditions of Theorem 1.1 if
Z kﬂa_lElz (f)p(.),w < o0 (1.8)
k=1

for some o € RY, then [ € W;E,)’w. Furthermore, for n € N there exists a
constant c1g > 0 depending only on a and p such that

0o 1/

v=n+1

holds.

Corollary 1.4. Under the conditions of Theorem 1.1 there exists a constant
c11 > 0 depending only on r,« and p such that

1 1 -
(@) — - (r+a)—1
Q, (f , n)p(%w < cnn " (ngl I EZ (f>p('),w> +

2=

+ ( Z v (f)p(~),w)

v=n-+1
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forn € N and a,r € RT.

2. Proors or THEOREMS

We need the following [12] Littlewood—Paley type theorem:

Theorem 2.1. Under the conditions of Theorem 1.1 there are constants cia,
c13 > 0 depending only on r and p such that

o0 1/2 00 oo 1/2
(zw) < 3 aen| <o (zw)
p=v p=v

|lul=2v—1

p(-),w p('):‘-‘} p(-),w
(2.1)
where
oH 1
A, =A,(z, f) = Z c e,
v|=21—1

()
PO

Lemma 2.2. Ifp € P and w™" € A( ) » for some py € (1,p.), thenw € Ap,.

Proof. Using the Extrapolation Theorem 3. 2 of [12] we obtain that Hardy Little-
wood maximal operator M is bounded in L2, This implies [7] that w € Apy. O
Proof of Theorem 1.1. First we note by Lemma 2.2 that under the conditions of

Theorem 1.1 the condition w € Ap(,) holds. On the other hand it is well-known
[r]

that oy, p, 5y, J = ]:[1 (I —op,) (I —0,)" " f has Fourier series
oo . r—[r] . .
r sin vt sin vhy sin vhy i
Jt,h17h2 ..... h[r]f () ~ Z (1 - Ut ) (1 - Vhl ) c. (1 — T{T] cy e
and

< cu(rp) I1f () — Som— ('7f)||p(-)7w
< ers (1) Bamt ()

1/~
016 7"29 r—1p

On the other hand from (2.1) we get

m 1/2
O-I,hl,hg ..... Ry, Som-1 (-, f) < cir (r,p) Z |5u|2
[r] p(-)w o
p(-),w
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sin vhy 1
o .

1/2 1/m
{Z 10,4 Hp()w} :

where
204 —1 . r—[r]
sin vt
0, = 1-—
|v|=20—1

We know that |

ZIM

We estimate ||5u||p(-) "

p()w

. Since

2k —1

||6,U‘||p(-)7w -

1 wx
| —FCL€
v|"

using Abel’s transformation we get

20 -2

2

jp=20-1

19ullp() 0 <

> [| " (1 Sm”t)r_m (1
y _ _
vt

jv|=20-1

L (1 B sinvt)rm (1 B sinvhl) (1 B
vt vhy

vhyr

sinvh, 1
o

l/h[T]

p()w

Uh[r]

, sin (v 4+ 1)\ sin (v + 1) hy
(1) (1—— p TR
(v+1)t (v+1)Iy
sin (v 4 1) hy 1 .
B i SR E il
( (v +1) g U -
=20 p()w

e (1 sin (20 — 1) ¢\ " L _sin@ -1k
(20 — 1)t (20 —1)hy )
sin <2M B 1) h[”‘] = 1 ilx
'(1_ (2# = 1) Ry 2 W‘Cle |
f=2+7 p()w
We have
2K _1 2k —1
1 ilx C18 (T, p) ilx
Z I |cre™] = e Z |cre™]
=201 PO =2 PO
C18 (T,p) = —iarg(c;e?®) il
= T || 2 ¢ fae]
lf]=2»—1
p(-),w

i th) iva
— | ¢ e,

sin vhy,

sin Uh[r])

7



78 R. AKGUN, V. KOKILASHVILI

2K —1
~aln| S el <o 0Pp L,
—1|7 - 2;1,

p() W
and similarly

3 LT‘Cleil:r‘ SMEW‘l ()

|l|=2#—1 |l| 267
- p().w
Since z" (1 - %)T is non decreasing and (1 - %) < z for x > 0 we obtain
—ur 22 . r—[r]
o0 (1, p) 27H ] sin vt
) —_— t 1-— hy) -
H H )w = - [T]h h[r] | |§1 (V) ot ('U 1)

sin vhy sin vhpy r—[r] sin y+
1— oo (vhpy) (1= — 1)t 1—
( vhy ) (v ”)( vhyyy (=01

By () + 00 (r,p) 277 | (20 — 1) 1)) (1 s1?2<5u_ -1)1> ) .
Fai s (D Son ) (1= SO (oD

sin (2” - 1) h[r]
- (1 B (2# — 1) h[r] Epei (f)P(')vw <

< g (r,p) 228 hy by By () 0
and therefore
10,1y 0 < €22 () 247Dy gy Bauea oy () -
Then

O-Z‘,hl,hg,.‘.,h[r] S2m—1 (.7 f)

<
p()w

1/v
< es (r,p) t" D0y Lk {222‘”7 an-1-1 (f )p(~),w}

r=1[r]) Nnr Y 1/7
< cq (r,p) "y iy {2 Eq (f)p(),w} +

m 24711 1
e g {355 L 5]

/,L:Q y=2Hn—2
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gm— 1 -1 1/'7
< eg6 (r,p) t DR h[]{ Z i 4 )p(~)7w} :

The last inequality implies that

n 1/
1 Cor (’T‘, p) —1
. — < == =7 5 el .
. (f’ n>p<->,w oo Ve Uatos

v=1

Theorem 1.1 is proved.

Proof of Theorem 1.3. Let T,, be a polynomial of class 7,, such that F, (f)

1f = Tull,.),, and we set

79

p()w

Uy (z) =Ty (x) — To (z); U, (x) :=Tow (x) — Tow—1 (x), v=1,2,3,....

Hence

Ton (2) =Ty (z) + Y U (x), N=01,2, ...

For a given € > 0, by (1.8) there exists 7 € N such that

D VOB (e <€

v=2"M

From fractional Bernstein’s inequality [3]
”T H p(-)w < cas (o, p) n* || T, ||p( Jwo Q€ R*

we have

(2.2)

HUIEQ)HP(.)M < o9 (0, p) 27 Uy [l 0 < €30 (0, p) 270 Eor () 0 ¥ €N

On the other hand it is easily seen that

gv—1 1/
2" By (f) ()0 < €31 (a,p) Z WO EY () ;
p=2v=241
For the positive integers satisfying K < N
N
T (2) - T (x) = Y U (2), €T
v=K+1

and hence if K, N are large enough we obtain from (2.2)

| @) 1R )| < S @)l

v=K+1

N

<31 (Oévp) Z 2" Egv (f)p(.),w

v=K+1

v=2,34,....
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N gv—1 2

<emlap) 34N WOEl (e <

v=K+1 H:2V72
oN-1 1/

<e(ap){ D WE (e Soslap)e
p=2K-141
Therefore {Téﬁ)} is a Cauchy sequence in L2”. Then there exists a o € LAV
satisfying
i -

— 0, as N — oc.
p(~),w

On the other hand we have [3, Theorem 5]

o

— 0, as N — oo.
p(~),w

Then f(* = ¢ a.e. Therefore f € Wi
We note that

E, (f(a))p(-),w < |- S”f(a)Hp(-),w

o0

D [Sarsr f1) = Sy f]

k=m-+2

< ||52m+2f(a) _ Snf(a) Hp(')’w + (23)

p()w

By the fractional Bernstein’s inequality we get for 2™ < n < 2m*!
[Somez f = Suf @, < ess (@) 2L () . (24)
< 6 (@, p) N En (f) )0 -
By (2.1) we find

Y [SonfO—Suf@]| <
k=m+2 p()w
o ok+1 2y /2
Scxz(ap)|[Q D | D (i) ee™
k=m+2 ||y|=2k+1
p(~),w
and therefore
D [Sarer f1) = Sy f] <
k=m+2 p(~),w
o) ok+1 v 1/7

< ¢35 (o, p) Z Z (iv)* c,e™”

Iv[=2"+ p()w
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Putting
2k+1 ok+1
|5:j| = Z (iy)a Cyeiuz — Z v292Re (Cyei(u;r+a7r/2))
we have
9k+1
||5::||p(.),w = Z vU, (x)
v=2k41

p().w
where U, (z) = 2Re (¢, e**to™/2)) . Using Abel’s transformation we get

2k 11 v
1000w < D0 =@+ 32 Uiw)
vt (=281 p()w
2k+1_1
@] X i)
= PO

For 28 +1 < v <21 (k € N) we have

14

Z U () < cs9 (@, p) Ear () )

l:2k+1 p(')7w
and since .
a o a a+D)*" Ja>1
— < ) )
v+1)"—v _{au“_l ,0<a<,
we obtain
||5:/<||p(~),w < ey (a,p) 2% By (f)p(-),w :
Therefore
00 0o 1/
D [Sarer [ = Gy f] < car (@, p) { > ke (f>p(.),w}
k=m+2 p(*),w k=m+2
0o 1/
< en <a,p>{ S gy <f>p<.>,w} (2.5)
v=n+1
and using (2.3), (2.4) and (2.5) Theorem 1.3 is proved. O]

Acknowledgments. Authors are indebted to referees for valuable suggestions.
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