APPROXIMATION OF COMMON RANDOM FIXED POINTS OF FINITE FAMILIES OF N-UNIFORMLY L_{i}-LIPSCHITZIAN ASYMPTOTICALLY HEMICONTRACTIVE RANDOM MAPS IN BANACH SPACES

CHIKA MOORE ${ }^{1}$, C. P. NNANWA ${ }^{2 *}$ AND B. C. UGWU ${ }^{3}$
Communicated by K. Ciesielski

Abstract

Let (Ω, Σ, μ) be a complete probability measure space, E be a real separable Banach space, K a nonempty closed convex subset of E. Let $T: \Omega \times K \rightarrow K$, such that $\left\{T_{i}\right\}_{i=1}^{N}$, be N -uniformly L_{i}-Lipschitzian asymptotically hemicontractive random maps of K with $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. We construct an explicit iteration scheme and prove neccessary and sufficient conditions for approximating common fixed points of finite family of asymptotically hemicontractive random maps.

1. Introduction and preliminaries

Let E be a real normed linear space, E^{*} its daul and let the map $J: E \rightarrow 2^{E^{*}}$ denote the generalized daulity mapping define for each $x \in E$ by

$$
J(x)=\left\{f^{*} \in E^{*}:\left\langle x, f^{*}\right\rangle=\|x\|^{2}=\left\|f^{*}\right\|^{2}\right\}
$$

where \langle,$\rangle denotes the daulity pairing between elements of E$ and E^{*}. It is well know that if E is smooth, then J is single-valued. In the sequel we shall denote the single-valued normalized daulity map by j.

[^0]Let (Ω, Σ, μ) be a complete probability measure space with Σ, a σ-algebra of subset of Ω and μ a probability measure on Σ. Let E be a (separable) normed linear space. A map $\xi: \Omega \rightarrow E$ is measurable if $\xi^{-1}(K) \in \Sigma$ for each open subset K of E; alternatively, $\xi^{-1} \in \Sigma$ for each open ball B in E. A map $T: \Omega \times E \rightarrow E$ is said to be a random map if for fixed $\xi \in E$ the map $T(\omega) \xi(\omega): \Omega \rightarrow E$ is measurable. A measurable map $\xi: \Omega \rightarrow E$ is called a random fixed point of the random map $T: \Omega \times E \rightarrow E$ if $\mu(\{\omega \in \Omega: T(\omega) \xi(\omega)=\xi(\omega)\})=1$; that is $T \xi=\xi$ almost surely (a.s.) in Ω. The nth iterate, $n \in \mathbb{N}$ of the map $T: \Omega \times E \rightarrow E$ is given by $T^{n}(\omega)=T(\omega) T^{n-1}(\omega)$; that is , $T^{n}(\omega) \xi(\omega)=T^{n}(\omega)\left(T^{n-1}(\omega) \xi(\omega)\right.$. Let $\xi, \eta: \Omega \rightarrow E$ be measurable maps.

A random map $T: \Omega \times E \rightarrow E$ is said to be nonexpansive if

$$
\|T(\omega) \xi(\omega)-T(\omega) \eta(\omega)\| \leq\|\xi(\omega)-\eta(\omega)\|(\omega \in \Omega)
$$

and is L-Lipschitzian if for all $\omega \in \Omega$ there exists $L(\omega) \geq 0$ such that

$$
\|T(\omega) \xi(\omega)-T(\omega) \eta(\omega)\| \leq L(\omega)\|\xi(\omega)-\eta(\omega)\|
$$

where $L(\omega) \leq L$ a.s. in Ω that is $\mu(\{\omega \in \Omega: L(\omega) \leq L\})=1$ The map T is said to be uniformly L-Lipschzian if for all $\omega \in \Omega$, there exists $L(\omega) \geq 0$, such that $L(\omega) \leq L$ a.s. a constant such that for all $\xi(\omega), \eta(\omega) \in E, \omega \in \Omega, n \in \mathbb{N}$,

$$
\left\|T^{n}(\omega) \xi(\omega)-T^{n}(\omega) \eta(\omega)\right\| \leq L(\omega)\|\xi(\omega)-\eta(\omega)\|
$$

A map T is said to be asymptotically nonexpansive if for all $\omega \in \Omega$, there exists $\left\{k_{n}(\omega)\right\}_{n \geq 0} \subset[1,+\infty)$ with $\lim _{n \rightarrow \infty} k_{n}(\omega)=1$ a.s. such that

$$
\left\|T^{n}(\omega) \xi(\omega)-T^{n}(\omega) \eta(\omega)\right\| \leq k_{n}(\omega)\|\xi(\omega)-\eta(\omega)\| \quad(n \in \mathbb{N})
$$

and T is said to be asymptotically pseudocontractive if for all $\omega \in \Omega$, there exists $\left\{k_{n}(\omega)\right\}_{n \geq 0} \subset[1,+\infty)$ with $\lim _{n \rightarrow \infty} k_{n}(\omega)=1$ a.s. and for all $\xi(\omega), \eta(\omega) \in E$, there exists $j(\xi(\omega)-\eta(\omega)) \in J(\xi(\omega)-\eta(\omega))$ such that

$$
\begin{equation*}
\left\langle T^{n}(\omega) \xi(\omega)-T^{n}(\omega) \eta(\omega), j(\xi(\omega)-\eta(\omega))\right\rangle \leq k_{n}(\omega)\|\xi(\omega)-\eta(\omega)\|^{2}(n \in \mathbb{N}) \tag{1.1}
\end{equation*}
$$

T is said to be asymptotically hemicontractive if $F(T)=\{\xi(\omega) \in D(T)$: $T(\omega) \xi(\omega)=\xi(\omega)\} \neq \emptyset$ and (1.1) is satisfied for all $\xi(\omega) \in D(T)$ and $\eta(\omega)=$ $\xi^{*}(\omega) \in F(T), k_{n}(\omega)=a_{n}(\omega)$
and there exists $j\left(\xi(\omega)-\xi^{*}(\omega)\right) \in J\left(\xi(\omega)-\xi^{*}(\omega)\right)$ such that

$$
\left\langle T^{n}(\omega) \xi(\omega)-\xi^{*}(\omega), j\left(\xi(\omega)-\xi^{*}(\omega)\right)\right\rangle \leq a_{n}(\omega)\left\|\xi(\omega)-\xi^{*}(\omega)\right\|^{2}(n \in \mathbb{N})
$$

In late 50's Spacek [12] and Hans [7] initated works on random operator theory or probabilistic analysis. since then, it has been an area for active research, a host of other researchers have done several work on random (probabilistic) fixed point theorems and applications (see e.g., Beg [1], Beg and Shahzad [2, 3], Benavides et.al [4], Bharucha-Reid [5, 6], Itoh [8, 9], Lin [10], Tan and Yuan [13], Xu [14, 15],)

In recent time, some authors have obtained solutions to real life problems using the deterministic model (see e.g., Bharuch-Reid [5, 6]).

Moore and Ofoedu [11] extended results of Beg [1] from the class of asymptotically nonexpansive random maps to more general class of asymptotically hemicontractive random maps.

In this paper, it is our purpose to construct a random explicit iteration scheme for approximation of common fixed points of finite families of N -uniformly $L_{i^{-}}$ Lipschitzian asymptotically hemicontractive maps.
Our theorems extended that of Moore and Ofoedu [11] from a single operator to a finite families of the operator and a host of others.

2. Preliminaries

We shall make use of the following lemmas.
Lemma 2.1. Let $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences of nonnegetive real numbers satisfying the inequality

$$
\beta_{n+1} \leq \beta_{n}+b_{n}, n \geq 0
$$

if $\sum_{n \geq 0}^{\infty} b_{n}<\infty$ then $\lim _{n \rightarrow \infty} \beta_{n}$ exists.
Lemma 2.2. Let E be a real normed linear space. Then for all $\xi(\omega), \eta(\omega) \in E$ and $j(\xi(\omega)+\eta(\omega)) \in J(\xi(\omega)+\eta(\omega))$ the following inequality holds.

$$
\|\xi(\omega)+\eta(\omega)\|^{2} \leq\|\xi(\omega)\|^{2}+2\langle\eta(\omega), j(\xi(\omega)+\eta(\omega))\rangle
$$

3. Main results

If K is a nonempty closed convex subset of E and $\left\{T_{i}\right\}_{i=1}^{N}$ is a family of N uniformly L_{i}-Lipschitzian asymptotically hemicontractive self mappings of K , then $\xi_{0}(\omega) \in K$ and $\left\{\alpha_{n}\right\}_{n \geq 0} \subset(0,1)$, the iteration process is generated as follows

$$
\begin{aligned}
\xi_{1}(\omega) & =\left(1-\alpha_{0}\right) \xi_{0}(\omega)+\alpha_{0} T_{1}(\omega) \xi_{0}(\omega), \\
\xi_{2}(\omega) & =\left(1-\alpha_{1}\right) \xi_{1}(\omega)+\alpha_{1} T_{2}(\omega) \xi_{1}(\omega), \\
& \vdots \\
\xi_{N}(\omega) & =\left(1-\alpha_{N-1}\right) \xi_{N-1}(\omega)+\alpha_{N-1} T_{N}(\omega) \xi_{N-1}(\omega), \\
\xi_{N+1}(\omega) & =\left(1-\alpha_{N}\right) \xi_{N}(\omega)+\alpha_{N} T_{1}^{2}(\omega) \xi_{N}(\omega), \\
& \vdots \\
\xi_{2 N}(\omega) & =\left(1-\alpha_{2 N-1}\right) \xi_{2 N-1}+\alpha_{2 N-1} T_{N}^{2}(\omega) \xi_{2 N-1}(\omega), \\
\xi_{2 N+1}(\omega) & =\left(1-\alpha_{2 N}\right) \xi_{2 N}(\omega)+\alpha_{2 N} T_{1}^{3}(\omega) \xi_{2 N}(\omega),
\end{aligned}
$$

Then the compact form of the iteration process is

$$
\begin{equation*}
\xi_{n+1}(\omega)=\left(1-\alpha_{n}\right) \xi_{n}(\omega)+\alpha_{n} T_{i}^{k}(\omega) \xi_{n}(\omega), n \geq 0, \omega \in \Omega \tag{3.1}
\end{equation*}
$$

where $k=\left\{\frac{n-i}{N}\right\}+1$.
Theorem 3.1. Let E be a real Banach space and K, a nonempty closed convex subset of E. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be N uniformly L_{i}-Lipschitzian asymptotically hemicontractive self mappings of K such that $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $\left\{\alpha_{n}\right\}_{n \geq 0}$ be a sequence in $(0,1)$ satisfying the conditions

$$
\begin{aligned}
& \text { (i) } \sum_{n \geq 0} \alpha_{n}=\infty \text {; } \\
& \text { (ii) } \sum_{n \geq 0} \alpha_{n}^{2}<\infty \text {; } \\
& \text { (iii) } \sum_{n \geq 0} \alpha_{n}\left(a_{i n}(\omega)-1\right)<\infty \text {. }
\end{aligned}
$$

Then the explicit iterative sequence $\left\{\xi_{n}(\omega)\right\}_{n \geq 0}$ generated from an arbitrary $\xi_{0}(\omega) \in$ K by (3.1) converges strongly surely to a random common fixed point of the family $\left\{T_{i}\right\}_{i=1}^{N}$ if and only if $\liminf _{n \rightarrow \infty} d\left(\xi_{n}(\omega), F\right)=0$ almost surely in Ω.

Proof. We have that

$$
\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\|^{2}=\left\|\left(1-\alpha_{n}\right)\left(\xi_{n}(\omega)-\xi^{*}(\omega)\right)+\alpha_{n}\left(T_{i}^{k}(\omega) \xi_{n}(\omega)-\xi^{*}(\omega)\right)\right\|^{2}
$$

and

$$
\begin{align*}
\| \xi_{n+1}(\omega)= & \xi^{*}(\omega) \|^{2} \\
\leq & \left\|\left(1-\alpha_{n}\right)\left(\xi_{n}(\omega)-\xi^{*}(\omega)\right)\right\|^{2} \\
& +2 \alpha_{n}\left\langle\left(T_{i}^{k}(\omega) \xi_{n}(\omega)-\xi^{*}(\omega)\right), j\left(\xi_{n+1}(\omega)-\xi^{*}(\omega)\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
& -2 \alpha_{n}\left\langle\xi_{n+1}(\omega)-T_{i}^{k}(\omega) \xi_{n+1}(\omega), j\left(\xi_{n+1}(\omega)-\xi^{*}(\omega)\right)\right\rangle \\
& +2 \alpha_{n}\left\langle T_{i}^{k}(\omega) \xi_{n}(\omega)-T_{i}^{k}(\omega) \xi_{n+1}(\omega), j\left(\xi_{n+1}(\omega)-\xi^{*}(\omega)\right)\right\rangle \\
& +2 \alpha_{n}\left\langle\xi_{n+1}(\omega)-\xi^{*}(\omega), j\left(\xi_{n+1}(\omega)-\xi^{*}(\omega)\right)\right\rangle \\
= & \left(1-\alpha_{n}\right)^{2}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2}+2 \alpha_{n}\left\{\left(a_{i n}(\omega)-1\right)\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\|^{2}\right\} \\
& +2 \alpha_{n}\left\|T_{i}^{k}(\omega) \xi_{n}(\omega)-T_{i}^{k}(\omega) \xi_{n+1}\right\|\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\| \\
& +2 \alpha_{n}\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\|^{2} . \tag{3.2}
\end{align*}
$$

Moreover

$$
\left\|T_{i}^{k}(\omega) \xi_{n}(\omega)-T_{i}^{k}(\omega) \xi_{n+1}(\omega)\right\| \leq L_{i}\left(1+L_{i}\right) \alpha_{n}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|
$$

Also,

$$
\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\|=\left[1+\left(1+L_{i}\right) \alpha_{n}\right]\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|
$$

Therefore, (3.2) gives

$$
\begin{align*}
\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\|^{2} \leq & \left(1-\alpha_{n}\right)^{2}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
& +2 \alpha_{n}\left(a_{i n}(\omega)-1\right)\left(\alpha_{n}+\alpha_{n} L_{i}+1\right)^{2}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
& +2 \alpha_{n}^{2}\left(1+L_{i}\right) L_{i}\left[\alpha_{n}\left(L_{i}+1\right)+1\right]\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
& +2 \alpha_{n}\left[\alpha_{n}^{2}\left(L_{i}+1\right)^{2}+2 \alpha_{n}\left(1+L_{i}\right)\right]\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
& +2 \alpha_{n}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
= & \left(1+\alpha_{n}^{2}\right)\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
& +2 \alpha_{n}\left(a_{i n}(\omega)-1\right)\left[\alpha_{n}\left(L_{i}+1\right)+1\right]^{2}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
& +2 \alpha_{n}^{2}\left(1+L_{i}\right) L_{i}\left[\alpha_{n}\left(L_{i}+1\right)+1\right]\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
& +2 \alpha_{n}\left[\alpha_{n}^{2}\left(L_{i}+1\right)^{2}+2 \alpha_{n}\left(1+L_{i}\right)\right]\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
= & \left(1+\gamma_{i n}\right)\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2}, \tag{3.3}
\end{align*}
$$

where

$$
\begin{aligned}
\gamma_{i n}(\omega)= & \left\{\alpha_{n}^{2}+2 \alpha_{n}\left(a_{i n}(\omega)-1\right)\left[\alpha_{n}\left(1+L_{i}\right)+1\right]^{2}\right. \\
& \left.+2 \alpha_{n}^{2}\left(L_{i}+1\right) L_{i}\left[\alpha_{n}\left(1+L_{i}\right)+1\right]+2 \alpha_{n}\left[\alpha_{n}^{2}\left(1+L_{i}\right)^{2}+2 \alpha_{n}\left(1+L_{i}\right)\right]\right\}
\end{aligned}
$$

We observe that

$$
\sum_{n \geq 0}^{\infty} \gamma_{i n}(\omega)<\infty \text { almost surely in } \Omega
$$

therefore, from (3.3) we have

$$
\begin{aligned}
\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\|^{2} & \leq \prod_{j=0}^{n}\left(1+\gamma_{i j}(\omega)\right)\left\|\xi_{0}(\omega)-\xi^{*}(\omega)\right\|^{2} \\
& \leq e^{\sum_{j=0}^{\infty} \gamma_{i j}(\omega)}\left\|\xi_{0}(\omega)-\xi^{*}(\omega)\right\|^{2}
\end{aligned}
$$

therefore,

$$
\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\| \leq M \quad(n \in \mathbb{N})
$$

since $\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\| \leq M$ for some $M>0$, now, we observe that if we set

$$
\beta_{n}=\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2} \text { and } b_{n}=\gamma_{i n}(\omega) M^{2} .
$$

Then by Lemma 2.1

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\| \quad \text { exists almost surely in } \Omega \tag{3.4}
\end{equation*}
$$

If from (3.3), we have that

$$
\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\|^{2} \leq\left[1+\alpha_{n}^{2}+\lambda_{i n}(\omega)\right]\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|^{2}
$$

where $\lambda_{i n}(\omega)=\gamma_{i n}(\omega)-\alpha_{n}^{2}$, i.e. $\alpha_{n}^{2}+\lambda_{i n}(\omega)=\gamma_{i n}(\omega)$ then

$$
\begin{aligned}
\left\|\xi_{n+1}(\omega)-\xi^{*}(\omega)\right\| & \leq\left[1+\alpha_{n}^{2}+\lambda_{i n}(\omega)\right]^{\frac{1}{2}}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\| \\
& \leq\left(1+\alpha_{n}^{2}\right)\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|+\lambda_{i n}(\omega)\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\| \\
& \leq\left(1+\alpha_{n}^{2}\right)\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|+\mu_{i n}(\omega)
\end{aligned}
$$

where $\mu_{i n}(\omega)=\lambda_{i n}(\omega) M=\left(\gamma_{i n}(\omega)-\alpha_{n}^{2}\right) M$ so we observe that

$$
\sum_{n \geq 0}^{\infty} \mu_{i n}(\omega)<\infty \quad \text { almost surely in } \Omega
$$

And for all $n, m \in \mathbb{N}$ we have

$$
\begin{align*}
\left\|\xi_{n+m}(\omega)-\xi^{*}(\omega)\right\| \leq & \left(1+\alpha_{n+m-1}^{2}\right)\left\|\xi_{n+m+1}(\omega)-\xi^{*}(\omega)\right\|+\mu_{i n+m-1}(\omega) \\
\leq & \left(1+\alpha_{n+m-1}^{2}\right)\left(1+\alpha_{n+m-2}^{2}\right)\left\|\xi_{n+m+2}(\omega)-\xi^{*}(\omega)\right\| \\
& +\left(1+\alpha_{n+m-1}^{2}\right) \mu_{i n+m-2}(\omega)+\mu_{i n+m-1}(\omega) \\
= & \prod_{j=n}^{n+m-1}\left(1+\alpha_{j}^{2}\right)\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|+\prod_{j=n}^{n+m-1}\left(1+\alpha_{j}^{2}\right) \sum_{j=n}^{n+m-1} \mu_{i j}(\omega) \\
\leq & e^{\sum_{j=n}^{n+m-1} \alpha_{j}^{2}}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|+e^{\sum_{j=n}^{n+m-1} \alpha_{j}^{2}} \sum_{j=n}^{n+m-1} \mu_{i j}(\omega) \\
= & D\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|+D \sum_{j=n}^{n+m-1} \mu_{i j}(\omega)<\infty \tag{3.5}
\end{align*}
$$

where $D=\exp \left(\sum_{j=1}^{\infty} \alpha_{j}^{2}\right)$.
Thus, taking infimum over $\xi^{*}(\omega) \in F(\omega)$, we obtain

$$
d\left(\xi_{n+1}(\omega), F(\omega)\right) \leq\left(1+\alpha_{n}^{2}\right) d\left(\xi_{n}(\omega), F(\omega)\right)+\mu_{i n}(\omega)
$$

since the $\liminf _{n \rightarrow \infty} d\left(\xi_{n}(\omega), F(\omega)\right)=0$ almost surely in Ω.
Thus, we have from (3.4), that $\lim _{n \rightarrow \infty} d\left(\xi_{n}(\omega), F(\omega)\right)=0$ almost surely in Ω. That is

$$
\mu\left(\left\{\omega \in \Omega: \liminf _{n \rightarrow \infty} d(\xi(\omega), F(\omega))=0\right\}\right)=1
$$

implies

$$
\mu\left(\left\{\omega \in \Omega: \lim _{n \rightarrow \infty} d(\xi(\omega), F(\omega))=0\right\}\right)=1
$$

It suffices to show that $\left\{\xi_{n}(\omega)\right\}_{n \geq 0}$ is Cauchy.
Let $\epsilon>0$ be given, since $\lim _{n \rightarrow \infty} d\left(\xi_{n}(\omega), F(\omega)\right)=0$ almost surely in Ω and
$\sum_{i=1}^{\infty} \delta_{i}(\omega)<\infty$ there exists a positive integer N_{1} such that for all $n \geq N_{1}$,

$$
d\left(\xi_{n}(\omega), F(\omega)\right)<\frac{\epsilon}{3 D}
$$

and

$$
\sum_{i=1}^{\infty} \delta_{i}(\omega)<\frac{\epsilon}{6 D}
$$

In particular there exists $\xi^{*}(\omega) \in F(\omega)$ such that $d\left(\xi_{N_{1}}(\omega), \xi^{*}(\omega)\right)<\frac{\epsilon}{3 D}$.
Now from (3.5), we have that for all $n \geq N_{1}$,

$$
\begin{aligned}
\left\|\xi_{n+m}(\omega)-\xi_{n}(\omega)\right\| \leq & \left\|\xi_{n+m}(\omega)-\xi^{*}(\omega)\right\|+\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\| \\
\leq & D\left\|\xi_{N_{1}}(\omega)-\xi^{*}(\omega)\right\|+D \sum_{i=N_{i}}^{N_{1}+m-1} \delta_{i}(\omega) \\
& +D\left\|\xi_{N_{1}}(\omega)-\xi^{*}(\omega)\right\|+D \sum_{i=N_{i}}^{N_{1}+m-1} \delta_{i}(\omega) \\
< & \epsilon
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty} \xi_{n}(\omega)$ exists almost surely in Ω (Since E is complete).
Suppose that $\lim _{n \rightarrow \infty} \xi_{n}(\omega)=\xi^{*}(\omega)$ we show that $\xi^{*}(\omega) \in F(\omega)$. But given $\epsilon_{2}>0$ there exists a positive $N_{2} \geq N_{1}$ such that for all $n \geq N_{2}$

$$
\begin{aligned}
& \mu\left(\left\{\omega \in \Omega:\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|\right.\right. \\
& \left.\left.<\frac{\epsilon_{2}}{2(1+L)}\right\} \cap\left\{\omega \in \Omega: d\left(\xi_{n}(\omega), F(\omega)\right)<\frac{\epsilon_{2}}{2(1+3 L)}\right\}\right)=1
\end{aligned}
$$

Thus, there exists $\eta^{*}(\omega) \in F(\omega)$ such that

$$
\begin{aligned}
& \mu\left(\left\{\omega \in \Omega:\left\|\xi_{N_{2}}(\omega)-\eta^{*}(\omega)\right\|\right.\right. \\
& \left.\left.=d\left(\xi_{N_{2}}(\omega), \eta^{*}(\omega)\right)\right\} \cap\left\{\omega \in \Omega: d\left(\xi_{N_{2}}(\omega), \eta^{*}(\omega)\right)<\frac{\epsilon_{2}}{2(1+3 L)}\right\}\right)=1
\end{aligned}
$$

with the following estimates

$$
\begin{aligned}
\left\|T(\omega) \xi^{*}(\omega)-\xi^{*}(\omega)\right\| \leq & \left\|T(\omega) \xi^{*}(\omega)-\eta^{*}(\omega)\right\|+2\left\|T(\omega) \xi_{N_{2}}(\omega)-\eta^{*}(\omega)\right\| \\
& +\left\|\xi_{N_{2}}(\omega)-\eta^{*}(\omega)\right\|+\left\|\xi_{N_{2}}(\omega)-\xi^{*}(\omega)\right\| \\
\leq & L\left\|\xi^{*}(\omega)-\eta^{*}(\omega)\right\|+2 L\left\|\xi_{N_{2}}(\omega)-\eta^{*}(\omega)\right\| \\
& +\left\|\xi_{N_{2}}(\omega)-\eta^{*}(\omega)\right\|+\left\|\xi_{N_{2}}(\omega)-\xi^{*}(\omega)\right\| \\
\leq & (1+L)\left\|\xi_{N_{2}}(\omega)-\xi^{*}(\omega)\right\|+(1+3 L)\left\|\xi_{N_{2}}(\omega)-\eta^{*}(\omega)\right\| \\
< & \epsilon_{2}
\end{aligned}
$$

Since $\epsilon_{2}>0$ is arbitrary we have that

$$
\mu\left(\left\{\omega \in \Omega: T(\omega) \xi^{*}(\omega)=\xi^{*}(\omega)\right\}\right)=1
$$

Theorem 3.2. Let E be a real Banach space and K, a nonempty closed convex subset of E. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be N uniformly L_{i}-Lipschitzian asymptotically hemicontractive self mappings of K such that $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $\left\{\alpha_{n}\right\}_{n \geq 0}$ be a
sequence in (0,1) satisfying the conditions (i) $\sum_{n>0} \alpha_{n}=\infty$ (ii) $\sum_{n>0} \alpha_{n}^{2}<\infty$ (iii) $\sum_{n \geq 0} \alpha_{n}\left(a_{i n}(\omega)-1\right)<\infty$. Then the explicit iterative sequence $\left\{\xi_{n}(\omega)\right\}_{n \geq 0}$ generated from an arbitrary $\xi_{0}(\omega) \in K, \omega \in \Omega$ by (3.1) converges strongly to a common fixed point of the family $\left\{T_{i}\right\}_{i=1}^{N}$ if and only if there exists an infinite subsequence of $\left\{\xi_{n}(\omega)\right\}_{n \geq 0}$ which converges strongly to a random common fixed point ot the family $\left\{T_{i}\right\}_{i=1}^{N}$.

Proof. Let $\xi^{*}(\omega) \in F(\omega)$ and $\left\{\xi_{n_{j}}(\omega)\right\}_{j \geq 0}$ be a subsequence of $\left\{\xi_{n}(\omega)\right\}_{n \geq 0}$ such that $\lim _{j \rightarrow \infty}\left\|\xi_{n_{j}}(\omega)-\xi^{*}(\omega)\right\|=0$ almost surely, since $\lim _{n \rightarrow \infty}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|$ exists almost surely, then, $\lim _{n \rightarrow \infty}\left\|\xi_{n}(\omega)-\xi^{*}(\omega)\right\|=0$ almost surely.

Remark 3.3. Our theorems unify, extend and generalize the corresponding results of Beg [1], Beg and Shahzad [2], Moore and Ofoedu [11], Xu [14] and host of other results recently announced, to more general class of finite families of N -uniformly L_{i}-Lipschitzian asymptotically hemicontractive Random maps.

References

1. I.Beg, Fixed points of random operators satisfying semicontractivity conditions, Math. Japan 46(1) (1997), 151-155.
2. I.Beg and N.Shahzad, Random fixed point theorems for nonexpansive and contractive type random operators on Banach spaces, J. Math. Stochas Anal. 7(4) (1994), 566-580.
3. I.Beg and N.Shahzad, Some random approximation theorem with applications, Nonlinear Analysis, 35 (1999), 609-616.
4. T.D. Benavides,G.L.Acedo and H.K.Xu, Random fixed points set-valued operators, Proc. Amer. Math. Soc. 121(3) (1996), 831-838.
5. A.T.Bharucha-Reid, Random integral eguations, academic press, New York, 1972.
6. A.T.Bharucha-Reid, Fixed points theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82 (1976), 641-657
7. O. Hans, Random operator equations, In Proc. Berkely symposium on mathematical, statistics and probability Vol.11, part 1, 185-200, University of California Press, Berkely 1961.
8. S.Itoh, A random fixed point theorem for a multivalued contraction mappings, Pacific J.Math., 68 (1977), 85-90.
9. S.Itoh, Random fixed point theorems with application to random dif and only iferential equations in Banach spaces, J. Math. Anal. Appl., 68 (1979), 261-373.
10. T.C. Lin, Random approximations and random fixed point theorems for a non-self maps, Proc. Amer. Mth. Soc., 103 (1998), 1129-1135.
11. C. Moore and E.U. Ofoedu, Convergence of an iterative process to random fixed points of uniformly l-Lipschitzian asymptotically hemicontractive random maps in Banach Spaces, J. Nig. Math Soc. 25 (2006), 87-94.
12. A.Spacek, Zufallige gleichugen, Czechoslovak Math. J. 5 (1955), 162-466.
13. K.K. Tan, X.Z.Yaun, Random fixed point theorems and approximations, Stochas. Anal.Appl., 15(1) (1997), 103-123.
14. H.K. Xu, Some random fixed point theorems for condensing and nonexpansive operators Proc. Amer. Math. Soc., 110 (1990), 395-400.
15. H.K. Xu, A random fixed point theorem for multivalued nonexpansive operators in uniformly convex Banach Spaces Proc. Amer. Math. Soc., 117 (1993), 1089-1092.

1,3 Department of Mathematics, Nnamdi Azikiwe University, Awka, P. M. B. 5025, Awka, Anambra State, Nigeria.

E-mail address: drchikamoore@yahoo.com and debosky2002@yahoo.com
${ }^{2}$ Department of Mathematics, Nnamdi Azikiwe University, Awka, P. M. B. 5025, Awka, Anambra State, Nigeria.
Non-linear Analysis Research Group, Unizik Awka, Nigeria
E-mail address: chimexnnanwa@yahoo.com

[^0]: Date: Received: 7 October 2008; Revised: 15 May 2009; Accepted: 3 June 2009.

 * Corresponding author.

 2000 Mathematics Subject Classification. Primary 47H06; Secondary 47H09, 47J25.
 Key words and phrases. N-uniformly L_{i}-Lipschitzian, finite family, asymptotically hemicontractive map, explicit iteration, Banach space.

