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ON SOME VON NEUMANN TOPOLOGICAL ALGEBRAS

RACHID CHOUKRI1, ABDELLAH EL KINANI2 AND MOHAMED OUDADESS3∗

Communicated by M. Abel

Abstract. We show that a regular von Neumann Q-m-convex Fréchet algebra
is of finite dimension. We also show that a regular von Neumann m-convex
Fréchet algebra is a projective limit of finite dimensional algebras. Finally, we
prove that a bilateral Q-F -algebra is a regular von Neumann algebra if and
only if it is isomorphic to a finite product of algebras which are also fields.

1. Introduction

C. Le Page [10] considered conditions implying the commutativity of a unital
complex Banach algebra A, among those is

Ax = Ax2 (x ∈ A). (C1)

Duncan and Tullo showed that (C1) implies finite dimensionality [7]. According
to an Aupetit’s comment [3, p. 56–57], this result has been known for a long
time. In fact, one observes that (C1) infers the following condition

∀x, ∃y : x = xyx. (C2)

He referred to a book of I. Kaplansky [8, p. 111], where the latter states,
without any proof, that a Banach algebra satisfying (C2) is of finite dimension.
Thus Aupetit proposed a proof (see [3, p. 57]) using a seminal idea of Duncan
and Tullo [7]. But there is an error therein (see Remark 4.4).
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Before coming back to the condition (C2), which is the subject of the present
paper, let us mention that a detailed study of the condition (C1) has been made
in the general frame of topological algebras [6].

Here, we extend the result claimed by Kaplansky to the frame of B0-algebras
with the Q-property (Theorem 4.3). It is also given a structure result without
the last property in the case of locally m-convex Fréchet algebras. The particular
case of locally C∗-algebras is worthwhile to mention (Theorem 4.8).

Also, it is shown that a bilateral Q-F -algebra (not necessarily locally convex)
is a regular von Neumann algebra if and only if it is isomorphic algebraically
and topologically to a finite product of F -algebras which are also fields (Theorem
5.2).

2. Preliminaries

A unital algebra A is said to be regular in the sense of von Neumann (for short,
v.N -r-algebra) if it satisfies the condition (C2).

A nonzero idempotent p ∈ A is called minimal if the algebra pAp is a field.
Two idempotents p and q are said to be orthogonal if pq = qp = 0.

A unital algebra over K (K = R, C), with unit e, is said to be bilateral if all its
ideals are bilateral. It is said to be noetherian if the family of its bilateral ideals
satisfies the ascending condition chain, i.e., every non trivial family of bilateral
ideals of A , ordered by inclusion, admits a maximal element. A proper bilateral
ideal P of A is prime if for a, b ∈ A with aAb ⊂ P , one has a ∈ P or b ∈ P .
Equivalently, for any pair (I, J) of bilateral ideals such that IJ ⊂ P , one has
I ⊂ P or J ⊂ P . A left ideal I of A is said to be of finite type if it is of the
form I = Ax1 + ... + Axr, for some x1,..., xr in A. If I1,..., In are left ideals, we
denote by I1...In the left ideal generated by all elements x1,..., xn with xi ∈ Ii.
If Ii = I, for every I, then I1...In is denoted In. The spectrum of an element
x ∈ A is SpAx = {λ ∈ K : x − λe is non invertible}. The spectral radius of
x is ρA(x) = sup{|λ| : λ ∈ SpAx}. An element x is said to be quasi-nilpotent if
ρA(x) = 0.

A topological algebra (A, τ) is a locally m-convex algebra (l.m.c.a. ; cf. [11, 12])
if the topology τ is given by a family (pλ)λ of submultiplicative seminorms i.e.,

pλ(xy) ≤ pλ(x)pλ(y) .

Such an algebra is said a locally m-convex Fréchet algebra (Fréchet l.m.c.a.)
if it is moreover metrizable and complete. In that case, its topology is given
by a denumerable family of submultiplicative seminorms. The algebra A is an
F -algebra if it is endowed with an algebra topology which is metrizable and
complete. If, moreover, it is locally convex, it is called a B0-algebra. A unital
topological algebra is said to be a Q-algebra if the group of its invertible elements
is open. An involutive l.m.c.a. is called a locally C∗-algebra if the pλ’s satisfy the
C∗-equality i.e., pλ(x

∗x) = [pλ(x)]2, for every x and every λ.
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3. General properties

We begin by putting together some properties which are common to all topo-
logical algebras which are also regular in the sense of von Neumann. We will
write a topological v.N -r-algebra.

Proposition 3.1. Let A be a topological v.N-r-algebra. Then

(i) A is semi-simple,
(ii) For every x ∈ A, the ideals Ax and xA are closed.
(iii) Every left or right ideal of A which is of finite type is closed.
(iv) If A is a normed algebra, then it is a Q-algebra.
(v) If A is a Q-algebra, then every bilateral ideal, not necessarily maximal, of

A is closed.

Proof. (i) Let x ∈ RadA, where RadA is the Jacobson radical of A. Consider
y ∈ A such that x = xyx. Then one has x(e − yx) = 0. Whence x = 0,
since e− yx is invertible.

(ii) Let (an) be a sequence in A such that (anx) −→ z with z in the closure
of Ax. Consider y ∈ A such that x = xyx. Then one has (anxyx) −→ z.
Hence z = zyx and so z ∈ Ax. The same for xA.

(iii) Let I = Ax1 + ... + Axr be an ideal of finite type. For every i, there is
yi ∈ A such that xi = xiyix. It ensues that Axi = Ayixi. Moreover yixi is
idempotent. Thus replacing if necessary xi by yixi we may suppose that
the xi’s are idempotent. Examine first the case r = 2. Consider (an) and
(bn) two sequences in A such that

(anx1 + bnx2) −→ z , with z in the closure of I.

Multiplying on the right by (x1 − e), one obtains

(bnx2(x1 − e)) −→ z(x1 − e).

By (ii), Ax2(x1 − e) is closed, hence

z(x1 − e) = ax2(x1 − e);

whence
z = zx1 − ax2x1 + ax2 ∈ Ax1 + Ax2.

Thus Ax1 + Ax2 is closed. The proof is finished, using the induction
argument on r.

(iv) A is inverse closed in its completion Â , i.e. every element of A which is

invertible in the completion Â is actually invertible in A. Hence it is a
Q-algebra. Indeed, let x ∈ A be invertible in Â. There is y ∈ A such that
x = xyx. It then follows that xy = yx = e.

(v) Let I be a bilateral ideal of A. It is clear that A/I is also a v.N -r-algebra.
So A/I is semisimple by (i). Now the maximal left ideals of A/I are of
the form M/I, where M runs over the family of maximal left ideals of A,
that contain I. Then the semisimplicity of A is equivalent to the fact that
I is equal to the intersection of maximal left ideals of A, that contain it.
The latter are closed, since A is a Q-algebra. The result then follows.
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�

4. B0-algebras

We begin with some entirely algebraic considerations. It is easy to prove the
following result.

Lemma 4.1. Let A be a v.N-r-algebra and p ∈ A a nonzero idempotent. The
following assertions are equivalent.

(i) p is minimal.
(ii) The algebra pAp admits only p and 0 as idempotents

The following lemma is essential in the sequel. It is the principal ingredient
(though not entirely detailed) in the proof of Duncan and Tullo [7].

Lemma 4.2. Let A be a v.N-r-algebra and p ∈ A a nonzero idempotent which
is not minimal. If it is not the sum of pairwise orthogonal minimal idempotents,
then A admits an infinity of nonzero pairwise orthogonal minimal idempotents.

Proof. The idempotent p being not minimal, there is (Lemma 4.1) an idempotent
q ∈ pAp with q 6= 0 and q 6= p. So q and p−q are two orthogonal idempotents the
sum of which is p. One of them, say q, is not minimal. By the preceding, there
are two orthogonal idempotents r, s ∈ qAq the sum of which is q. Thus r, s and
p − q are three nonzero idempotents which are pairwise orthogonal. Continuing
the process, one obtains an infinite sequence of nonzero idempotents which are
pairwise orthogonal. �

Now here is the first structure result. Recall that the notation A ker pk0+1 is
for all finite sums Σaixi, where ai ∈ A and xi ∈ ker pk0+1. It is a left ideal.

Theorem 4.3. Let A be a unital v.N-r-algebra which is also a Q-B0-algebra.
Then A is of finite dimension.

Proof. By (i) of Proposition 3.1, the algebra A is semi-simple. Let (pk)k≥0 be an
increasing sequence of seminorms defining the topology of A and satisfying

pk(xy) ≤ pk+1(x)pk+1(y) (x, y ∈ A).

As A is a Q-algebra, there is k0 and a constant K > 0 such that

ρA(x) ≤ Kpk0(x), x ∈ A (Tsertos inequality; [13]).

Hence A ker pk0+1 is a left ideal elements of which are quasi-nilpotent (hence quasi-
invertible) by the previous inequality. So A ker pk0+1 is contained in RadA = {0}
[4, Proposition 16 (iii), p. 125]. Thus pk0+1 is a vector space norm on A. It ensues
that pk is a norm for every k ≥ k0 + 1. Suppose now that A admits a sequence
(en) of nonzero idempotents which are pairwise orthogonal. The series of general
term

1

n2

en

pn(en)
, n ≥ k0 + 1,

is absolutely convergent. Indeed, let r ∈ N , which can be supposed larger than
k0 + 1 because the sequence (pk)k≥0 is increasing. One then has
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∑
k0+1≤n

pr(
1

n2

en

pn(en)
) =

∑
k0+1≤n

1

n2

1

pn(en)
pr(en)

=
∑

k0+1≤n≤r−1

1

n2

1

pn(en)
pr(en) +

∑
r≤n

1

n2

1

pn(en)
pr(en)

≤
∑

k0+1≤n≤r−1

1

n2

1

pn(en)
pr(en) +

∑
r≤n

1

n2
< ∞.

Put then

x =
∑

k0+1≤n

1

n2

en

pn(en)
.

Consider y ∈ A such that x = xyx. Multiplying the members of this equality,
on the left and on the right by en and remarking that enx = xen = λnen where
λn = 1

n2
1

pn(en)
, one obtains

λ2
nenyen = λnen

for all n. Whence λnenyen = en. Now it is clear that SpA(en) = {0, 1}, hence
ρA(en) = 1. On the other hand, since every en is idempotent and ρA(ab) = ρA(ba)
one has

1 = ρA(en) ≤ ρA(λnenyen) = ρA(λne
2
ny) = ρA(λneny)

≤ Kpk0(λneny)

≤ Kpk0+1(λnen)pk0+1(y).

But λnen is the general term of a convergent series. Whence 1 ≤ 0, which is
absurd.

Now take the collection F of the families of pairwise orthogonal idempotents.
Due to the preceding, all the elements of F are finite. The order is defined as
follows

{e1, ..., er} ≤ {e
′

1, ..., e
′

s} ⇐⇒ {e1, ..., er} ⊂ {e
′

1, ..., e
′

s}.
Then F endowed with this order is an inductive family. Indeed, if (Iλ)λ is a
totally ordered subfamily of F , then it is majorized (it admits an upper bound).
Put I = ∪Iλ . By the preceding, I is necessarily finite. It is clear that I ∈ F
and that it is an upper bound of (Iλ)λ. By Zorn’s lemma, F admits a maximal
element {f1, ..., fr}. One then necessarily has f1 + ...+ fr = e, where e is the unit
element of A. Otherwise the family {f1, ..., fr, f}, with f = e − (f1 + ... + fr),
would be an element of F which is larger than {f1, ..., fr}; but this contradicts
the maximality of the latter. Now by Lemma 4.2, every fi can be written

fi =
∑

1≤j≤ri

fi,j,

where the family ( fi,j)1≤j≤ri
is made of minimal idempotents which are pairwise

orthogonal; if fi is not minimal, take ri = 1 and fi,1 = fi. Moreover one has

fi,j = fi fi,j = fi,j fi; j = 1, ..., ri.
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Hence for i 6= i
′
, 1 ≤ k ≤ ri, 1 ≤ k

′ ≤ r
′
i, we have

fi,kfi′ ,k′ = fi′ ,k′fi,k = 0.

Thus the family ( fi,j)1≤i≤r, 1≤j≤ri
is made of pairwise orthogonal minimal idem-

potents. Finally it is clear that ∑
1≤i≤r,1≤j≤ri.

fi,j = e.

This family of now minimal idempotent elements will be denoted (e1, ..., en) in
the sequel. To finish, let i, j ∈ {1, ..., n}. Since ei is minimal, eiAei is finite
dimensional by Gelfand -Mazur theorem. It is also actually the case for eiAej.
Indeed let a ∈ A be such that eiaej 6= 0. Since every ei is minimal, the ideal
Aej is a left minimal ideal ([4, Proposition 6, p.155] ). But {0} 6= Aeiaej ⊂ Aej.
Whence

Aej = Aeiaej.

Hence

eiAej = eiAeiaej

which is finite dimensional since eiAei is. Finally, one has

A =
∑
i,j

eiAej,

due to e = e1 + ... + en. Whence the result. �

Remark 4.4. The proof of Aupetit [3, p. 57], in the Banach case, contains an
error. Indeed, the family {p1, ..., pi−1} ∪ {p, pi − p} ∪ {pi+1, ..., pk} is not larger
than {p1, ..., pk} with respect to the order considered there.

As a consequence we do have the result (claimed by Kaplansky) announced in
the introduction.

Corollary 4.5. A Banach algebra is a v.N-r-algebra if and only if it is semisimple
and finite dimensional.

For the second structure result, we will need the following fact which has an
interest in its own.

Theorem 4.6. Let A be a Fréchet l.m.c.a.(not necessarily a Q-algebra). If A a
v.N-r-algebra, then it is a projective limit of finite dimensional algebras.

Proof. Let (pk)k≥0 be a directed sequence of submultiplicative seminorms defining
the topology of A. The standard normed algebra (A/ ker pk, p̃k) is also a v.N -
r-algebra. It is a Q-algebra, by (iv) of Proposition 3.1. It then follows that
the algebra A/ ker pk, endowed with the quotient Fréchet topology, is also a Q-
algebra. So, by Theorem 4.3, it is of finite dimension. It remains only to use the
Arens-Michael decomposition [12, Theorem 5.1, p. 20],

A = lim
←−

A/ ker pk.

�
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Remark 4.7. Theorem 4.6 is not valid without metrizability. Indeed consider
the algebra of stationary complex sequences that is which are constant from an
integer on. For any k ∈ N , put

Ak = {(xn)n ⊂ A : xn = xk,∀n ≥ k} .

The Ak’s constitute an increasing sequence of finite dimensional subalgebras of
A, the union of which is A. Actually A is, in a standard way, the algebraic
inductive limit of (Ak)k. Endow A with the associated inductive limit topology
τ . It is a l.m.c.a. [2]. It is in fact the finest locally convex topology on A, since
the Ak’s are of finite dimension. Moreover, as every Ak is barrelled it is true for
A, [5, Corollaire 3, p. III.23]. The spectrum of every element of A is finite (hence
bounded). Thus A is a Q-algebra [14, Corollary 3, p. 296]. Now suppose that
A is a projective limit of finite dimensional (commutative) algebras. The latter
are semisimple. Thus all the factors of the projective limit are of the form Cl

with l ∈ N . But A is a Q-algebra and so τ must be the coarsest locally convex
topology on A. It ensues that there is only one locally convex topology on A,
which is not the case.

It is known, by a result of Apostol [1], that if (A, (pλ)λ) is a locally C∗-algebra
then the factors A/ ker pk are Banach algebras; even C∗-algebras . So, using
Theorem 4.3, we obtain the following.

Theorem 4.8. If a unital locally C∗-algebra is also a v.N-r-algebra, then it is a
projective limit of finite dimensional algebras.

5. Bilateral F-algebras

Assertion (v) of Proposition 3.1 suggests to look at the case where all the ideals
of an algebra A are bilateral. When A is unital, it is equivalent to say that it is
itself bilateral i.e.,

∀x, y ∈ A, ∃u, v ∈ A : xy = ux = yv.

We obtain the following structure theorem in the frame of F -algebras as indi-
cated in the heading of this section. But first an algebraic result which is well
known in the commutative case [9, Lemme 2, p. 69]. We have never met it in
the non commutative one, so we are providing a proof.

Lemma 5.1. Let A be a noetherian algebra. Then every bilateral ideal of A
contains a finite product of prime ideals.

Proof. Denote by F the family of bilateral ideals, of A, which do not satisfy the
desired conclusion. Suppose that F is not void. Consider I a maximal element of
F , the existence of which is assured by the noetherianity of A. In particular, I is
not a prime ideal. So there are two bilateral ideals J and K of A, not contained
in I, such that I contains JK. As I + J and I + K contain strictly I , each
one of them contains a finite product of prime ideals. The same for I, since
(I + J)(I + K) ⊂ I. But this should not be the case. �
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Theorem 5.2. Let A be a bilateral Q-F -algebra. Then A is a v.N-r-algebra if
and only if it is algebraically and topologically isomorphic to a finite product of
F -algebras which are also fields.

Proof. Sufficiency is clear. For necessity, we first show that A is noetherian. Let
(In)n be an increasing sequence of ideals of A and put I = ∪In which is also an
ideal of A. By (v) of Proposition 3.1, I is closed. But the In’s are closed in A,
hence also in I. Then by the Baire theorem, there is an n0 such that In0 is of
non void interior. Whence I = In0 for In0 is a subspace of I . It follows that
In = In0 , for n ≥ n0. Now A being noetherian, there are by Lemme 5.1 prime
ideals P1, ..., Pr which are pairwise distinct and integers α1, ..., αr such that

Pα1
1 ...Pαr

r = {0}.
But Pαi

i = Pi. Indeed if x ∈ Pi, there is y ∈ A such that x = xyx ∈ P 2
i . Hence

P 2
i = Pi. Whence the claim. Thus, we actually have

P1 ∩ ... ∩ Pr = {0}.
On the other hand A/Pi is without zero divisors. Indeed, let x, y ∈ A such that
xy ∈ P . As A is bilateral, one has xAy = xyA. Hence xAy ⊂ P . So x ∈ P or
y ∈ P . Thus A/Pi being also a v.N -r-algebra, it is a division algebra. So the Pi’s
are maximal and P1 ∩ ...∩Pr = {0}. Now, for every i, denote by si the canonical
surjection of A onto A/Pi. The map

ϕ : A −→ A/P1 × ...× A/Pr

defined by
ϕ(x) = (s1(x), ..., sr(x))

is an algebraic and a topological isomorphism. �

As a consequence, we have the following result, where H is the field of quater-
nions.

Corollary 5.3. Let A be a bilateral Q-B0-algebra. Then A is a v.N-r-algebra if
and only if it is isomorphic to Rr × Cs ×Ht, with r, s, t are positive integers.

As an outcome we have the following characterizations of the standard algebras
CN and Cn.

Proposition 5.4. CN is, up to an algebraic and topological isomorphism, the
unique complex bilateral Fréchet l.m.c.a. A which is a v.N-r-algebra of infinite
dimension.

Proof. By Theorem 4.6, A is a projective limit of finite dimensional algebras An.
The latter are bilateral and v.N -r-algebras. By Corollary 5.3, An is isomorphic
to some Csn . Whence the result �

Proposition 5.5. Cn is, up to an algebraic and topological isomorphism, the
unique complex bilateral Fréchet l.m.c.a. A which is a v.N-r -algebra of finite
dimension.

Acknowledgement. Thanks are offered to the referee for a three times very
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for numerous clarifications.
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nach, C. R. Acad. Sci. Paris Ser A-B 265 (1967), 235–237.

[11] A. Mallios, Topological algebras. Selected topics, North-Holland, Amsterdam, 1986.
[12] E.A. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc.

1952 (1952), no. 11, 79 pp.
[13] Y. Tsertos, A characterization of Q -algebras, Funct. analysis, approximation theory and

numerical analysis, 277–280, World Sci. Publ., River Edge, NJ, 1994.
[14] W. Zelazko, On maximal ideals in commutative m-convex algebras, Studia Math. 58 (1976),

290–298.
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