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NEW UPPER BOUNDS FOR MATHIEU–TYPE SERIES

ŽIVORAD TOMOVSKI1∗ AND TIBOR K. POGÁNY2

Communicated by Z. Páles

Abstract. The Mathieu’s series S(r) was considered firstly by É.L. Mathieu
in 1890, its alternating variant S̃(r) has been recently introduced by Pogány
et al. [Appl. Math. Comput. 173 (2006), 69–108], where various bounds
have been established for S, S̃. In this note we obtain new upper bounds over
S(r), S̃(r) with the help of Hardy–Hilbert double integral inequality.

1. Introduction and preliminaries

The series

S(r) =
∞∑

n=1

2n

(n2 + r2)2

is named after Émile Léonard Mathieu (1835–1890), who investigated it in his
1890 book [9] written on the elasticity of solid bodies. Bounds for this series
are needed for the solution of boundary value problems for the biharmonic equa-
tions in a two–dimensional rectangular domain, see [13, Eq. (54), p. 258]. The
alternating version of S(r), that is

S̃(r) =
∞∑

n=1

(−1)n−1 2n

(n2 + r2)2
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was introduced following certain Tomovski’s ideas and recently discussed by

Pogány et al. in [12]. Applications of alternating Mathieu series S̃(r) concerning
ODE which solution is the Butzer–Flocke–Hauss Omega function were studied in

[3], [11]. The integral representations of S(r), S̃(r) [6], [12] respectively, reads as
follows:

S(r) =
1

r

∫ ∞

0

x sin(rx)

ex − 1
dx, S̃(r) =

1

r

∫ ∞

0

x sin(rx)

ex + 1
dx . (1.1)

These integral expressions will be the starting points in our study.

2. Results required

Let us consider a Hölder pair (p, q), p−1 + q−1 = 1, p > 1, two non–negative
functions f ∈ Lp(R+), g ∈ Lq(R+), and let us denote ‖ · ‖Ls(R+) := ‖ · ‖s the usual
integral Ls–norm on the set of positive reals. The celebrated Hardy–Hilbert (or
Hilbert) integral inequality [10] reads∫ ∞

0

∫ ∞

0

f(x)g(y) dxdy

x + y
≤ π

sin(π/p)
‖f‖p‖g‖q . (2.1)

The inequality is strict unless at least one of f, g is zero, and the constant on the
right in (2.1) is the best possible [10].

Consider the scaled parametric integral

Ip =

∫ ∞

0

| sin x|p

xp

(
p > 1

)
.

We point out that in [2, p. 663] the following estimate has been proved:

Ip ≤
π

2

√
2

p

(
p ≥ 2

)
.

However, we shall give another estimate over Ip when p > 1.

Lemma 2.1. For all p > 1 the following estimate holds

Ip ≤ q (2.2)

where q is the conjugate Hölder pair to p.

Proof. Let us write

Ip :=

∫ 1

0

| sin x|p

xp
dx +

∫ ∞

1

| sin x|p

xp
dx .

Then, by the estimate sin x ≤ x, x ∈ [0, 1] and by the redundant | sin x| ≤ 1, x > 1
respectively, we easily deduce

Ip ≤
∫ 1

0

dx +

∫ ∞

1

dx

xp
= 1 +

1

p− 1
= q .

This finishes the proof of the Lemma. �
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3. Main results

At first we establish an upper bound for both S(r), S̃(r) of magnitude O
(
r−1/2

)
.

Theorem 3.1. Let (p, q), p > 1 be a Hölder pair. Then we have

S̃(r) ≤ S(r) ≤ 16
√

π q1/(2p)p1/(2q)

√
r sin1/2(π/p)

=: Cp(r) . (3.1)

Moreover, the best/sharpest upper bound estimate

C2(r) =
16
√

2π√
r

is obtained if p = q = 2.

Proof. It is sufficient to prove the inequality on the left in (3.1) since the right
one can be proved similarly. First, we give two elementary inequalities:

x

ex + 1
≤ x

ex − 1
≤ 2

ex/2

(
x ≥ 0

)
(3.2)

xy(x + y)

64
≤ exp

{x

4
+

y

4
+

x + y

4

}
= exp

{x + y

2

} (
x, y ≥ 0

)
. (3.3)

Thus, we have(
S(r)

)2
=

1

r2

∫ ∞

0

∫ ∞

0

xy sin(rx) sin(ry)

(ex − 1)(ey − 1)
dxdy

≤ 4

r2

∫ ∞

0

∫ ∞

0

| sin(rx) sin(ry)|e−(x+y)/2dxdy (by (3.2))

≤ 256

r2

∫ ∞

0

∫ ∞

0

| sin(rx) sin(ry)|
xy(x + y)

dxdy . (by (3.3))

Taking f(x) = x−1| sin(rx)| = g(x) we apply the Hardy–Hilbert inequality to the
last expression, such that one transforms into

(
S(r)

)2 ≤ 256π

r2 sin(π/p)

(∫ ∞

0

| sin(rx)|p

xp
dx

)1/p(∫ ∞

0

| sin(ry)|q

yq
dy

)1/q

=
256π r(p−1)/p+(q−1)/q

r2 sin(π/p)
(Ip)

1
p (Iq)

1
q

≤ 256π q
1
p · p

1
q

r sin(π/p)
(by (2.2))

This is equivalent to the asserted result (3.1), since the termwise comparation of

defining formulæ showes that S̃(r) ≤ S(r).
Rewriting (3.1) with the notation x := 1/p, we deduce

C1/x(r) =
16
√

π√
r(1− x)xx1−x sin(πx)

(
0 < x < 1

)
.

An easy computation shows that the denominator is maximal and hence the
upper bound constant is minimal if x = 1/2, that is, when p = q = 2. �
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Now, we will extend this result, scaling the exponent of r in the upper bound
(3.1). The achieved magnitude should be O

(
r−1/(2p)

)
, p > 1.

Theorem 3.2. Let (p, q), p > 1 be a Hölder pair. Then for all r > 0, v > 1 we
have

S̃(r) ≤ S(r) ≤ C(p, v)

r1/(2p)
(3.4)

where

C(p, v) :=
2(5q+1)/(2q) max{21/(2p), 21/(2q)}

(
πp
)1/(2p) (

Γ(q)Γ(2q)
)1/(2q)

q3/2
(
sin(π/p) (p− 1/v)1/v(p− 1 + 1/v)1−1/v

)1/(2p)
.

Proof. For a given Hölder pair (p, q), p > 1 and for some r > 0 consider

(
S(r)

)2
=

1

r2

∫ ∞

0

∫ ∞

0

xy sin(rx) sin(ry)

(ex − 1)(ey − 1)
dxdy

=
1

r6

∫ ∞

0

∫ ∞

0

sin(x) sin(y)

xy(x + y)1/p
· x2y2(x + y)1/p

(ex/r − 1)(ey/r − 1)
dxdy .

By the Hölder inequality we conclude

(
S(r)

)2 ≤ 1

r6

(∫ ∞

0

∫ ∞

0

| sin(x) sin(y)|p

xpyp(x + y)
dxdy

)1/p

×

(∫ ∞

0

∫ ∞

0

x2qy2q(x + y)q−1

(ex/r − 1)q(ey/r − 1)q
dxdy

)1/q

. (3.5)

Choosing this time w as the Hölder conjugate pair to given v > 1 and specifying

f(x) = g(x) = x−p| sin(x)|p ,

we evaluate by the Hardy–Hilbert inequality (2.1) the first integral from above:

J =

∫ ∞

0

∫ ∞

0

| sin(x) sin(y)|p

xpyp(x + y)
dxdy

≤ π

sin(π/p)

(∫ ∞

0

| sin(x)|pv

xpv
dx

)1/v(∫ ∞

0

| sin(y)|pw

ypw
dy

)1/w

. (3.6)

Estimating (3.6) by (2.2) we deduce

J ≤ π

sin(π/p)

pv

(pv − 1)1/v((p− 1)v + 1)1−1/v
.



NEW UPPER BOUNDS FOR MATHIEU–TYPE SERIES 13

The second integral in (3.5) we evaluate in the following way:

K =

∫ ∞

0

∫ ∞

0

x2qy2q(x + y)q−1

(ex/r − 1)q(ey/r − 1)q
dxdy

= r5q+1

∫ ∞

0

x2qy2q(x + y)q−1

(ex − 1)q(ey − 1)q
dxdy

≤ r5q+1 max{2, 2q−1}
∫ ∞

0

x3q−1 dx

(ex − 1)q

∫ ∞

0

y2q dy

(ey − 1)q
(3.7)

≤ (2r)5q+1q−3q max{2, 2q−1}Γ(q)Γ(2q) .

where in (3.7) we make use of the estimate (such that follows by (3.2)):∫ ∞

0

xα

(ex − 1)q
dx ≤ 2q

∫ ∞

0

xα−qe−qx/2 dx =
2α+1

qα−q+1
Γ(α− q + 1) ,

specified for α = 3q−1, 2q respectively. So, the upper bound over S(r) in (3.4) is

proved. Repeating the termwise comparation procedure for S(r), S̃(r), we clearly
deduce (3.4). �

4. Discussion

A. In this research note we derive upper bounds for S(r), S̃(r), such that possess
the form

S(r) ≤ Φ(θ)

rα

(
α > 0

)
.

Here Φ(θ) is an absolute constant and θ denotes the vector of scaling parame-
ters. We obtain our main results (3.1) and (3.4) via the Hardy–Hilbert integral
inequality.

At first, we recall some ancestor results such that will be compared to our
bounds for small r. In [9] Mathieu posed his famous conjecture S(r) < r−2, r > 0.
The conjecture was proved after more then 60 years by Berg [1] and by Makai
[8]. Actually they showed more:

1

r2 + 1/2
< S(r) <

1

r2

(
r > 0

)
.

Another proof of this upper bound has been given by van der Corput and Heflinger
[4]. Diananda [5] improved Mathieu’s bound to

S(r) ≤ 1

r2
− 1

(2r2 + 2r + 1)(8r2 + 3r + 3)

(
r > 0

)
. (4.1)

Here has to be mentioned Guo’s bound of magnitude O(r−2), [7, Eq. (10)].

B. We obtain easily an upper bound, such that is superior to Mathieu’s bound

r−2 for small r. Indeed, starting with the integral expressions for S(r) and S̃(r)
in (1.1) we have

S(r) ≤ 1

r

∫ ∞

0

x dx

ex − 1
=

π2

6r
=: S?(r) and S̃(r) ≤ 1

r

∫ ∞

0

x dx

ex + 1
=

π2

12r
.

So, when r ∈ (0, 6/π], it follows S?(r) ≤ r−2.
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C. Let us denote S1(r), S2(r) the upper bounds in Theorems 3.1, 3.2 respectively.
Comparing Mathieu’s bound with S1(r), solving the equation S1(r) = r−2 we find
that

S1(r) ≤
1

r2

(
0 < r ≤ sin2/3(π/p)

4 3
√

4π p1/(3q)q1/(3p)
:= r1(p) < 1

)
.

Therefore, S1(r) is obviously superior to bounds with magnitude O(r−2), r small.
Similar comparisons involving S2(r) and/or Diananda’s (4.1) and Guo’s bounds
one leaves to the interested reader. These analyses show that our bounds (3.1),
(3.4) mainly improve the earlier ones.

D. Let us compare S1(r) and S2(r). It is not hard to see that

r0 := r0(p, v) =
23q−1π p2−qq4q−1

(
(p− 1/v)1/v(p− 1 + 1/v)1−1/v

)q−1

sin(π/p) max{2, 2q−1}Γ(q)Γ(2q)

is the unique positive solution of S1(r) = S2(r). Accordingly, it follows that

S2(r) < S1(r)
(
r ∈ (0, r0)

)
,

while for r > r0 the reversed conclusion holds. We point out that r0 can easily
skip 1; for instance r0(2, 2) = 512 π.

E. Because the alternating Mathieu series has been introduced recently in [12], the
here established bounds are unique until now. However, for r large the bounding
inequalities presented also in [12] are sharper than the here presented ones.
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