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ABSTRACT. We prove optimality of power-type weights in the Hardy inequality
of fractional order.

1. INTRODUCTION AND THE MAIN RESULT

In [3] the following theorem was proved.

Theorem 1.1. Let 1 < p < 00, § € (0,1) U (1,p) and u be a locally integrable
function on [0,00). Let

(i) either 0 <d <1 and tlir?o%fgu:0,

(i) or 1<d<p and tl_i)I&%fJ’uzO.

/Ooo|u($)|px_5dx <C /Ooo /j%dxd% (1)

where C = (14 p/|6 — 1|)P/2.

Then
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It is known that the restriction § € (0,1) U (1,p) is essential. Indeed, if either
0 < 0ord > p, then the integral on the right-hand side of diverges for
each nonzero function u € C§°(0,00). If p > 1 and § = 1, then there is no finite
constant C' such that inequality holds for all functions in question. Indeed,
inserting the functions

ug(t):t_g

Xe,2¢) (t) + X[2a,1/2)(t) + 2(1 - t)X(l/Q,l)(t)

into and letting ¢ — 0, we obtain that the constant C' — oco. (See [3|
Remark 6].) Here the symbol y; stands for the characteristic function of an
interval I C R.

The aim of this paper is to show that power-type weights in inequality
are optimally chosen. This follows from the next result.

Theorem 1.2. Let 1 < p < oo. Suppose that § € (0,1)U (1,p), n € (0,p) and
there is a positive constant C' such that the inequality

/0 u(z)P o 5dx<0/ /OO '“‘x_ ‘n+1)|pd ay (12)

holds for all locally integrable functions u satisfying one of conditions , of
Theorem [I.I. Thenn=7.

The proof of Theorem [1.2|is based on some ideas developed in [I] and [2].

2. PROOF OF THEOREM

To prove Theorem [1.2] we need several lemmas.

Lemma 2.1. Let 0 < p < 0o and w be a measurable nonnegative even function.
Then

| ] 0@ = st ute - sy
=2 [T ([T latv w0 - st ayJuman, @)

provided that the left-hand side of the equality makes sense.

Proof. Using the change of variables x = y + h in the inner integral and applying
the Fubini theorem, we obtain

/ / y)[Pw(z—y)dedy = /OOO (/c: l9(y+h)—g(y)|” w(h) dh) dy
= /Ooo (/Ooo gy +h) — g(y)!pdy)w(h) dh

(e =gt anJum a2
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In the second term we replace h by k and y by z, then we make two changes of
variables h = —k and z — h = y and use the fact that w(—h) = w(h), to arrive at

/0 (7|g(y+h) —g(y)lpdy>w(h) dh:]o( Oo|g(y+h) —g(y)|pdy>w(h) dh.

—0o0

Together with (2.2)), it gives (2.1)). O

In what follows we write A < B (or A 2 B) if A < ¢B (or cA > B) for
some positive constant ¢ independent of appropriate quantities involved in the
expressions A and B. For p € [1,00], the conjugate number p’ is defined by
1/p+1/p" =1 with the convention that 1/c0 = 0.

Lemma 2.2. Let w be a measurable nonnegative function, let p € [1,00), a €
(1,00) and o := a/(a—1). Then

/O°° (/OOO l9(y +h) = g(y)” dy)w(h) dh
: /ooo (/02h sl dy)w(h) dh+ /0°° (/hoo 9" (y) I dy) hw(h)dh (2.3)

and

/0°° (/OOO l9(y + 1) = g(y)I” dy)w(h) dh
[ ([ ([ wora) s

N /0 ” ( /h h |g’(y)|pdy>h”w(h) dh (2.4)

for all locally absolutely continuous functions g on [0, 00).

Proof. Let h > 0. Then
/ l9(y +h) — g(y)|" dy
0

h oo
= /0 l9(y + 1) — g(y)[ dy + /h l9(y +h) — g(y)[" dy

First, we estimate Ny:
h
Ni(h) = / l9(y +h) — g(y)[" dy
0

5/0 |9(y+h)lpdy+/0 Ig(y)l"dyzfo l9(y)[P dy. (2.6)
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For the alternative estimate, we use the Holder inequality with the exponents «
and o to get, for all y > 0,

y+h
lgty + 1) —g(y)| = / g'(r)dr
)
, y+h 1/ex , ) 1/«
< ([Tgrar) e ([Cigopar)
Y Y
Consequently,
, h 0 p/a
Ny(h) < hel / ( / |g/(7')|ad7'> dy. (2.7)
0 y

Now, we estimate the second term N,. We use the estimate |g(y + h) — g(y)| <

h fol |¢'(y+7h)|dr, then the Holder inequality, the Fubini theorem and the change
of variables y + 7h = z to obtain

Nt = [loto+n) - swpans [ [ miar) a

<o [T([wwemprar)a=iw [([* (gepa)ar
<w [ [Cwere)a=mw [Cigwra. e

Estimate (2.3) follows from ({2.5)), (2.6) and ({2.8]), estimate ({2.4)) is a consequence
of 23), 7 and 23). 0

Take R € (0,00) and put

ur(z) == @r(x) /033 X(rer) ()t dt, x € (0,00), (2.9)

where pg € C*[0,00) is a cut-off function such that

supppr C [0,4R], 0 <pr<1,
or(xz) =1for x € [0,3R], ¢gr(zr) =0 for z € [4R, o0,

|kl S R Xi3ran)-

Obviously,
1 t 1 t
lim - [ wug(z)dz =0 and lim — [ wug(z)dz =0, (2.10)
t—oo t 0 t—04 t 0
[Wrp(z)| S R Xsrar (2) + X(r2r)(z) 2™ for all z € (0,00). (2.11)

Lemma 2.3. Let 1 <p < oo and d € (0,1) U (1,p). Assume that ug is given by

(2.9). Then
/ lug(x)[P 2= da > R*"™P~°  for all R € (0, 00). (2.12)
0
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Proof. Since

0 if z€[0,R],
ur(x) =< 1/R—1/z if xz€ (R,2R], (2.13)
1/(2R) if x € (2R,3R),
we obtain
00 3R
/ lug(z)|P 270 dz > / (1/2R))" 2 ° da ~ R P
0 2R
and ([2.12) is verified. O
Lemma 2.4. Suppose that 1 < p < oo and n € (0,p). Let ur be given by ([2.9).
Then
oo oo . P
/ / [ur() uR(ly)| dedy < RYP™"  for all R € (0,00). (2.14)
0o Jo |z —y|rt

Proof. We start with some auxiliary estimates. If 3 € [1,00), then, by ({2.11)),

> R'-2% if h e |0,4R]
/ B < 9 )

Using this estimate with 5 = p, the facts that p € [1,00) and i € (0, p), we obtain

/ (/ (O de ) S / R Xoar)(h) =71 dh
0 h 0

4R
_ R12p/ P11 qh ~ RYP" forall R e (0,00). (2.16)
0

If n € (1,p), we use (2.13) to get

/Ooo (/:h lugr(t)? dt> h1dh < /RZ (/02h RP dt) K11 dh

~ R_p/ h™"dh ~ R forall R € (0,00). (2.17)
R/2
Now, assume that 7 € (0,1] and « € (1, 00) is such that o/ > p/n. Then
0>p/a —n>-—1. (2.18)

Using ([2.15) with g = «, we get
h 00 p/a h vl
/ (/ |U;z(t>|adt> dy 5/ (Rl_m X(o,m}(y)) dy
0 Y 0

< RU=29P/@ min{h 4R} for all h, R € (0,00). (2.19)
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Thus, if n € (0, 1], then (2.19)) and (2.18]) imply that

) h ) o ,
/ (/ (/ [wp(r)|" dr)’ dy)hp/"“”‘ldh
0 0 Y

4R 0o
< R(l—Qa)p/a/ pp/e’=n dh + R(1—2a)p/a+1/ e/ =n=1qhn
0 4R
~ R'"P" forall R € (0,00). (2.20)

Now, we are able to prove ([2.14]). To this end, we distinguish two cases.
(i) Tet n € (1,p). Then, (1) with w(h) = [b| !, (23), (17) and (210)

yield

> |ug(z) — ur(y)P
/ / va—yl’7+1 dody

5/0 </O |UR(y)|de) A= dh + /OOO </hoo ()P dy) Be=1 ),

< R'"™P ™ for all R € (0, 00).

(11) Let n € (0,1]. Choose a € (1 oo) such that o/ > p/n. Then, (2.1) with

w(h) == |h|77, 2.4), (2:20) and (2.16) imply that
* Jur(r) — ur(y)l”
I =
0o h o) p/a ,
5/ </ (/ \u}z(T)P‘dT) dy)hp/“ g
0 0 Y

+/ (/ [u's (y)|? dy) P17 dh < RYPTT for all R € (0,00).
0 h

O

Now, we can prove Theorem [I.2]

Proof of Theorem[1.2. By (2.10)), the test function ug satisfies both of condi-
tions (), of Theorem [1.1, We obtain from (1.2)), (2.12)) and (2.14)) that

R'"P < CRY™P™ forall R € (0,00).

Since the constant C'is independent of R, the last estimate implies that n =¢§. O
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