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A 1-NORM BOUND FOR INVERSES OF TRIANGULAR
MATRICES WITH MONOTONE ENTRIES
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Abstract. This paper provides some new bounds for 1−norms of positive
triangular matrices with monotonic column entries. The main theorem refines
a recent inequality of Vecchio and Mallik in the case of constant diagonal. The
results are shown to be in a sense best possible under the given constraints.
En route some partial order inequalities are obtained.

1. Introduction

This paper provides some new bounds for 1−norms of positive triangular matri-
ces with monotonic column entries. The main theorem refines a recent inequality
of Vecchio and Mallik [11] in the case of constant diagonal. We refer the reader
to Vecchio [10] and Vecchio and Mallik [11] (and the reference therein) for discus-
sion of applications particularly those to stability analysis of linear methods for
solving Volterra integral equations. Other references on the topic include [3]–[7]
and [9].

The matrices of interest here are n× n truncations of infinite lower triangular
(real) matrices, i.e.
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An =


a1,1

a2,1 a2,2

a3,1 a3,2 a3,3

· · · ·
an,1 · · · · an,n−1 an,n

 . (1.1)

The following result was proven in [11].

Theorem 1.1. Assume that

(i) ai,j ≥ a > 0, j = 1, . . . , i, i = 1, . . . , n,
(ii) ai,i ≥ ai+1,i ≥ · · · ≥ an,i, i = 1, . . . , n,

and let

amin = min
i=1,...,n

{ai,i}, (1.2)

and Bn = [bi,j] be the inverse of the lower triangular matrix An. Then

‖Bn‖1 ≤
1

amin

+
2

a
. (1.3)

The result in (1.3) was first proven in the case of triangular Toeplitz matrices
in [10] and improved to the following in [2].

Theorem 1.2. Suppose that the sequence {ai}i≥0 satisfies

a0 ≥ a1 ≥ a2 ≥ · · · an ≥ a > 0, (1.4)

for some constant a and all n and

Cn =


a0

a1 a0

a2 a1 a0

· · · ·
an · · · · a1 a0

 . (1.5)

Then

‖C−1
n ‖1 ≤

2

a

(
1− ρ(a, a0)

dn
2 e
)

(1.6)

where ρ is the inverse ratio defined via

ρ(x, y) = 1− x/y, (1.7)

and, in particular

‖C−1
n ‖1 ≤

2

a
, (1.8)

independent of a0 and n.
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Here, we extend Theorem 1.2 (to non-Toeplitz matrices) and refine Theorem
1.1 in the case of constant diagonal. In particular we will prove the following.

Theorem 1.3. Assume that the hypotheses of Theorem 1.1 are satisfied and in
addition that

a1,1 ≤ a2,2 ≤ · · · ≤ an,n. (1.9)

Then

‖Bn‖1 ≤
2

a

(
an,n

a1,1

)(
1− ρ(a, an,n)d

n
2 e + ρ(a, an,n)b

n
2 c

2

)
. (1.10)

In particular, if

a1,1 = a2,2 = · · · = an,n = a∗, (1.11)

then

‖Bn‖1 ≤ 2

a

(
1− ρ(a, a∗)d

n
2 e + ρ(a, a∗)b

n
2 c

2

)
, (1.12)

and hence

‖Bn‖1 <
2

a
, (1.13)

independent of a∗.

Note that triangular matrices satisfying (1.11) arise in the study of linear groups
(see for instance [8]) and are particularly important in the theory of matrix de-
compositions.

The inequality in (1.12) is in a sense best possible. In particular, for 0 < a < a∗,
set

An(a, a∗) = {A = [ai,j]n×n | A satisfies (1.1), (i), (ii) and (1.11)}. (1.14)

We have the following theorem regarding optimality.

Theorem 1.4. For 0 < a < a∗,

sup
A∈An(a,a∗)

‖A−1‖1 =
2

a

(
1− ρ(a, a∗)d

n
2 e + ρ(a, a∗)b

n
2 c

2

)
. (1.15)

Proof. We need to show that the bound in (1.12) is attained. To that end, suppose
ai,j = a∗ > 0 for i− j ∈ {0, 1} and ai,j ≡ a otherwise. It is easy to verify in this
case, that for 1 ≤ j ≤ i ≤ n,

bi,j = (−1)i−j 1

a∗

(
1− a

a∗

)b i−j
2 c

, (1.16)
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and hence,

‖A−1
n ‖1 =

n∑
i=1

|bi,1|

=
n∑

i=1

1

a∗

(
1− a

a∗

)b i−1
2 c

=
n−1∑
i=0

1

a∗

(
1− a

a∗

)b i
2c

=
1

a∗

bn
2
c−1∑

i=0

(
1− a

a∗

)i

+

dn
2
e−1∑

i=0

(
1− a

a∗

)i


=

2

a

(
1− ρ(a, a∗)d

n
2 e + ρ(a, a∗)b

n
2 c

2

)
. (1.17)

�

Note also that

sup
A∈

⋃
n≥1An(a,a∗)

‖A−1‖1 = 2/a. (1.18)

The reader is referred to [1] for some discussion of bounds for inverses of ma-
trices of the form in (1.1) when the condition of monotonicity within columns is
replaced with that within rows.

2. Preliminaries and notation

In order to prove Theorem 1.3, consider the partial order on the set Vb,a of
(arbitrary length) tuples (a1, a2, . . . , ak) with

b ≥ a1 > a2 > · · · > ak = a (2.1)

defined via

v ≺ z if z is a suffix of v (2.2)

where z = (z1, z2, . . . , zk) is a suffix of v = (v1, v2, . . . , vm) if m > k and v =
(v1, . . . , vm−k, z1, z2, . . . , zk). For convenience, if w = (w1, w2, . . . , wr) we will
write the r+k−tuple (w1, w2, . . . , wr, z1, z2, . . . , zk) as (w; z). In addition, denote
the length of v by l(v) = k. The value v1 will be referred to as the initial value
of v.

For a triangular double sequence {di,j}j<i<n satisfying 0 ≤ di,j < 1 for j < i < n
and

n∑
i=j+1

di,j ≤ x < 1, j = 1, 2, . . . , n− 1 (2.3)
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define the function D via

D(v) = dvk,vk−1
· dvk−1,vk−2

· · · dv3,v2 · dv2,v1 (2.4)

for v = (v1, v2, . . . , vk).
Note that it follows directly from the definition of D, the inequality in (2.3)

and the non-negativity of {di,j} that D(v) < D(z) for v ≺ z.

Lemma 2.1. Consider a set of tuples {v1,v2, . . . ,vk}. If vi ≺ z for 1 ≤ i ≤ k
and vi ⊀ vj for i 6= j (i.e. {v1,v2, . . . ,vk} forms an antichain that is bounded
above by z) then

D(z) ≥ D(v1) + D(v2) + · · ·+ D(vk). (2.5)

Proof. Let z2 be the least upper bound for {v1,v2, . . . ,vk}, i.e. z2 = min{w �
z : vi � w, 1 < i < k}. Clearly, z2 � z. We will show that

k∑
i=1

D(vi) ≤ D(z2). (2.6)

The result is immediate for k = 1. Hence suppose (2.6) holds for 1 ≤ k < K.
Now, suppose that there exists a z3 ≺ z2 and a set S ⊂ {1, 2, . . . , K} such that

2 ≤ ‖S‖ ≤ K − 1, vi ≺ z3 if i ∈ S, and vi ⊀ z3, if i ∈ Sc.
then by induction, we have

K∑
i=1

D(vi) ≤ D(z3) +
∑
i∈Sc

D(vi). (2.7)

Considering the set {z3} ∪ {vi : i ∈ Sc} and applying induction again we have
the inequality in (2.6).

Otherwise vi is of the form vi = (wi; (ti); z3), i = 1, 2, . . . , k, where tl 6= tj for
l 6= j and z3 = (z3,1, . . . , z3,l(z3)) � z2. In this case, by (2.3),

K∑
i=1

D(vi) ≤
K∑

i=1

D((ti); z3) =
K∑

i=1

dti,z3,1D(z3) = D(z3)
K∑

i=1

dti,z3,1 ≤ D(z3)

(2.8)

and the proof is complete. �

The following lemma will be crucial.

Lemma 2.2. For fixed s ≥ 1, set Si,s = 0 for i < s, Ss,s = 1 and for s + 1 ≤
m ≤ n, inductively,

Sm,s =
m−1∑
i=s

dm,iSi,s. (2.9)

Then, for Q ⊆ {s + 1, . . . , n}, we have
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∑
i∈Q

Si,s ≤ xs + x2
s + · · ·+ x‖Q‖s , (2.10)

where xs = maxt=s,...,n−1

∑n
i=t+1 di,t.

Proof. Note that it follows from straightforward induction that for m > s,

Sm,s =
∑

v=(m,...,s)∈Vm,s

D(v). (2.11)

Note that in (2.11), the summation is over all tuples v = (v1, v2, . . . , vl(v)) with

m = v1 > v2 > · · · > vl(v) = s. (2.12)

Now, define

Lk
m,s =

∑
v∈Vm,s

l(v)=k+1

D(v) (2.13)

We will show inductively that

Lk
m,s ≤ xk

s . (2.14)

First note that by (2.3) and the definition of xs,

L1
m,s = ds+1,s + ds+2,s + ds+3,s + · · ·+ dm,s ≤ xs. (2.15)

Thus assume that (2.14) is true for k < K. Then, since x1 ≥ x2 ≥ · · · ≥ xn,

LK
m,s =

m∑
i=s+1

di,sL
K−1
m,i ≤

m∑
i=s+1

di,sx
K−1
i ≤ xK−1

s

m∑
i=s+1

di,s ≤ xK
s . (2.16)

Now, define the sets

R1 = {v ∈ Vm,s|2 ≤ l(v) ≤ ‖Q‖+ 1} (2.17)

and

R2 = {v ∈ Vm,s|v = (i, . . . , s), i ∈ Q} (2.18)

and consider the quantity

HQ =

‖Q‖∑
k=1

Lk
m,s −

∑
i∈Q

Si,s (2.19)

=
∑
v∈R1

D(v)−
∑
v∈R2

D(v). (2.20)

We will prove that for all sets Q, HQ ≥ 0. The result will then follow from
(2.20) and the inequality in (2.14).
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We define the following scheme for matching elements z in R1 with (possibly
empty) subsets S(z) of R2 such that D(z) ≥

∑
v∈S(z) D(v) and {S(z)|z ∈ R1} is

a partition of R2. In particular for 2 ≤ t ≤ n, set

Jt = {v ∈ R1 : l(v) = t}, (2.21)

and recursively in t ≥ 2, for z ∈ Jt let

S(z) = {v ∈ R2|v is a maximal element in the set W(z)}. (2.22)

where

W(z) = {w ∈ R2|w � z and w /∈
⋃
v�z

v∈R1

S(v)}. (2.23)

Here, again, the maximality in (2.22) is with respect to the given partial order
on Vm,s.

Now, fix z ∈ Jt for some 2 ≤ t ≤ n and suppose {v1,v2} ⊂ S(z) with v1 6= v2.
The fact that v1 ⊀ v2 and v2 ⊀ v1 follows from the maximality in (2.22). We
then have that Lemma 2.1 is applicable and

D(z) ≥
∑

v∈S(z)

D(v), (2.24)

as required. In addition, by the definition of W we have that the sets S(z),
z ∈ R1 are pairwise disjoint. To see that R2 ⊂

⋃
z∈R1

S(z), first suppose v ∈ R2.
Let Kv be a maximal chain in Vm,s such that v ∈ Kv and set T1 = Kv ∩ R1 =
{z1, z2, . . . , zr} and T2 = Kv ∩ R2 = {v1,v2, . . . ,vq}, where v1 � v2 � · · · � vq

and z1 � z2 � · · · � zr. Note that ‖T1‖ = ‖Q‖ and ‖T2‖ ≤ ‖Q‖ (since the only
possible initial values for tuples are those in Q) and by (2.22), vi ∈ S(zi) for
1 ≤ i ≤ r and in particular v ∈

⋃
z∈R1

S(z). Since
⋃

z∈R1
S(z) ⊂ R2 by (2.22),

the result is proven. �

3. Proof of the main theorem

In this section we prove Theorem 1.3.
First note that the lower triangular matrix Bn = [bi,j] = A−1

n satisfies bs,s =
1/as,s and

bm,s =
m−1∑
j=s

−αm,jbj,s, (3.1)

for 1 ≤ s < m ≤ n, where αm,j = (am,j/am,m) for 1 ≤ j ≤ m ≤ n (see for instance
[1]).

Define hi,j = aj,jbi,j for 1 ≤ j ≤ i ≤ n, so that hs,s = 1 and for 1 ≤ s < m ≤ n,

hm,s =
m−1∑
j=s

−αm,jhj,s. (3.2)

We have the following lemma (contrast with Equation (2.3) in [11]).
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Lemma 3.1. Suppose that [ai,j] satisfies the hypotheses of Theorem 1.3. Then

hi,j = Si,j − Si,j+1, (3.3)

for 1 ≤ j ≤ i ≤ n, where {Si,j} is as in (2.9) for the nonnegative double sequence
{di,j} defined via

dm,j = αm−1,j − αm,j, (3.4)

for 1 ≤ j < m ≤ n. In addition, (2.3) is satisfied with

xs = max
t=s,...,n−1

n∑
i=t+1

di,t ≤ 1− a

an,n

= x. (3.5)

Proof. First, note that by (3.4), (ii) and (1.9)

dm,j = αm−1,j − αm,j =
am−1,j

am−1,m−1

− am,j

am,m

≥ 0, (3.6)

and
n∑

m=j+1

dm,j = αj,j − αn,j = 1− an,j

an,n

≤ 1− a

an,n

< 1. (3.7)

In addition, for s + 2 ≤ m ≤ n, s = 1, 2 . . . , n,

hm,s − hm−1,s =
m−1∑
j=s

−αm,jhj,s +
m−2∑
j=s

αm−1,jhj,s

=
m−2∑
j=s

(αm−1,j − αm,j)hj,s − αm,m−1hm,m−1, (3.8)

and hence since dm,m−1 = αm−1,m−1 − αm,m−1 = 1− αm,m−1,

hm,s =
m−2∑
j=s

dm,jhj,s + (1− αm,m−1)hm,m−1 =
m−1∑
j=s

dm,jhj,s. (3.9)

In addition,

Sm,s − Sm,s+1 =
m−1∑
i=s

dm,iSi,s −
m−1∑

i=s+1

dm,iSi,s+1

= dm,sSs,s +
m−1∑

i=s+1

dm,i(Si,s − Si,s+1)

= dm,s(Ss,s − Ss,s+1) +
m−1∑

i=s+1

dm,i(Si,s − Si,s+1)

=
m−1∑
i=s

dm,i(Si,s − Si,s+1), (3.10)

since Ss,s+1 = 0.
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Comparing (3.9) and (3.10) and noting that hs,s = 1 = Ss,s − Ss,s+1 and
hs+1,s = −αs+1,s = (1− αs+1,s)− 1 = ds+1,sSs,s − 1 = Ss+1,s − Ss+1,s+1, the result
follows. �

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Employing Lemma 3.1 and the definition of {hi,j}, we
have

‖A−1
n ‖1 = ‖Bn‖1 = max

1≤j≤n

n∑
i=j

|bi,j|

= max
1≤j≤n

n∑
i=j

∣∣∣∣ 1

aj,j

(Si,j − Si,j+1)

∣∣∣∣ . (3.11)

Now, fix 1 ≤ j ≤ n. We have, by the nonnegativity of {Si,j}, that

n∑
i=j

|Si,j − Si,j+1| = |Sj,j − Sj,j+1|+ |Sj+1,j − Sj+1,j+1|+∑
i∈Q1

(Si,j − Si,j+1) +
∑
i∈Qc

1

(Si,j+1 − Si,j)

≤ |Sj,j − Sj,j+1|+ |Sj+1,j − Sj+1,j+1|+
∑
i∈Q1

Si,j +
∑
i∈Qc

1

Si,j+1,

(3.12)

where Q1 = {j + 2 ≤ i ≤ n|Si,j > Si,j+1}.
Noting that Sj,j = 1, Sj,j+1 = 0, Sj+1,j = dj+1,j < 1 and Sj+1,j+1 = 1, we have

from (3.12) that

n∑
i=j

|Si,j − Si,j+1| ≤ 2 +
∑
i∈Q1

Si,j +
∑
i∈Qc

1

Si,j+1. (3.13)

.
Letting y = ‖Q1‖ ≤ n− j−1, recalling xj ≤ 1−a/an,n = x < 1 and employing

Lemma 2.2 gives

n∑
i=j

|Si,j − Si,j+1| ≤ (1 + x + · · ·+ xy) + (1 + x + · · ·+ xn−j−1−y)

≤ 1− xy+1

1− x
+

1− xn−(y+1)

1− x
≤ 2− (xy+1 + xn−(y+1))

1− x
. (3.14)
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By the convexity of the function f defined via f(t) = xt, we have that xy+1 +
xn−(y+1) ≥ xbn/2c + xdn/2e. Thus, returning to (3.11), we obtain

‖A−1
n ‖1 ≤ 2

mini{ai,i}
1− xbn/2c+xdn/2e

2

1− x

=
2

a1,1

1− (1−a/an,n)d
n
2 e+(1−a/an,n)b

n
2 c

2

a/an,n

 . (3.15)

In the case when ai,i = a∗ for all i, (3.15) gives

‖A−1
n ‖1 ≤

2

a

(
1− (1− a/a∗)d

n
2 e + (1− a/a∗)b

n
2 c

2

)
, (3.16)

as required. �
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