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Abstract. In this paper, we prove the generalized Hyers–Ulam stability of
the isometric additive mappings in generalized quasi-Banach spaces, and prove
the generalized Hyers–Ulam stability of the isometric additive mappings in
generalized p-Banach spaces.

1. Introduction and preliminaries

We recall some basic facts concerning quasi-Banach spaces and some prelimi-
nary results.

Definition 1.1. ([5, 43]) Let X be a linear space. A quasi-norm is a real-valued
function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.
(3) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all

x, y ∈ X.
The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on X.
A quasi-Banach space is a complete quasi-normed space.
A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.
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Given a p-norm, the formula d(x, y) := ‖x−y‖p gives us a translation invariant
metric on X. By the Aoki-Rolewicz theorem [43] (see also [5]), each quasi-norm
is equivalent to some p-norm. Since it is much easier to work with p-norms than
quasi-norms, henceforth we restrict our attention mainly to p-norms.

In [26], the author generalized the concept of quasi-normed spaces.

Definition 1.2. Let X be a linear space. A generalized quasi-norm is a real-
valued function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.
(3) There is a constant K ≥ 1 such that ‖

∑∞
j=1 xj‖ ≤

∑∞
j=1 K‖xj‖ for all

x1, x2, · · · ∈ X.
The pair (X, ‖ ·‖) is called a generalized quasi-normed space if ‖ ·‖ is a general-

ized quasi-norm on X. The smallest possible K is called the modulus of concavity
of ‖ · ‖.

A generalized quasi-Banach space is a complete generalized quasi-normed space.
A generalized quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a generalized quasi-Banach space is called a gener-
alized p-Banach space.

Let X and Y be metric spaces. A mapping f : X → Y is called an isometry if
f satisfies

dY

(
f(x), f(y)

)
= dX(x, y)

for all x, y ∈ X, where dX(·, ·) and dY (·, ·) denote the metrics in the spaces X and
Y , respectively. For some fixed number r > 0, suppose that f preserves distance
r; i.e., for all x, y in X with dX(x, y) = r, we have dY

(
f(x), f(y)

)
= r. Then r

is called a conservative(or preserved) distance for the mapping f . Let (X, || · ||)
and (Y, ‖ · ‖) be normed spaces. A mapping L : X → Y is called an isometry if
‖L(x) − L(y)‖ = ||x − y|| for all x, y ∈ X. Aleksandrov [1] posed the following
problem:

Remark 1.3. Aleksandrov problem. Examine whether the existence of a single
conservative distance for some mapping T implies that T is an isometry.

The isometric problems have been investigated in several papers (see [3, 9, 12,
13, 19, 20, 21, 35, 39, 41, 42]).

The stability problem of functional equations originated from a question of
S.M. Ulam [46] concerning the stability of group homomorphisms: Let (G1, ∗) be
a group and let (G2, �, d) be a metric group with the metric d(·, ·). Given ε > 0,
does there exist a δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the
inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε
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for all x ∈ G1? If the answer is affirmative, we would say that the equation of
homomorphism H(x ∗ y) = H(x) � H(y) is stable. The concept of stability for
a functional equation arises when we replace the functional equation by an in-
equality which acts as a perturbation of the equation. Thus the stability question
of functional equations is that how do the solutions of the inequality differ from
those of the given functional equation?

D.H. Hyers [14] gave a first affirmative answer to the question of Ulam for
Banach spaces. Let X and Y be Banach spaces. Assume that f : X → Y
satisfies

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X and some ε ≥ 0. Then there exists a unique additive mapping
T : X → Y such that

‖f(x)− T (x)‖ ≤ ε

for all x ∈ X.
Let X and Y be Banach spaces with norms ||·|| and ‖·‖, respectively. Consider

f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R for each fixed
x ∈ X. Th.M. Rassias [33] introduced the following inequality: Assume that
there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(||x||p + ||y||p)
for all x, y ∈ X. Th.M. Rassias [33] showed that there exists a unique R-linear
mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ X. The above inequality has provided a lot of influence in the devel-
opment of what is now known as generalized Hyers–Ulam stability of functional
equations. Beginning around the year 1980 the topic of approximate homomor-
phisms, or the stability of the equation of homomorphism, was studied by a
number of mathematicians. Găvruta [11] following Th.M. Rassias approach for
the stability of the linear mapping between Banach spaces obtained a general-
ization of Th.M. Rassias’ Theorem. The stability problems of several functional
equations have been extensively investigated by a number of authors and there
are many interesting results concerning this problem (see [2, 4, 6, 7, 8, 10, 11, 15,
16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 40, 44]).

In this paper, we prove the generalized Hyers–Ulam stability of the isometric
Cauchy mapping and the isometric Jensen mapping in generalized quasi-Banach
spaces, and prove the generalized Hyers–Ulam stability of the isometric Cauchy
mapping and the isometric Jensen mapping in generalized p-Banach spaces.

2. Stability of the isometric additive mappings in generalized
quasi-Banach spaces

Throughout this section, assume that X is a generalized quasi-normed vector
space with generalized quasi-norm || · || and that Y is a generalized quasi-Banach
space with generalized quasi-norm ‖ · ‖. Let K be the modulus of concavity of
‖ · ‖.
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Theorem 2.1. Let r > 1 and θ be positive real numbers, and let f : X → Y be
a mapping such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(||x||r + ||y||r), (2.1)

| ‖f(x)‖ − ||x|| | ≤ 2θ||x||r (2.2)

for all x, y ∈ X. Then there exists a unique isometric Cauchy additive mapping
A : X → Y such that

‖f(x)− A(x)‖ ≤ 2Kθ

2r − 2
||x||r (2.3)

for all x ∈ X.

Proof. Letting y = x in (2.1), we get

‖f(2x)− 2f(x)‖ ≤ 2θ||x||r (2.4)

for all x ∈ X. So

‖f(x)− 2f(
x

2
)‖ ≤ 2θ

2r
||x||r

for all x ∈ X. Hence

‖2lf(
x

2l
)− 2mf(

x

2m
)‖ ≤ K

m∑
j=l+1

2jθ

2jr
||x||r (2.5)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(2.5) that the sequence {2nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y
is complete, the sequence {2nf( x

2n )} converges. So one can define the mapping
A : X → Y by

A(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X.
By (2.1),

‖A(x + y)− A(x)− A(y)‖ = lim
n→∞

2n‖f(
x + y

2n
)− f(

x

2n
)− f(

y

2n
)‖

≤ lim
n→∞

2nθ

2nr
(||x||r + ||y||r) = 0

for all x, y ∈ X. So

A(x + y) = A(x) + A(y)

for all x, y ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.5),
we get (2.3).

Now, let A′ : X → Y be another Cauchy additive mapping satisfying (2.3).
Then we have

‖A(x)− A′(x)‖ = 2n‖A(
x

2n
)− A′(

x

2n
)‖

≤ 2nK(‖A(
x

2n
)− f(

x

2n
)‖+ ‖A′( x

2n
)− f(

x

2n
)‖)

≤ 2n+1K2θ

(2r − 2)2nr
||x||r,
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which tends to zero as n → ∞ for all x ∈ X. So we can conclude that A(x) =
A′(x) for all x ∈ X. This proves the uniqueness of A.

It follows from (2.2) that

| ‖2nf(
x

2n
)‖ − ||x|| | = 2n| ‖f(

x

2n
)‖ − || x

2n
|| | ≤ 2θ

2n

2nr
||x||r,

which tends to zero as n →∞ for all x ∈ X. So

‖A(x)‖ = lim
n→∞

‖2nf(
x

2n
)‖ = ||x||

for all x ∈ X. Since A is additive,

‖A(x)− A(y)‖ = ‖A(x− y)‖ = ||x− y||
for all x, y ∈ X, as desired. �

Theorem 2.2. Let r < 1 and θ be positive real numbers, and let f : X → Y be a
mapping satisfying (2.1) and (2.2). Then there exists a unique isometric Cauchy
additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ 2Kθ

2− 2r
||x||r

for all x ∈ X.

Proof. It follows from (2.4) that

‖f(x)− 1

2
f(2x)‖ ≤ θ||x||r

for all x ∈ X. So

‖ 1

2l
f(2lx)− 1

2m
f(2mx)‖ ≤ K

m−1∑
j=l

2jrθ

2j
||x||r (2.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(2.6) that the sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
2n f(2nx)} converges. So one can define the mapping

A : X → Y by

A(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1. �

Theorem 2.3. Let r < 1 and θ be positive real numbers, and let f : X → Y be
a mapping with f(0) = 0 satisfying (2.2) such that

‖2f(
x + y

2
)− f(x)− f(y)‖ ≤ θ(||x||r + ||y||r) (2.7)

for all x, y ∈ X. Then there exists a unique isometric Jensen additive mapping
A : X → Y such that

‖f(x)− A(x)‖ ≤ (3 + 3r)K2θ

3− 3r
||x||r

for all x ∈ X.
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Proof. Letting y = −x in (2.7), we get

‖ − f(x)− f(−x)‖ ≤ 2θ||x||r

for all x ∈ X. Letting y = 3x and replacing x by −x in (2.7), we get

‖2f(x)− f(−x)− f(3x)‖ ≤ (3r + 1)θ||x||r

for all x ∈ X. Thus

‖3f(x)− f(3x)‖ ≤ K(3r + 3)θ||x||r (2.8)

for all x ∈ X. So

‖ 1

3l
f(3lx)− 1

3m
f(3mx)‖ ≤ K2 3r + 3

3

m−1∑
j=l

3jrθ

3j
||x||r (2.9)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(2.9) that the sequence { 1

3n f(3nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
3n f(3nx)} converges. So one can define the mapping

A : X → Y by

A(x) := lim
n→∞

1

3n
f(3nx)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1. �

Theorem 2.4. Let r > 1 and θ be positive real numbers, and let f : X → Y be
a mapping with f(0) = 0 satisfying (2.7) and (2.2). Then there exists a unique
isometric Jensen additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ (3r + 3)K2θ

3r − 3
||x||r

for all x ∈ X.

Proof. It follows from (2.8) that

‖f(x)− 3f(
x

3
)‖ ≤ K(3r + 3)θ

3r
||x||r

for all x ∈ X. So

‖3lf(
x

3l
)− 3mf(

x

3m
)‖ ≤ K2 3r + 3

3r

m−1∑
j=l

3jθ

3jr
||x||r (2.10)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(2.10) that the sequence {3nf( x

3n )} is a Cauchy sequence for all x ∈ X. Since Y
is complete, the sequence {3nf( x

3n )} converges. So one can define the mapping
A : X → Y by

A(x) := lim
n→∞

3nf(
x

3n
)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1. �
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3. Stability of the isometric additive mappings in generalized
p-Banach spaces

Throughout this section, assume that X is a generalized quasi-normed vector
space with generalized quasi-norm || · || and that Y is a generalized p-Banach
space with generalized quasi-norm ‖ · ‖.

The following two results except for isometries are given by Tabor [45]. The
proofs of isometries are similar to the proof of Theorem 2.1.

Theorem 3.1. ([45]) Let r > 1 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying (2.1) and (2.2). Then there exists a unique isometric
Cauchy additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ 2θ

(2pr − 2p)
1
p

||x||r

for all x ∈ X.

Remark 3.2. The result for the case K = 1 in Theorem 2.1 is the same as the
result for the case p = 1 in Theorem 3.1.

Theorem 3.3. ([45]) Let r < 1 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying (2.1) and (2.2). Then there exists a unique isometric
Cauchy additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ 2θ

(2p − 2pr)
1
p

||x||r

for all x ∈ X.

Remark 3.4. The result for the case K = 1 in Theorem 2.2 is the same as the
result for the case p = 1 in Theorem 3.3.

Theorem 3.5. Let r < 1 and θ be positive real numbers, and let f : X → Y be
a mapping with f(0) = 0 satisfying (2.7) and (2.2). Then there exists a unique
isometric Jensen additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ K(3 + 3r)θ

(3p − 3pr)
1
p

||x||r (3.1)

for all x ∈ X.

Proof. It follows from (2.8) that

‖f(x)− 1

3
f(3x)‖ ≤ K(3r + 3)θ

3
||x||r (3.2)

for all x ∈ X. Since Y is a generalized p-Banach space,

‖ 1

3l
f(3lx)− 1

3m
f(3mx)‖p ≤

m−1∑
j=l

‖ 1

3j
f(3jx)− 1

3j+1
f(3j+1x)‖p

≤ Kp(3r + 3)pθp

3p

m−1∑
j=l

3prj

3pj
||x||pr (3.3)



66 C. PARK, TH.M. RASSIAS

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(3.3) that the sequence { 1

3n f(3nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
3n f(3nx)} converges. So one can define the mapping

A : X → Y by

A(x) := lim
n→∞

1

3n
f(3nx)

for all x ∈ X.
By (2.7),

‖2A(
x + y

2
)− A(x)− A(y)‖

= lim
n→∞

1

3n
‖2f(3n · x + y

2
)− f(3nx)− f(3ny)‖

≤ lim
n→∞

3rn

3n
θ(||x||r + ||y||r) = 0

for all x, y ∈ X. So

2A(
x + y

2
) = A(x) + A(y)

for all x, y ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.3),
we get (3.1).

Now, let A′ : X → Y be another Jensen additive mapping satisfying (3.1).
Then we have

‖A(x)− A′(x)‖p =
1

3pn
‖A(3nx)− A′(3nx)‖p

≤ 1

3pn
(‖A(3nx)− f(3nx)‖p + ‖A′(3nx)− f(3nx)‖p)

≤ 2 · 3prn

3pn
· Kp(3 + 3r)pθp

3p − 3pr
||x||pr,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that A(x) =
A′(x) for all x ∈ X. This proves the uniqueness of A.

The rest of the proof is similar to the proof of Theorem 2.1. �

Remark 3.6. The result for the case K = 1 in Theorem 2.3 is the same as the
result for the case p = 1 in Theorem 3.5.

Theorem 3.7. Let r > 1 and θ be positive real numbers, and let f : X → Y be
a mapping with f(0) = 0 satisfying (2.7) and (2.2). Then there exists a unique
isometric Jensen additive mapping A : X → Y such that

‖f(x)− A(x)‖ ≤ K(3r + 3)θ

(3pr − 3p)
1
p

||x||r

for all x ∈ X.

Proof. It follows (3.2) that

‖f(x)− 3f(
x

3
)‖ ≤ K(3r + 3)θ

3r
||x||r
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for all x ∈ X. Since Y is a generalized p-Banach space,

‖3lf(
x

3l
)− 3mf(

x

3m
)‖p ≤

m−1∑
j=l

‖3jf(
x

3j
)− 3j+1f(

x

3j+1
)‖p

≤ Kp(3r + 3)pθp

3pr

m−1∑
j=l

3pj

3prj
||x||pr (3.4)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(3.4) that the sequence {3nf( x

3n )} is a Cauchy sequence for all x ∈ X. Since Y
is complete, the sequence {3nf( x

3n )} converges. So one can define the mapping
A : X → Y by

A(x) := lim
n→∞

3nf(
x

3n
)

for all x ∈ X.
The rest of the proof is similar to the proofs of Theorems 2.1 and 3.5. �

Remark 3.8. The result for the case K = 1 in Theorem 2.4 is the same as the
result for the case p = 1 in Theorem 3.7.
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