ON THE STABILITY OF THE QUADRATIC FUNCTIONAL EQUATION IN TOPOLOGICAL SPACES

M. ADAM ${ }^{1 *}$ AND S. CZERWIK ${ }^{2}$
This paper is dedicated to Professor Themistocles M. Rassias.

Submitted by T. Reidel

Abstract. In this paper we investigate the problem of the Hyers-Ulam stability of the generalized quadratic functional equation

$$
f(x+y)+f(x-y)=g(x)+g(y)
$$

where f, g are functions defined on a group with values in a linear topological space.

1. Introduction and preliminaries

S. M. Ulam [16] in 1940 presented the following question concerning the stability of group homomorphisms.
Let G be a group, G_{1} a group with a metric d and $\varepsilon>0$ a given number. Does there exist a $\delta>0$ such that if a mapping $h: G \rightarrow G_{1}$ satisfies the inequality

$$
d[h(x y), h(x) h(y)]<\delta \quad \text { for } x, y \in G
$$

then there exists a homomorphism $H: G \rightarrow G_{1}$ with

$$
d[h(x), H(x)]<\varepsilon \quad \text { for } x \in G ?
$$

The first affirmative answer for the Cauchy additive equation under the assumption that G, G_{1} are Banach spaces, has been done by D.H. Hyers [11].

[^0]The reader can find a lot of references concerning the stability results of functional equations in the books [3], [4], [13], [14] and papers, e.g. [5], [10], [12], [15].
The problem of the stability of the quadratic functional equation has been investigated in the papers [1], [2], [7], [8], 9].
Let G be an abelian group and throughout this paper let X be a sequentially complete locally convex linear topological Hausdorff space. A mapping $f: G \rightarrow X$ is said to be quadratic if and only iff it satisfies the following functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y), \quad x, y \in G \tag{1.1}
\end{equation*}
$$

Moreover, the above equation is called the quadratic functional equation.
Standard symbols $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ denote the sets of natural, integer, rational and real numbers, respectively.
Given sets $A, B \subset X$ and a number $k \in \mathbb{R}$, we define the well known operations

$$
\begin{aligned}
A+B & :=\{x \in X: x=a+b, a \in A, b \in B\}, \\
k A & :=\{x \in X: x=k a, a \in A\} .
\end{aligned}
$$

By conv U we denote the convex hull of a set $U \subset X$ and by $\mathrm{cl} U$ the sequential closure of U.

We start with the following lemma [3].
Lemma 1.1. Let Y_{1} and Y_{2} be linear spaces over \mathbb{R}. If $f: Y_{1} \rightarrow Y_{2}$ is a quadratic function, then

$$
f(r x)=r^{2} f(x), \quad r \in \mathbb{Q}, x \in Y_{1} .
$$

One can prove (see also [6]) the following lemmas.
Lemma 1.2. If $A, B \subset X$ and $0 \leq \alpha \leq \beta$, then

$$
\begin{gathered}
\alpha A \subset \beta \operatorname{conv}[A \cup\{0\}], \\
\operatorname{conv} A+\operatorname{conv} B=\operatorname{conv}(A+B) .
\end{gathered}
$$

Lemma 1.3. For any sets $A, B \subset X$ and numbers $\alpha, \beta \in \mathbb{R}$ we have

$$
\begin{gathered}
\alpha(A+B)=\alpha A+\alpha B, \\
(\alpha+\beta) A \subset \alpha A+\beta A .
\end{gathered}
$$

Moreover, if A is a convex set and $\alpha, \beta \geq 0$, then

$$
\alpha A+\beta A=(\alpha+\beta) A
$$

Let us recall that a set $A \subset X$ is said to be bounded iff for every neighbourhood U of zero there exists a number $\alpha>0$ such that $\alpha A \subset U$.

Lemma 1.4. If $A, B \subset X$ are bounded sets, then

$$
A \cup B, \quad A+B, \quad \operatorname{conv} A
$$

are also bounded subsets of X.

Now we shall prove
Lemma 1.5. Let G be an abelian group and let $B \subset X$ be a nonempty set. If functions $f, g: G \rightarrow X$ satisfy

$$
\begin{equation*}
f(x+y)+f(x-y)-g(x)-g(y) \in B, \quad x, y \in G \tag{1.2}
\end{equation*}
$$

then

$$
\begin{align*}
& f(x+y)+f(x-y)+2 f(0)-2 f(x)-2 f(y) \in 2 \operatorname{conv}(B-B) \tag{1.3}\\
& g(x+y)+g(x-y)+2 g(0)-2 g(x)-2 g(y) \in 2 \operatorname{conv}(B-B) \tag{1.4}
\end{align*}
$$

for all $x, y \in G$.
Proof. Put $x=y=0$ in (1.2). We get

$$
\begin{equation*}
2 f(0)-2 g(0) \in B \tag{1.5}
\end{equation*}
$$

For $y=0$ in (1.2), we obtain

$$
\begin{equation*}
2 f(x)-g(x)-g(0) \in B, \quad x \in G . \tag{1.6}
\end{equation*}
$$

Setting $x=y$ in (1.6), we have

$$
\begin{equation*}
2 f(y)-g(y)-g(0) \in B, \quad y \in G \tag{1.7}
\end{equation*}
$$

To prove (1.3) we will use (1.2), (1.5), (1.6) and (1.7). Therefore by Lemma 1.2 and Lemma 1.3 we get

$$
\begin{gathered}
f(x+y)+f(x-y)+2 f(0)-2 f(x)-2 f(y) \\
=[f(x+y)+f(x-y)-g(x)-g(y)]+[2 f(0)-2 g(0)] \\
-[2 f(x)-g(x)-g(0)]-[2 f(y)-g(y)-g(0)] \\
\in[B+B+(-B)+(-B)] \subset[\operatorname{conv} B+\operatorname{conv} B+\operatorname{conv}(-B)+\operatorname{conv}(-B)] \\
=2 \operatorname{conv} B+2 \operatorname{conv}(-B)=2 \operatorname{conv}(B-B), \quad x, y \in G .
\end{gathered}
$$

If we replace x by $x+y$ and x by $x-y$ in (1.6), respectively, then we obtain

$$
\begin{array}{ll}
2 f(x+y)-g(x+y)-g(0) \in B, & x, y \in G \\
2 f(x-y)-g(x-y)-g(0) \in B, & x, y \in G . \tag{1.9}
\end{array}
$$

To prove (1.4) we will use (1.2), (1.8) and (1.9). Therefore

$$
\begin{gathered}
g(x+y)+g(x-y)+2 g(0)-2 g(x)-2 g(y) \\
=[2 f(x+y)+2 f(x-y)-2 g(x)-2 g(y)]-[2 f(x+y)-g(x+y)-g(0)] \\
-[2 f(x-y)-g(x-y)-g(0)] \\
\in[2 B+(-B)+(-B)] \subset[\operatorname{conv} 2 B+\operatorname{conv}(-B)+\operatorname{conv}(-B)] \\
=2 \operatorname{conv} B+2 \operatorname{conv}(-B)=2 \operatorname{conv}(B-B), \quad x, y \in G .
\end{gathered}
$$

The prove is complete.
Remark 1.6. A trivial observation is that $0 \in \operatorname{conv}(B-B)$, which will play an essential role in the further considerations.

2. Main Result

Now we shall prove the main result of the paper.
Theorem 2.1. Let G be an abelian 2-divisible group and let $B \subset X$ be a nonempty bounded set. If functions $f, g: G \rightarrow X$ satisfy

$$
f(x+y)+f(x-y)-g(x)-g(y) \in B, \quad x, y \in G
$$

then there exists exactly one quadratic function $Q: G \rightarrow X$ such that

$$
\begin{array}{ll}
Q(x)+f(0)-f(x) \in \frac{2}{3} \text { cl conv }(B-B), & x \in G \\
2 Q(x)+g(0)-g(x) \in \frac{2}{3} c l \operatorname{conv}(B-B), & x \in G \tag{2.2}
\end{array}
$$

Moreover, the function Q is given by the formulae

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\frac{1}{2} \lim _{n \rightarrow \infty} g_{n}(x), \quad x \in G, \tag{2.3}
\end{equation*}
$$

where

$$
f_{n}(x)=\frac{1}{2^{2 n}} f\left(2^{n} x\right), \quad g_{n}(x)=\frac{1}{2^{2 n}} g\left(2^{n} x\right), \quad n \in \mathbb{N}, x \in G
$$

and the convergence is uniform on G.
Proof. Define a set $C:=2$ conv $(B-B)$. Then from (1.3) we have

$$
\begin{equation*}
f(x+y)+f(x-y)-2 f(x)-2 f(y) \in(C-2 f(0)), \quad x, y \in G . \tag{2.4}
\end{equation*}
$$

Setting $y=x$ in (2.4), we obtain

$$
f(2 x)-4 f(x) \in(C-3 f(0)), \quad x \in G
$$

Define a set $\widetilde{C}:=C-3 f(0)$. Then we have

$$
\begin{equation*}
\frac{1}{2^{2}} f(2 x)-f(x) \in \frac{1}{4} \widetilde{C} \subset \frac{1}{4} \operatorname{conv} \widetilde{C}, \quad x \in G \tag{2.5}
\end{equation*}
$$

By the induction we can prove that

$$
\begin{equation*}
\frac{1}{2^{2 n}} f\left(2^{n} x\right)-f(x) \in \frac{1}{3}\left(1-\frac{1}{2^{2 n}}\right) \operatorname{conv} \widetilde{C}, \quad n \in \mathbb{N}, x \in G . \tag{2.6}
\end{equation*}
$$

For $n=1$ we get (2.5), obviously. Now, let us assume that (2.6) is satisfied for some $n \in \mathbb{N}$. Then for $n+1$ on account of Lemma 1.3 we have

$$
\begin{gathered}
\frac{1}{2^{2(n+1)}} f\left(2^{(n+1)} x\right)-f(x)=\left[\frac{1}{2^{2(n+1)}} f\left(2^{(n+1)} x\right)-\frac{1}{2^{2}} f(2 x)\right] \\
+\left[\frac{1}{2^{2}} f(2 x)-f(x)\right]=\frac{1}{2^{2}}\left[\frac{1}{2^{2 n}} f\left(2^{n} \cdot 2 x\right)-f(2 x)\right]+\left[\frac{1}{2^{2}} f(2 x)-f(x)\right] \\
\in \frac{1}{2^{2}} \cdot \frac{1}{3}\left(1-\frac{1}{2^{2 n}}\right) \operatorname{conv} \widetilde{C}+\frac{1}{4} \operatorname{conv} \widetilde{C}=\frac{1}{3}\left(1-\frac{1}{2^{2(n+1)}}\right) \operatorname{conv} \widetilde{C},
\end{gathered}
$$

which proves (2.6) for all $n \in \mathbb{N}$ and $x \in G$.
Define

$$
\begin{equation*}
Q_{n}^{1}(x):=\frac{1}{2^{2 n}} f\left(2^{n} x\right), \quad n \in \mathbb{N}, x \in G \tag{2.7}
\end{equation*}
$$

For all $m, n \in \mathbb{N}$ and $x \in G$, we have by (2.6)

$$
\begin{gathered}
Q_{m+n}^{1}(x)-Q_{n}^{1}(x)=\frac{1}{2^{2(m+n)}} f\left(2^{(m+n)} x\right)-\frac{1}{2^{2 n}} f\left(2^{n} x\right) \\
=\frac{1}{2^{2 n}}\left[\frac{1}{2^{2 m}} f\left(2^{m} \cdot 2^{n} x\right)-f\left(2^{n} x\right)\right] \in \frac{1}{2^{2 n}} \cdot \frac{1}{3}\left(1-\frac{1}{2^{2 m}}\right) \operatorname{conv} \widetilde{C} .
\end{gathered}
$$

From boundedness of the set conv \widetilde{C} (see the Lemma 1.4 we have that $\left\{Q_{n}^{1}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence of elements of X. Since we have assumed the sequential completeness of X, the sequence (2.7) is convergent for all $x \in G$ and the convergence is uniform on G.
Define

$$
Q^{1}(x):=\lim _{n \rightarrow \infty} Q_{n}^{1}(x), \quad x \in G .
$$

Thus from (2.6) and the definition of the set \widetilde{C}, we have for $n \rightarrow \infty$

$$
\begin{equation*}
Q^{1}(x)+f(0)-f(x) \in \frac{2}{3} \text { cl conv }(B-B), \quad x \in G . \tag{2.8}
\end{equation*}
$$

We shall check that Q^{1} is a quadratic function. Substituting $2^{n} x, 2^{n} y$ instead of x and y in (2.4), respectively, we get

$$
\begin{aligned}
\frac{1}{2^{2 n}} f\left(2^{n}(x+y)\right) & +\frac{1}{2^{2 n}} f\left(2^{n}(x-y)\right)-2 \frac{1}{2^{2 n}} f\left(2^{n} x\right)-2 \frac{1}{2^{2 n}} f\left(2^{n} y\right) \\
& \in \frac{1}{2^{2 n}}(C-2 f(0)), \quad x, y \in G
\end{aligned}
$$

Since by Lemma 1.4 the set $C-2 f(0)$ is bounded, letting $n \rightarrow \infty$ we obtain

$$
Q^{1}(x+y)+Q^{1}(x-y)-2 Q^{1}(x)-2 Q^{1}(y)=0, \quad x, y \in G
$$

i.e. Q^{1} is a quadratic function satisfying (2.8).

Define

$$
Q_{n}^{2}(x):=\frac{1}{2^{2 n}} g\left(2^{n} x\right), \quad n \in \mathbb{N}, x \in G
$$

Similarly as before applying (1.4) we shall check that

$$
\begin{equation*}
\frac{1}{2^{2 n}} g\left(2^{n} x\right)-g(x) \in \frac{1}{3}\left(1-\frac{1}{2^{2 n}}\right) \operatorname{conv} D, \quad n \in \mathbb{N}, x \in G \tag{2.9}
\end{equation*}
$$

where $D:=C-3 g(0)$. Then $\left\{Q_{n}^{2}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence of elements of X uniformly convergent on G. Denote

$$
Q^{2}(x):=\lim _{n \rightarrow \infty} Q_{n}^{2}(x), \quad x \in G
$$

Letting $n \rightarrow \infty$ in (2.9), one gets

$$
\begin{equation*}
Q^{2}(x)+g(0)-g(x) \in \frac{2}{3} \text { cl conv }(B-B), \quad x \in G . \tag{2.10}
\end{equation*}
$$

Similarly as in a previous case we can check that Q^{2} is a quadratic function satisfying 2.10.

Now we prove the equality $2 Q^{1}=Q^{2}$. Applying (1.6), (2.8) and (2.10) we consider the following difference

$$
\begin{gathered}
2 Q^{1}(x)-Q^{2}(x)=\left[2 Q^{1}(x)-2 f(x)\right]-\left[Q^{2}(x)-g(x)\right]+[2 f(x)-g(x)] \\
\in[2 \text { cl conv }(B-B)+B-2 f(0)+2 g(0)]=: M,
\end{gathered}
$$

i.e.

$$
2 Q^{1}(x)-Q^{2}(x) \in M, \quad x \in G
$$

In view of Lemma 1.4 the set M is bounded. Then

$$
2 \frac{1}{2^{2 n}} Q^{1}(x)-\frac{1}{2^{2 n}} Q^{2}(x) \in \frac{1}{2^{2 n}} M, \quad x \in G .
$$

Replacing x by $2^{n} x$ in the above condition we get

$$
2 \frac{1}{2^{2 n}} Q^{1}\left(2^{n} x\right)-\frac{1}{2^{2 n}} Q^{2}\left(2^{n} x\right) \in \frac{1}{2^{2 n}} M, \quad x \in G .
$$

We have by Lemma 1.1

$$
2 Q^{1}(x)-Q^{2}(x) \in \frac{1}{2^{2 n}} M, \quad x \in G .
$$

Letting $n \rightarrow \infty$ we obtain

$$
2 Q^{1}(x)-Q^{2}(x)=0, \quad x \in G,
$$

i.e. $2 Q^{1}=Q^{2}$. Assuming $Q:=Q^{1}$, we can see that the conditions 2.1, (2.2) and (2.3) are satisfied.
To prove the uniqueness assume that there exists another quadratic function $\widetilde{Q}: G \rightarrow X$ satisfying the condition

$$
\widetilde{Q}(x)+f(0)-f(x) \in \frac{2}{3} \text { cl conv }(B-B), \quad x \in G
$$

and for the contrary suppose that there exists a $y \in G$ such that $c:=\widetilde{Q}(y)-$ $Q(y) \neq 0$. Then we have

$$
\widetilde{Q}(x)-Q(x)=\widetilde{Q}(x)-f(x)-[Q(x)-f(x)] \in \frac{4}{3} \operatorname{cl} \operatorname{conv}(B-B)=: \widetilde{M}
$$

i.e.

$$
\widetilde{Q}(x)-Q(x) \in \widetilde{M}, \quad x \in G .
$$

Applying the same method as before we get

$$
\widetilde{Q}(x)-Q(x)=0, \quad x \in G,
$$

i.e. $\widetilde{Q}=Q$, which contradicts $c \neq 0$. The contradiction implies that $c=0$, which completes the proof.

References

1. S. Czerwik, On the Stability of the Quadratic Mapping in Normed Spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
2. S. Czerwik, The stability of the quadratic functional equation, In: Stability of Mappings of Hyers-Ulam type (ed. Th. M. Rassias and J. Tabor), Hadronic Press, Palm Harbor, Florida, 1994, 81-91.
3. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, New Jersey - London - Singapore - Hong Kong, 2002.
4. S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Florida, 2003.
5. S. Czerwik, Some results on the stability of the homogeneous functions, Bull. Korean Math. Soc. 42 (2005), no. 1, 29-37.
6. S. Czerwik, On stability of the equation of homogeneous functions on topological spaces (to appear).
7. S. Czerwik and K. Dutek, Superstability of the equation of quadratic functionals in L^{p} spaces, Aequationes Math. 63 (2002), 210-219.
8. S. Czerwik and K. Dutek, Quadratic difference operator in L^{p} spaces, Aequationes Math. 67 (2004), 1-11.
9. S. Czerwik and K. Dutek, The stability of the quadratic functional equation in Lipschitz spaces, J. Math. Anal. Appl. 293 (2004), 79-88.
10. G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143-190.
11. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
12. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
13. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhuser Verlag, 1998.
14. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Florida, 2000.
15. J. Rätz, On approximately additive mappings, In: General Inequalities 2 (E. F. Beckenbach, ed.), ISNM Vol. 47, Birkhuser, Basel, 1980, 233-251.
16. S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1960.

1 School of Labour Safety Management, Bankowa 8, PL-40-007 Katowice, Poland.

E-mail address: madam@wszop.edu.pl
${ }^{2}$ Institute of Mathematics, Silesian University of Technology, Kaszubska 23, PL-44-100 Gliwice, Poland.

E-mail address: Stefan.Czerwik@polsl.pl

[^0]: Date: Received: 20 September 2007; Accepted: 5 November 2007.

 * Corresponding author.

 2000 Mathematics Subject Classification. Primary 39B82; Secondary 54A20.
 Key words and phrases. Quadratic functional equation, Hyers-Ulam-Rassias stability in topological spaces.

