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Abstract. It is shown that every locally idempotent (locally m-pseudoconvex)
Hausdorff algebra A with pseudoconvex vonNeumannbornology is a regular
(respectively, bornological) inductive limit of metrizable locally m-(kB-convex)
subalgebras AB of A. In the case where A, in addition, is sequentially
BA-complete (sequentially advertibly complete), then every subalgebra AB is
a locally m-(kB-convex) Fréchet algebra (respectively, an advertibly complete
metrizable locally m-(kB-convex) algebra) for some kB ∈ (0, 1]. Moreover, for
a commutative unital locally m-pseudoconvex Hausdorff algebra A over C with
pseudoconvex von Neumann bornology, which at the same time is sequentially
BA-complete and advertibly complete, the statements (a)–(j) of Proposition
3.2 are equivalent.

1. Introduction

1. Let K be the field R of real numbers or C of complex numbers. A topological
algebra A over K with separately continuous multiplication (in short a topological
algebra) is locally pseudoconvex if it has a base L of neighbourhoods of zero,
consisting of balanced and pseudoconvex sets that is, of sets O which satisfy
the condition µO ⊂ O for |µ| 6 1 and define a number kO ∈ (0, 1] such that
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O+O ⊂ 2
1

kO O. In particular, when inf{kO : O ∈ L} = 0, then A is a degenerated
locally pseudoconvex algebra and when inf{kO : O ∈ L} = k > 0, A is a locally
k-convex algebra. Moreover, A is a locally convex algebra if k = 1.

A topological algebra A is a locally idempotent algebra if it has a base of idem-
potent neighbourhoods of zero, that is, of neighbourhoods O such that OO ⊂ O.
This class of topological algebras has been introduced in [29], p. 31. A topological
algebra A is locally m-pseudoconvex (locally m-(k-convex)) if, at the same time, it
is locally idempotent and locally pseudoconvex (respectively, locally idempotent
and locally k-convex). In this case A has a base of neighbourhoods of zero which
consists of idempotent and absolutely pseudoconvex1 (respectively, idempotent
and absolutely k-convex) sets. A locally m-(k-convex) algebra is locally m-convex
if k = 1. Locally m-convex algebras (see, for example, [21], [23], [29] and [30])
and locally m-pseudoconvex algebra (see [1]–[8]) have been well studied, locally
idempotent algebras (without any additional requirements) have been studied
only in [24].

2. For any topological algebra A, U ⊂ A and k > 0 let

Γk(U) =
{ n∑

v=1

αvuv : n ∈ N, uv ∈ U, αv ∈ K with
n∑

v=1

|αv|k 6 1
}

.

The von Neumann bornology BA of a topological algebra A is the collection of all
bounded subsets in A. If for every B ∈ BA there exists a number kB ∈ (0, 1] such
that ΓkB

(B) ∈ BA, then BA is pseudoconvex (see, [17], p. 101, or [20], p. A1058).
In particular, when the number kB does not depend on B (that is, when kB = k
for all B ∈ BA), then BA is k-convex (see [31]), and when k = 1, then BA is convex.
It is known that the von Neumann bornology on any locally k-convex space is
k-convex (see [31], Proposition 1.2.15) and there exists a non-convex space with
convex von Neumann bornology (see [31], Example 1.2.7). Moreover (see [20],
Theorems 1 and 2, [22] and [17], p. 102–103), the von Neumann bornology BA

on a locally pseudoconvex space A is pseudoconvex if BA has a countable base,
and every metrizable linear space is locally k-convex for some k ∈ (0, 1] if BA is
pseudoconvex.

3. A net (xλ)λ∈Λ in a topological linear space X is said to converge in the
sense of Mackey (sometimes, to converge bornologically) to an element x0 ∈ X
if there exist a balanced set B ∈ BA and for every ε > 0 an index λε ∈ Λ such
that xλ − x0 ∈ εB whenever λ > λε. It is easy to see that every net which
converges in the sense of Mackey (shortly, is Mackey convergent) converges also
in the topological sense. The converse is false in general (see [18], p. 122, or [31],
Proposition 1.2.4), but it is true in case when X is a metrizable topological linear
space (see, [18], p. 27).

A map f from X into another topological linear space Y is Mackey continuous
at x0 ∈ X (see, for example, [17], p. 10) if for each net (xλ)λ∈Λ, which converges
to x0 in X in the sense of Mackey, the net (f(xλ))λ∈Λ converges to f(x0) in Y

1A subset U ⊂ A is absolutely k-convex if λu + µv ∈ U for all u, v ∈ U and λ, µ ∈ K with
|λ|k + |µ|k 6 1 and is absolutely pseudoconvex if it is absolutely k-convex for some k ∈ (0, 1],
which depends on the set U .
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in the sense of Mackey. Moreover, a map f from X into Y is called Mackey
continuous if f is Mackey continuous at every point of X, and f is bounded if
f(B) ∈ BY for each B ∈ BX .

A net (xλ)λ∈Λ in a topological linear space X is called a Mackey–Cauchy net
if there exist a balanced set B ∈ BX and for every ε > 0 a number λε ∈ Λ such
that xλ − xµ ∈ εB whenever λ > µ > λε. It is easy to see that every Mackey–
Cauchy net is a Cauchy net in the sense of topology. The converse statement is
false in general (see [18], p. 122) but it is true in case of metrizable topological
linear spaces (see [18], p. 27, or [31], Proposition 1.2.5). We say that a topological
linear space X is sequentially BX-complete if every Mackey–Cauchy sequence in X
converges in the sense of topology. Consequently, every sequentially complete (as
well as complete) topological linear space X is sequentially BX-complete space.

4. For any topological algebra A (over K) let m(A) denote the set of all closed
regular two-sided ideals in A (which are maximal as left or right ideals) and
let hom A denote the set of all nontrivial continuous linear and multiplicative
maps from A onto K. A topological algebra A is a Gelfand–Mazur algebra (see,
for example, [1]-[8] and [21]) if A/M is topologically isomorphic to K for each
M ∈ m(A). It is easy to see that every Gelfand–Mazur algebra A with non-
empty set m(A) is exactly such topological algebra for which there is a bijection
ϕ → ker ϕ between hom A and m(A). Therefore, only in case of Gelfand–Mazur
algebras it is possible to use the Gelfand theory, well-known for commutative
(complex) Banach algebras.

5. A topological algebra A is simplicial (see [3], p. 15) if every closed regular
left (right or two-sided) ideal of A is contained in some closed maximal left (re-
spectively, right or two-sided) ideal of A. It is known (see2 [6], Corollary 6) that
every commutative unital locally m-pseudoconvex Hausdorff algebra is simplicial.

6. It is known that every locally m-convex Hausdorff algebra is a bornolog-
ical inductive limit (with continuous canonical injections) of metrizable locally
m-convex subalgebras of A (see [9], Proposition on p. 943, or [10], Theorem
II.4.3) and every complete locally m-convex algebra is a bornological inductive
limit (with continuous canonical injections) of locally m-convex Fréchet subal-
gebras of A (see [9], p. 941, or [10], Theorem II.4.2). Later on this result was
generalized to the case of a sequentially BA-complete locally m-convex Hausdorff
algebra A (see [26], Theorem 2.1) and to the case of an advertibly complete lo-
cally m-convex Hausdorff algebra A (see [12], Theorem 6.2, or [15], Theorem
3.14). All these results hold in case of locally m-(k-convex) algebras as well, but
not in general in the case of degenerated locally m-pseudoconvex algebras.

In this paper these results are generalized to the case of locally idempotent
Hausdorff algebras A with pseudoconvex von Neumann bornology. It is shown (as
an application) that for every commutative unital locally m-pseudoconvex Haus-
dorff algebra A over C with pseudoconvex von Neumann bornology, which at the
same time is sequentially BA-complete and advertibly complete, the statements
(a)–(j) of Proposition 3.2 are equivalent.

2For complete algebras see [4], Proposition 2, or [13], Corollary 7.1.14, and for locally
m-convex algebras see, for example, [14], pp. 321–322.
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2. Main result

The following structural result for locally idempotent algebras holds.

Theorem 2.1. 1) Let A be a locally idempotent Hausdorff algebra with pseu-
doconvex von Neumann bornology BA. Then every basis βA of BA defines an
inductive system {AB : B ∈ βA} of metrizable locally m-(kB-convex) subalgebras
AB of A with kB ∈ (0, 1] such that A is a regular inductive limit3 of this system.

2) Let A be a locally m-pseudoconvex Hausdorff algebra with pseudoconvex von
Neumann bornology4 BA. Then every basis βA of BA defines an inductive sys-
tem {AB : B ∈ βA} ofmetrizable locallym-(kB-convex) subalgebras AB of A with
kB ∈ (0, 1] such that A is a bornological inductive limit of this system with con-
tinuous canonical injections from AB into A.

In case, when A, in addition, is sequentially BA-complete, then every subalgebra
AB in the inductive system {AB : B ∈ βA} is a locally m-(kB-convex) Fréchet
algebra, and when A is sequentially advertibly complete, then every AB in the
inductive system {AB : B ∈ βA} is an advertibly complete metrizable locally
m-(kB-convex) algebra for each B ∈ βA.

Proof. 1) Let A be a locally idempotent Hausdorff algebra such that the von
Neumann bornology BA of A is pseudoconvex, βA a basis of BA and LA a base of
idempotent balanced neighbourhoods of zero in A. Then every B ∈ βA defines a
number kB ∈ (0, 1] such that ΓkB

(B) ∈ BA. For each n ∈ N and B ∈ βA let

LB
n = {O ∈ LA : ΓkB

(B) ⊂ nO}.

If for fixed B ∈ βA some of the sets LB
n are empty, then we omit such sets LB

n ,
receiving in this way a sequence of numbers (vn) (which depends on B) and a
sequence of sets (LB

vn
), in which all members LB

vn
are non-empty. Further, we put

OB
n =

⋂
{O : O ∈ LB

vn
}.

As every set OB
n is non-empty and idempotent in A, then

CB
n (kB) = clA(ΓkB

(OB
n ))

is a closed, idempotent (see [19], p. 103, and [23], Lemma 1.3) and absolutely
kB-convex subset of A for each n ∈ N and B ∈ βA. Therefore, there is a countable
set of kB-homogeneous submultiplicative seminorms pB

n on

AB = {a ∈ A : CB
n (kB) absorbs a for each n ∈ N},

defined by

pB
n (a) = inf{|µ|kB : a ∈ µCB

n (kB)}

3An iductive limit A of Ai with i ∈ I is a regular inductive limit (see, for example, [19], p.
83), if BA ⊂

⋃
{BAi

: i ∈ I}, and A is a bornological inductive limit (see, for example, [18], p.
34), if BA =

⋃
{BAi

: i ∈ I}.
4For example, when A is a locally m-(k-convex) Hausdorff algebra for some k ∈ (0, 1], because

in this case the von Newmann bornology BA is k-convex (see [31], Proposition 1.2.15).
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for each a ∈ AB. It is not difficult to verify that B ⊂ AB for each B ∈ βA

(because B ⊂ vnC
B
n (kB) for each n ∈ N), AB is a subalgebra of A,

A =
⋃

B ∈ βA

AB (2.1)

and

LA =
⋃

n∈ N

LB
vn

(2.2)

for each fixed B ∈ βA. Moreover, every U ∈ BA defines a set B0 ∈ βA such that
U ⊂ B0 ⊂ ΓkB0

(B0). Since

1

vn

U ⊂ OB0
n ⊂ ΓkB0

(OB0
n ) ⊂ CB0

n (kB0)

for each n ∈ N, then CB0
n (kB0) absorbs U for each n ∈ N. Hence U ⊂ AB0 and

pB0
n (u) 6 |vn|kB0 for each u ∈ U and each fixed n ∈ N. It means that U is bounded

in AB0 . Consequently, every bounded subset of A is bounded in some subalgebra
AB of A, where B ∈ βA.

Let now n ∈ N be fixed and B, B′ ∈ βA. We define the ordering on βA by
inclusion: we say that B ≺ B′ if and only if B ⊂ B′. Since βA is a basis of BA, then
for any B, B′ ∈ βA there exists a B′′ ∈ βA such that B∪B′ ⊂ B′′ (see, for example,
[18], p. 18). Hence, (βA,≺) is a directed set. Now for any B, B′ ∈ βA with B ≺ B′

it is true that5 LB′
vn
⊂ LB

vn
, OB

n ⊂ OB′
n , CB

n (kB) ⊂ CB′
n (kB′), AB ⊂ AB′ and

pB′

n (a)kB 6 pB
n (a)kB′ (2.3)

for each n ∈ N and a ∈ AB.
For each pair B, B′ ∈ βA with B ≺ B′, let iB′B denote the canonical injection

of AB into AB′ and for each B ∈ βA let iB denote the canonical injection of AB

into A. Then

pB′

n (iB′B(a))kB 6 pB
n (a)kB′

for each n ∈ N and a ∈ AB by the equality (2.3). Taking this into account,
{AB, iB′B; βA} is an inductive system (with continuous canonical injections iB′B)
of metrizable locally m-(kB-convex) algebras AB and A is, by (2.1), a regular
inductive limit of this system (with not necessarily continuous canonical injections
iB).

2) Let A be a locally m-pseudoconvex Hausdorff algebra with pseudoconvex von
Neumann bornology BA. Then the injection iB from AB into A is continuous for
each B ∈ βA. To show this, let B ∈ βA and O be an arbitrary neighbourhood of
zero in A. Since A is locally m-pseudoconvex, then there are a number k ∈ (0, 1]
and a closed absolutely k-convex idempotent neighbourhood O0 of zero in A such
that O0 ⊂ O. Moreover, there exists a number kB ∈ (0, 1] such that ΓkB

(B) ∈ BA,
because BA is pseudoconvex. Similarly as above (see the footnote5), we can

5Without loss of generality, we can assume that kB′ 6 kB , otherwise in the role of kB we can
take the number kB′ since ΓkB′ (B) ⊂ ΓkB

(B) if kB 6 kB′ (in this case ΓkB′ (B) ∈ BA). Thus,
if kB′ 6 kB , then ΓkB

(U) ⊂ ΓkB′ (U) for any U ⊂ A.
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assume that k 6 kB. Now O0 defines a number n0 ∈ N such that O0 ∈ LB
vn0

by

(2.2). Hence OB
n0
⊂ O0. Therefore, from

OB
n0
⊂ CB

n0
(kB) = clA(ΓkB

(OB
no

)) ⊂ clA(Γk(O
B
n0

)) ⊂ clAΓk(O0) = O0 ⊂ O

follows that iB(OB
n0

) ⊂ O, where OB
n0

= {a ∈ AB : pB
n0

(a) < 1} is a neighbourhood
of zero in AB for each fixed B ∈ βA. Hence, iB is continuous.

Next, let U be a bounded subset in AB. Then for any n ∈ N there is a positive
number Mn such that pB

n (u) 6 MkB
n for all u ∈ U . Hence O defines n ∈ N such

that

U ⊂ MnC
B
n (kB) = MnclA(Γk(O

B
n )) ⊂ MnclAΓk(O0) = MnO0 ⊂ MnO .

That is, U ∈ BA. Consequently, every locally m-pseudoconvex Hausdorff algebra
A with pseudoconvex von Neumann bornology BA is a bornological inductive limit
of metrizable m-(kB-convex) subalgebras AB with continuous canonical injections
from AB into A.

Let now, in addition, A be sequentially BA-complete, B ∈ βA, (am) a Cauchy
sequence in AB,

VB = {ak − al : k, l ∈ N}
and

OB
nν = {a ∈ AB : pB

n (a) < ν}
for each n ∈ N and ν > 0. Then VB is bounded in AB, OB

nν is a neighbourhood

of zero in AB and OB
nν = ν

1
kB OB

n1 for each n ∈ N and ν > 0. Hence, for each
n ∈ N there exists a number µn > 0 such that VB ⊂ µnO

B
n1. Now, let ε > 0, (αn)

a sequence of positive numbers, which converges to 0, λn = µn

αn
for each n ∈ N

and

U =
⋂

n ∈ N

λnO
B
n1.

Then U is a bounded and balanced subset in AB, λn

µn
= 1

αn
tends to ∞, if n →∞,

and there is a number s ∈ N such that λn

µn
> 1

ε
for each n > s. Hence µn 6 ελn

and VB ⊂ µnO
B
n1 ⊂ ελnO

B
n1 for each n > s. Since

WB =
⋂

n 6 s

ελnO
B
n1

is a neighborhood of zero in AB, then there exists l ∈ N and α > 0 such that
OB

lα ⊂ WB. Thus

VB ∩OB
lα ⊂

( ⋂
n>s

ελnO
B
n1

) ⋂ ( ⋂
n6s

ελnO
B
n1

)
=

⋂
n∈N

ελnO
B
n1 = εU. (2.4)

As (am) is a Cauchy sequence in AB, then there is a number r ∈ N such that
as − at ∈ OB

lα, whenever s > t > r. Taking this into account, it is clear by (2.4),
that as − at ∈ εU , whenever s > t > r. Consequently, (am) is a Mackey–Cauchy
sequence in AB. Since, the canonical injection iB of AB into A is continuous, then
U is bounded in A in the present case and (am) is a Cauchy-Mackey sequence
also in A. Hence, (am) converges in A say, to a0.
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As (am) is a bounded sequence in AB, then for each fixed n ∈ N there exists a
number Mn > 0 such that

pB
n (am) < MkB

n

for all m ∈ N. Hence, am ∈ MnC
B
n (kB) for each fixed n ∈ N and all m ∈ N. It is

easy to see that MnC
B
n (kB) is a closed and balanced subset of A. Therefore

a0 ∈ MnC
B
n (kB) = µ

(Mn

µ

)
CB

n (kB) ⊂ µCB
n (kB),

whenever |µ| > Mn. Consequently, CB
n (kB) absorbs a0 for each n ∈ N. Hence,

a0 ∈ AB. Since (an) is a Cauchy sequence in AB, then for each ε > 0 there exist
δ ∈ (0, ε) and rδ ∈ N such that pB

n (as − at) < δ, whenever s > t > rδ. Taking
this into account, pB

n (a0 − at) ≤ δ < ε for each t > rδ, because pB
n is continuous

on AB. Consequently, (an) converges to a0 in AB. It means that every AB is a
locally m-(k-convex) Fréchet algebra.

Let now A be a sequentially advertibly complete locally m-pseudoconvex Haus-
dorff algebra with pseudoconvex von Neumann bornology BA, βA a basis of BA

and let B ∈ βA. Then the canonical injection iB from AB into A is continuous
(as it has been shown above). Therefore the topology τAB

on AB, defined by
the system of seminorms {pB

n : n ∈ N}, is stronger than the topology τ |AB
on

AB, induced by the topology of A. If (an) is a Cauchy sequence in AB which is
advertibly convergent, then there exists an element a ∈ AB such that sequences
(a ◦ an) and (an ◦ a) converge to θA in the topology τAB

. Since τAB
is stronger

than τ |AB
, then (an) is a Cauchy sequence in A which advertibly converges in

the topology of A as well. Hence, (an) converges in A, because A is sequentially
advertibly complete.

Let a0 be the limit of (an) in A. It is easy to see that a0 is the quasi-inverse
of a in A. Since every Cauchy sequence is bounded, then, similarily as above,
CB

n (kB) absorbs a0 for all n ∈ N. Thus, a0 ∈ AB. Since (an) = (a0 ◦ (a ◦ an))
converges to a0 ◦ θA = a0, then AB is an advertibly complete metrizable locally
m-(kB-convex) algebra with kB ∈ (0, 1] for each B ∈ B. �

3. Applications

1. Let A be a topological algebra over C, QinvA the set of all quasi-invertible
elements (if A is a unital algebra, let InvA be the set of all invertible elements)
in A and let a ∈ A. The set

spA(a) = {λ ∈ C \ {0} :
a

λ
6∈ QinvA} ∪ {0}

(if A has a unit eA, then spA(a) = {λ ∈ C : a− λeA 6∈ InvA}) is the spectrum of
a and

rA(a) = sup{|λ| : λ ∈ spA(a)}
the spectral radius of a. If hom A is not empty, then

{ϕ(a) : ϕ ∈ hom A} ⊂ spA(a)

for each a ∈ A. In particular, when

spA(a) = {ϕ(a) : ϕ ∈ hom A} ∪ S,
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where S = {0} if a 6∈
⋃
{ker ϕ : ϕ ∈ hom A} and S = ∅ otherwise, we will say

that A is a topological algebra with functional spectrum.
2. For any topological algebra A let τM denote the Mackey closure topology

on A, that is,
τM =

{O ⊂ A : ∀ a ∈ O and ∀ balanced B ∈ BA ∃ λ > 0 such that a + λB ⊂ O}.
Then every element of τM is a Mackey open subset and every element U , for
which A \ U ∈ τM , is a Mackey closed subset in A. It is easy to show (see, for
example, [18], p. 37 and p. 120) that a subset O ⊂ A is Mackey open if and only
if for every a ∈ O and for every net (aλ)λ∈Λ in A, which converges to a in the
sense of Mackey, there is an index λ0 ∈ Λ such that aλ ∈ O for all λ � λ0 and
O is Mackey closed if and only if for every net (aλ)λ∈Λ in O, which converges to
a0 in the sense of Mackey, element a0 ∈ O. A topological algebra A is called a
Q-algebra (Mackey Q-algebra) if the set QinvA (if A is a unital algebra, then the
set InvA) is open (respectively, is Mackey open) in A. It is easy to see that every
Q-algebra is a Mackey Q-algebra. Nevertheles, there are Mackey Q-algebras (see
[16], Example 3.9) which are not Q-algebras.

Lemma 3.1. Let A be a topological algebra. Then A is a Mackey Q-algebra if
and only if QinvA has a non-empty interior in the Mackey closure topology.

Proof. Let S denote the interior of QinvA in the Mackey closure topology. If A
is a Mackey Q-algebra, then θA ∈ S. Assume now that S is not empty. For every
fixed b ∈ A let lb(a) = b ◦ a and rb(a) = a ◦ b for each a ∈ A. It is easy to see that
the maps lb and rb are Mackey continuous on A. If now a ∈ QinvA and s ∈ S,
then6 ls◦a−1

q
(a) = ra−1

q ◦s(a) = s ∈ S. To show that

W = l−1

s◦a−1
q

(S) ∩ r−1

a−1
q ◦s(S) ⊂ QinvA,

let w ∈ W an arbitrary element. Then

ls◦a−1
q

(w), ra−1
q ◦s(w) ∈ S ⊂ QinvA.

Hence, there exist x, y ∈ A such that

x ◦ ls◦a−1
q

(w) = ls◦a−1
q

(w) ◦ x = θA

and
y ◦ ra−1

q ◦s(w) = ls◦a−1
q

(w) ◦ y = θA.

Therefore
[x ◦ (s ◦ a−1

q )] ◦ w = x ◦ [(s ◦ a−1
q ) ◦ w] = θA

and
w ◦ [(a−1

q ◦ s) ◦ y] = [w ◦ (a−1
q ◦ s)] ◦ y = θA.

Now x ◦ (s ◦ a−1
q ) = (a−1

q ◦ s) ◦ y and w ∈ QinvA.
To show that W is Mackey open, let w0 ∈ W and (wα)α∈A be a net in A which

Mackey converges to w0. Since ls◦a−1
q

and ra−1
q ◦s are Mackey continuous maps,

then (ls◦a−1
q

(wα))α∈A converges to ls◦a−1
q

(w0) ∈ S and (ra−1
q ◦s(wα))α∈A converges

6Here and later on a−1
q denotes the quasi-inverse of a ∈ A.
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to ra−1
q ◦s(w0) ∈ S in the sense of Mackey. Therefore, there exist α1, α2 ∈ A such

that ls◦a−1
q

(wα) ∈ S, whenever α � α1 and ra−1
q ◦s(wα) ∈ S, whenever α � α2. Let

α0 ∈ Λ be such that α0 � α1 and α0 � α2. Then wα ∈ W , whenever α � α0.
Consequently, W is a Mackey open neighbourhood of a, because of which QinvA
is a Mackey open set in A. �

Proposition 3.2. Let A be a topological Hausdorff algebra over C with pseudo-
convex von Neumann bornology BA. If hom A is not empty and, in addition, A
satisfies the following conditions:

(α) A is sequentially BA-complete;
(β) if a ∈ A and rA(a) < 1, then the set {an : n ∈ N} is bounded in A;
(γ) if a ∈ A and ϕ(a) 6= 1 for each ϕ ∈ hom A, then7 a ∈ QinvA;
(δ) A is representable in the form of a regular inductive limit of barrelled sub-

algebras Ai of A with i ∈ I such that the canonical injections ιi : Ai → A are
continuous,

then the following statements are equivalent:

(a) every a ∈ A is bounded8;
(b) spA(a) is bounded for each a ∈ A;
(c) spA(a) is compact for each a ∈ A;
(d) rA is a bounded map from A into [0,∞);
(e) rA is Mackey continuous at θA;
(f) rA is a Mackey continuous map;
(g) the set {a ∈ A : rA(a) < 1} is Mackey open;
(h) the interior of QinvA in the Mackey closure topology on A is not empty;
(i) A is a Mackey Q-algebra;
(j) HomA is an equibounded9 set.

Proof. (a) ⇒ (b) It is known (see [7], Theorem 4.2) that rA(a) < ∞ if A is
sequentially BA-complete and every element in A is bounded. Therefore from the
statement (a) follows (b).

(b)⇒ (a) Let a ∈ A and let spA(a) be bounded. Then there is a number M > 0
such that rA(a) < M or rA( a

M
) < 1. Therefore {

(
a
M

)n
: n ∈ N} is bounded in A

by the assumption (β). It means that from the statement (b) follows (a).
(b) ⇒ (c) Suppose that there is an element a ∈ A such that spA(a) is not closed

in C. Then there exists a complex number

µa ∈ clC(spA(a)) \ spA(a)

7 If a ∈ A \
⋃
{ker ϕ : ϕ ∈ hom A} and λ ∈ spA(a) \ {0}, then a

λ 6∈ QinvA. Hence, by
applying the statement (γ), there exists a map ϕ ∈ hom A such that λ = ϕ(a). It means
that spA(a) \ {0} ⊂ {ϕ(a) : ϕ ∈ hom A}. Otherwise spA(a) ⊂ {ϕ(a) : ϕ ∈ hom A}. Hence,
from (γ) follows that A has functional spectrum.

8An a ∈ A is bounded if there is a λ ∈ C \ {0} such that the set
{(

a
λ

)n : n ∈ N
}

is bounded
in A.

9Here and later on HomA denotes the set of nontrivial (not necessarily continuous) homo-
morphisms from A onto C. A family F of maps f from a topological linear space X into another
topological linear space Y is equibounded if the set

⋃
{f(B) : f ∈ F} is bounded in Y for each

bounded set B of X.
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such that 1
µa

a ∈ QinvA (µa 6= 0 because 0 ∈ spA(a)). Since

spA(a) = {ϕ(a) : ϕ ∈ hom A} ∪ S,

where S = {0} if a 6∈
⋃
{ker ϕ : ϕ ∈ hom A} and S = ∅ otherwise, by the

assumption (γ), then there is a sequence (ϕn) in hom A such that the sequence
(ϕn(a)) converges to µa in C. It is well known (see, for example, [27], Theorem
1.6.11) that

spA(a−1
q ) =

{ λ

λ− 1
: λ ∈ spA(a)

}
.

Therefore

spA

[( a

µa

)−1

q

]
=

{ ϕ(a)

ϕ(a)− µa

: ϕ ∈ hom A
}

.

Thus,

spA

[( a

µa

)−1

q

]
is not bounded which is not possible. Hence, spA(a) is closed in C for each a ∈ A
and every bounded closed subset in C is compact.

(c) ⇒ (b) is clear.
(b) ⇒ (d) Since

rA(a) = sup{fϕ(a) : ϕ ∈ hom A} < ∞
for each a ∈ A by the condition (b) and the assumption (γ), where the function
fϕ, defined by fϕ(a) = |ϕ(a)| for each a ∈ A and each ϕ ∈ hom A, is continuous
(consequently, is lower semicontinuous too), then rA is a lower semicontinuous
function on A (see, for example, [28], p. 97). Therefore

Oε = {a ∈ A : rA(a) 6 ε}
is closed set in A for each ε > 0.

Let B0 ∈ BA. By the assumption (δ) there are barrelled subalgebras Ai with
i ∈ I in A such that A is a regular inductive limit of subalgebras Ai and the
cannonical injections ιi : Ai → A are continuous. Therefore, there exists an index
i0 ∈ I such that B0 ⊂ Ai0 and B0 is bounded in Ai0 . Moreover, if gi0 = rA ◦ ιi0 ,
then

U ε
i0

= {b ∈ Ai0 : gi0(b) 6 ε} = ι−1
i0

(Oε)

is a barrel in Ai0 for each ε > 0. Hence, U ε
io is a neighbourhood of zero in Ai0 for

each ε > 0, because every Ai is barrelled. Now U ε
i0

defines a number µε > 0 such
that B0 ⊂ µεU

ε
i0
. Since gi0(Ai0) ⊂ [0,∞) by the contition (b) and {[0, δ) : δ > 0}

is a base of 0 in [0,∞), then for every neighbourhood O of zero in [0,∞) there is
a number ε > 0 such that [0, ε] ⊂ O. Therefore,

rA(B0) ⊂ µεgi0(U
ε
i0
) ⊂ µε[0, ε] ⊂ µεO.

Consequently, rA is a bounded map.
(d) ⇒ (e) Let (aλ)λ∈Λ be a net in A which converges to θA in the sense of

Mackey. Then there exist a balanced set B ∈ BA and for any ε > 0 an index
λ0 ∈ Λ such that aλ ∈ εB, whenever λ � λ0. Since rA(aλ) ∈ ε rA(B), whenever
λ � λ0 and rA(B) is bounded in [0,∞) by the statement (d), then (rA(aλ))λ∈Λ
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converges to rA(θA) = 0 in [0,∞) in the sense of Mackey. Therefore, rA is Mackey
continuous at θA.

(e) ⇒ (f) Let (aλ)λ∈Λ be a net in A which converges to a0 ∈ A in the sense of
Mackey. Then the net (aλ − a0)λ∈Λ converges to θA in A in the sense of Mackey.
Therefore the net (rA(aλ − a0))λ∈Λ converges to 0 in [0,∞) (because from the
convergence of net in the sense of Mackey follows the convergence of it in the
sense of topology). Since rA is subadditive by the assumption (γ), then

|rA(a)− rA(b)| 6 rA(a− b)

for all a, b ∈ A. Hence, the net (rA(aλ))λ∈Λ converges to rA(a0) in the sense of
topology, consequently, also in the sense of Mackey (because [0,∞) is a metric
space).

(f) ⇒ (g) Let U = A \ {a ∈ A : rA(a) < 1} and (aλ)λ∈Λ a net in U which
converges to a0 ∈ A in the sense of Mackey. Then rA(aλ) > 1 for each λ ∈ Λ.
Since the net (rA(aλ))λ∈Λ converges to rA(a0) by the statement (f), then rA(a0) > 1
or a0 ∈ U . Hence, U is Mackey closed. Consequently, {a ∈ A : rA(a) < 1} is
Mackey open.

(g) ⇒ (h) The set O = {a ∈ A : rA(a) < 1} is a neighbourhood of zero in A in
the Mackey closure topology by the statement (g). If now a ∈ O, then ϕ(a) < 1
for each ϕ ∈ hom A because A has functional spectrum by the assumption (γ)
and O ⊂ QinvA. Consequently, the interior of QinvA in the Mackey closure
topology is not empty.

(h) ⇒ (i) The statement (i) follows from (g) by Lemma 3.1.
(i) ⇒ (b) The set QinvA is a neighbourhood of zero in the Mackey closure

topology on A by the statement (i). Therefore for each a ∈ A there is a number
µa > 0 such that a

µa
∈ QinvA or µa 6= spA(a). Hence, rA(a) < µa. It means that

spA(a) is bounded for each a ∈ A.
(d) ⇒ (j) Since

{ϕ(a) : ϕ ∈ hom A} ⊂ {ϕ(a) : ϕ ∈ HomA} ⊂ spA(a)

for each a ∈ A and A has functional spectrum by the assumption (γ), then

rA(a) = sup{|ϕ(a)| : ϕ ∈ HomA}
for each a ∈ A. Hence, ⋃

ϕ∈HomA

ϕ(B)

is bounded in [0,∞) for each B ∈ BA by the statement (d). Hence, HomA is a
equibounded set.

(j) ⇒ (d) Let HomA be an equibounded set. Then for each B ∈ BA there
exists a number MB > 0 such that |ϕ(a)| < MB for all a ∈ B and ϕ ∈ HomA.
Therefore, rA(B) is bounded. Hence, the statement (d) is true. �

Theorem 3.3. Let A be a commutative unital locally m-pseudoconvex Hausdorff
algebra over C with pseudoconvex von Neumann bornology. If, at the same time,
A is sequentially BA-complete and advertibly complete, then all the statements
(a)–(j) of Proposition 3.2 are equivalent.
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Proof. Let A be a commutative unital locally m-pseudoconvex Hausdorff algebra
over C. Then A is an advertive (see [3], Corollary 2) simplicial (see [6], Corollary 5;
for complete case see [3], Proposition 2) Gelfand–Mazur algebra (see [2], Corollary
2, or [1], Lemma 1.11). Therefore (see [3], Proposition 8), hom A is not empty and
A satisfies the condition (γ) of Proposition 3.2. Let {pλ : λ ∈ Λ} be a saturated
family of kλ-homogeneous seminorms (with kλ ∈ (0, 1] for each λ ∈ Λ), which
defines the topology of A. If a ∈ A and rA(a) < 1, then there is a number ρ such
that rA(a) < ρ < 1. Since A is advertibly complete, then

rA(a) = sup
λ∈Λ

lim
n→∞

kλn
√

pλ(an)

for each a ∈ A (see [3], Proposition 12). Therefore, for every λ ∈ Λ there is a
number nλ ∈ N such that pλ(a

n) < ρkλ < 1, whenever n > nλ. It means that
pλ(a

n) < ∞ for all λ ∈ Λ. Hence, the set {an : n ∈ N} is bounded in A. That
is, A satisfies the condition (β) of Proposition 3.2. Since A satisfies also the
condition (δ) of Proposition 3.2 by Theorem 2.1, then the statements (a)–(j) are
equivalent by Proposition 3.2. �

Corollary 3.4. Let A be a commutative unital locally m-(k-convex) Hausdorff
algebra over C for some k ∈ (0, 1]. If, at the same time, A is sequentially
BA-complete and advertibly complete (in particular, A is complete), then all the
statements (a)–(j) of Proposition 3.2 are equivalent.

Remark 3.5. Corollary 3.4 in case k = 1 has been partly proved in many papers
(see, for example, [12], Proposition 4.3, and [26], Proposition 4.1, for complete
case see [25], Proposition 3.3; [11], Theorem on the p. 61 and others).
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29. W. Żelazko, Metric generalizations of Banach Algebras, Rozprawy Mat. XLVII, PWN,

Warszawa, 1965.
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