

Banach J. Math. Anal. 1 (2007), no. 2, 195–207

${f B}$ anach ${f J}$ ournal of ${f M}$ athematical ${f A}$ nalysis

ISSN: 1735-8787 (electronic)

http://www.math-analysis.org

STRUCTURE OF LOCALLY IDEMPOTENT ALGEBRAS

MATI ABEL¹

This paper is dedicated to Professor Themistocles M. Rassias.

Submitted by M. Joita

ABSTRACT. It is shown that every locally idempotent (locally m-pseudoconvex) Hausdorff algebra A with pseudoconvex von Neumann bornology is a regular (respectively, bornological) inductive limit of metrizable locally m-(k_B -convex) subalgebras A_B of A. In the case where A, in addition, is sequentially \mathcal{B}_A -complete (sequentially advertibly complete), then every subalgebra A_B is a locally m-(k_B -convex) Fréchet algebra (respectively, an advertibly complete metrizable locally m-(k_B -convex) algebra) for some $k_B \in (0,1]$. Moreover, for a commutative unital locally m-pseudoconvex Hausdorff algebra A over $\mathbb C$ with pseudoconvex von Neumann bornology, which at the same time is sequentially \mathcal{B}_A -complete and advertibly complete, the statements (a)-(j) of Proposition 3.2 are equivalent.

1. Introduction

1. Let \mathbb{K} be the field \mathbb{R} of real numbers or \mathbb{C} of complex numbers. A topological algebra A over \mathbb{K} with separately continuous multiplication (in short a topological algebra) is locally pseudoconvex if it has a base \mathcal{L} of neighbourhoods of zero, consisting of balanced and pseudoconvex sets that is, of sets O which satisfy the condition $\mu O \subset O$ for $|\mu| \leq 1$ and define a number $k_O \in (0,1]$ such that

Date: Received: 30 May 2007; Accepted: 3 November 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46H05; Secondary 46H20.

Key words and phrases. Locally idempotent algebras, locally m-pseudoconvex algebras, locally m-convex algebras, locally m-(k-convex) algebras, pseudoconvex von Neumann bornology, bornological inductive limit, Mackey Q-algebra, advertibly complete algebras, Mackey complete algebras.

Research is in part supported by Estonian Science Foundation grant 6205.

 $O + O \subset 2^{\frac{1}{k_O}}O$. In particular, when $\inf\{k_O : O \in \mathcal{L}\} = 0$, then A is a degenerated locally pseudoconvex algebra and when $\inf\{k_O : O \in \mathcal{L}\} = k > 0$, A is a locally k-convex algebra. Moreover, A is a locally convex algebra if k = 1.

A topological algebra A is a locally idempotent algebra if it has a base of idempotent neighbourhoods of zero, that is, of neighbourhoods O such that $OO \subset O$. This class of topological algebras has been introduced in [29], p. 31. A topological algebra A is locally m-pseudoconvex (locally m-(k-convex)) if, at the same time, it is locally idempotent and locally pseudoconvex (respectively, locally idempotent and locally k-convex). In this case A has a base of neighbourhoods of zero which consists of idempotent and absolutely pseudoconvex¹ (respectively, idempotent and absolutely k-convex) sets. A locally m-(k-convex) algebra is locally k-convex if k = 1. Locally k-convex algebras (see, for example, [21], [23], [29] and [30]) and locally k-pseudoconvex algebra (see [1]–[8]) have been well studied, locally idempotent algebras (without any additional requirements) have been studied only in [24].

2. For any topological algebra A, $U \subset A$ and k > 0 let

$$\Gamma_k(U) = \Big\{ \sum_{v=1}^n \alpha_v u_v : n \in \mathbb{N}, u_v \in U, \alpha_v \in \mathbb{K} \text{ with } \sum_{v=1}^n |\alpha_v|^k \leqslant 1 \Big\}.$$

The von Neumann bornology \mathcal{B}_A of a topological algebra A is the collection of all bounded subsets in A. If for every $B \in \mathcal{B}_A$ there exists a number $k_B \in (0, 1]$ such that $\Gamma_{k_B}(B) \in \mathcal{B}_A$, then \mathcal{B}_A is pseudoconvex (see, [17], p. 101, or [20], p. A1058). In particular, when the number k_B does not depend on B (that is, when $k_B = k$ for all $B \in \mathcal{B}_A$), then \mathcal{B}_A is k-convex (see [31]), and when k = 1, then \mathcal{B}_A is convex. It is known that the von Neumann bornology on any locally k-convex space is k-convex (see [31], Proposition 1.2.15) and there exists a non-convex space with convex von Neumann bornology (see [31], Example 1.2.7). Moreover (see [20], Theorems 1 and 2, [22] and [17], p. 102–103), the von Neumann bornology \mathcal{B}_A on a locally pseudoconvex space k is pseudoconvex if k0, 1 if k1 is pseudoconvex.

3. A net $(x_{\lambda})_{\lambda \in \Lambda}$ in a topological linear space X is said to converge in the sense of Mackey (sometimes, to converge bornologically) to an element $x_0 \in X$ if there exist a balanced set $B \in \mathcal{B}_A$ and for every $\varepsilon > 0$ an index $\lambda_{\varepsilon} \in \Lambda$ such that $x_{\lambda} - x_0 \in \varepsilon B$ whenever $\lambda > \lambda_{\varepsilon}$. It is easy to see that every net which converges in the sense of Mackey (shortly, is Mackey convergent) converges also in the topological sense. The converse is false in general (see [18], p. 122, or [31], Proposition 1.2.4), but it is true in case when X is a metrizable topological linear space (see, [18], p. 27).

A map f from X into another topological linear space Y is Mackey continuous at $x_0 \in X$ (see, for example, [17], p. 10) if for each net $(x_\lambda)_{\lambda \in \Lambda}$, which converges to x_0 in X in the sense of Mackey, the net $(f(x_\lambda))_{\lambda \in \Lambda}$ converges to $f(x_0)$ in Y

¹A subset $U \subset A$ is absolutely k-convex if $\lambda u + \mu v \in U$ for all $u, v \in U$ and $\lambda, \mu \in \mathbb{K}$ with $|\lambda|^k + |\mu|^k \leq 1$ and is absolutely pseudoconvex if it is absolutely k-convex for some $k \in (0,1]$, which depends on the set U.

in the sense of Mackey. Moreover, a map f from X into Y is called Mackey continuous if f is Mackey continuous at every point of X, and f is bounded if $f(B) \in \mathcal{B}_Y$ for each $B \in \mathcal{B}_X$.

A net $(x_{\lambda})_{\lambda \in \Lambda}$ in a topological linear space X is called a Mackey-Cauchy net if there exist a balanced set $B \in \mathcal{B}_X$ and for every $\varepsilon > 0$ a number $\lambda_{\varepsilon} \in \Lambda$ such that $x_{\lambda} - x_{\mu} \in \varepsilon B$ whenever $\lambda > \mu > \lambda_{\varepsilon}$. It is easy to see that every Mackey-Cauchy net is a Cauchy net in the sense of topology. The converse statement is false in general (see [18], p. 122) but it is true in case of metrizable topological linear spaces (see [18], p. 27, or [31], Proposition 1.2.5). We say that a topological linear space X is sequentially \mathcal{B}_X -complete if every Mackey-Cauchy sequence in X converges in the sense of topology. Consequently, every sequentially complete (as well as complete) topological linear space X is sequentially \mathcal{B}_X -complete space.

- 4. For any topological algebra A (over \mathbb{K}) let m(A) denote the set of all closed regular two-sided ideals in A (which are maximal as left or right ideals) and let hom A denote the set of all nontrivial continuous linear and multiplicative maps from A onto \mathbb{K} . A topological algebra A is a Gelfand-Mazur algebra (see, for example, [1]-[8] and [21]) if A/M is topologically isomorphic to \mathbb{K} for each $M \in m(A)$. It is easy to see that every Gelfand-Mazur algebra A with nonempty set m(A) is exactly such topological algebra for which there is a bijection $\varphi \to \ker \varphi$ between hom A and m(A). Therefore, only in case of Gelfand-Mazur algebras it is possible to use the Gelfand theory, well-known for commutative (complex) Banach algebras.
- 5. A topological algebra A is *simplicial* (see [3], p. 15) if every closed regular left (right or two-sided) ideal of A is contained in some closed maximal left (respectively, right or two-sided) ideal of A. It is known (see² [6], Corollary 6) that every commutative unital locally m-pseudoconvex Hausdorff algebra is simplicial.
- 6. It is known that every locally m-convex Hausdorff algebra is a bornological inductive limit (with continuous canonical injections) of metrizable locally m-convex subalgebras of A (see [9], Proposition on p. 943, or [10], Theorem II.4.3) and every complete locally m-convex algebra is a bornological inductive limit (with continuous canonical injections) of locally m-convex Fréchet subalgebras of A (see [9], p. 941, or [10], Theorem II.4.2). Later on this result was generalized to the case of a sequentially \mathcal{B}_A -complete locally m-convex Hausdorff algebra A (see [26], Theorem 2.1) and to the case of an advertibly complete locally m-convex Hausdorff algebra A (see [12], Theorem 6.2, or [15], Theorem 3.14). All these results hold in case of locally m-(k-convex) algebras as well, but not in general in the case of degenerated locally m-pseudoconvex algebras.

In this paper these results are generalized to the case of locally idempotent Hausdorff algebras A with pseudoconvex von Neumann bornology. It is shown (as an application) that for every commutative unital locally m-pseudoconvex Hausdorff algebra A over \mathbb{C} with pseudoconvex von Neumann bornology, which at the same time is sequentially \mathcal{B}_A -complete and advertibly complete, the statements (a)–(j) of Proposition 3.2 are equivalent.

²For complete algebras see [4], Proposition 2, or [13], Corollary 7.1.14, and for locally m-convex algebras see, for example, [14], pp. 321–322.

2. Main result

The following structural result for locally idempotent algebras holds.

Theorem 2.1. 1) Let A be a locally idempotent Hausdorff algebra with pseudoconvex von Neumann bornology \mathcal{B}_A . Then every basis β_A of \mathcal{B}_A defines an inductive system $\{A_B : B \in \beta_A\}$ of metrizable locally m- $(k_B$ -convex) subalgebras A_B of A with $k_B \in (0,1]$ such that A is a regular inductive limit of this system.

2) Let A be a locally m-pseudoconvex Hausdorff algebra with pseudoconvex von Neumann bornology \mathcal{B}_A . Then every basis β_A of \mathcal{B}_A defines an inductive system $\{A_B : B \in \beta_A\}$ of metrizable locally m-(k_B -convex) subalgebras A_B of A with $k_B \in (0,1]$ such that A is a bornological inductive limit of this system with continuous canonical injections from A_B into A.

In case, when A, in addition, is sequentially \mathcal{B}_A -complete, then every subalgebra A_B in the inductive system $\{A_B : B \in \beta_A\}$ is a locally m-(k_B -convex) Fréchet algebra, and when A is sequentially advertibly complete, then every A_B in the inductive system $\{A_B : B \in \beta_A\}$ is an advertibly complete metrizable locally m-(k_B -convex) algebra for each $B \in \beta_A$.

Proof. 1) Let A be a locally idempotent Hausdorff algebra such that the von Neumann bornology \mathcal{B}_A of A is pseudoconvex, β_A a basis of \mathcal{B}_A and \mathfrak{L}_A a base of idempotent balanced neighbourhoods of zero in A. Then every $B \in \beta_A$ defines a number $k_B \in (0,1]$ such that $\Gamma_{k_B}(B) \in \mathcal{B}_A$. For each $n \in \mathbb{N}$ and $B \in \beta_A$ let

$$\mathfrak{L}_n^B = \{ O \in \mathfrak{L}_A : \Gamma_{k_B}(B) \subset nO \}.$$

If for fixed $B \in \beta_A$ some of the sets \mathfrak{L}_n^B are empty, then we omit such sets \mathfrak{L}_n^B , receiving in this way a sequence of numbers (v_n) (which depends on B) and a sequence of sets $(\mathfrak{L}_{v_n}^B)$, in which all members $\mathfrak{L}_{v_n}^B$ are non-empty. Further, we put

$$\mathfrak{O}_n^B = \bigcap \{O : O \in \mathfrak{L}_{v_n}^B\}.$$

As every set \mathfrak{O}_n^B is non-empty and idempotent in A, then

$$C_n^B(k_B) = \operatorname{cl}_A(\Gamma_{k_B}(\mathfrak{O}_n^B))$$

is a closed, idempotent (see [19], p. 103, and [23], Lemma 1.3) and absolutely k_B -convex subset of A for each $n \in \mathbb{N}$ and $B \in \beta_A$. Therefore, there is a countable set of k_B -homogeneous submultiplicative seminorms p_n^B on

$$A_B = \{ a \in A : C_n^B(k_B) \text{ absorbs } a \text{ for each } n \in \mathbb{N} \},$$

defined by

$$p_n^B(a) = \inf\{|\mu|^{k_B} : a \in \mu C_n^B(k_B)\}$$

³An iductive limit A of A_i with $i \in I$ is a regular inductive limit (see, for example, [19], p. 83), if $\mathcal{B}_A \subset \bigcup \{\mathcal{B}_{A_i} : i \in I\}$, and A is a bornological inductive limit (see, for example, [18], p. 34), if $\mathcal{B}_A = \bigcup \{\mathcal{B}_{A_i} : i \in I\}$.

⁴For example, when A is a locally m-(k-convex) Hausdorff algebra for some $k \in (0, 1]$, because in this case the von Newmann bornology \mathcal{B}_A is k-convex (see [31], Proposition 1.2.15).

for each $a \in A_B$. It is not difficult to verify that $B \subset A_B$ for each $B \in \beta_A$ (because $B \subset v_n C_n^B(k_B)$ for each $n \in \mathbb{N}$), A_B is a subalgebra of A,

$$A = \bigcup_{B \in \beta_A} A_B \tag{2.1}$$

and

$$\mathfrak{L}_A = \bigcup_{n \in \mathbb{N}} \mathfrak{L}_{v_n}^B \tag{2.2}$$

for each fixed $B \in \beta_A$. Moreover, every $U \in \mathcal{B}_A$ defines a set $B_0 \in \beta_A$ such that $U \subset B_0 \subset \Gamma_{k_{B_0}}(B_0)$. Since

$$\frac{1}{v_n}U\subset\mathfrak{O}_n^{B_0}\subset\Gamma_{k_{B_0}}(\mathfrak{O}_n^{B_0})\subset C_n^{B_0}(k_{B_0})$$

for each $n \in \mathbb{N}$, then $C_n^{B_0}(k_{B_0})$ absorbs U for each $n \in \mathbb{N}$. Hence $U \subset A_{B_0}$ and $p_n^{B_0}(u) \leq |v_n|^{k_{B_0}}$ for each $u \in U$ and each fixed $n \in \mathbb{N}$. It means that U is bounded in A_{B_0} . Consequently, every bounded subset of A is bounded in some subalgebra A_B of A, where $B \in \beta_A$.

Let now $n \in \mathbb{N}$ be fixed and $B, B' \in \beta_A$. We define the ordering on β_A by inclusion: we say that $B \prec B'$ if and only if $B \subset B'$. Since β_A is a basis of \mathcal{B}_A , then for any $B, B' \in \beta_A$ there exists a $B'' \in \beta_A$ such that $B \cup B' \subset B''$ (see, for example, [18], p. 18). Hence, (β_A, \prec) is a directed set. Now for any $B, B' \in \beta_A$ with $B \prec B'$ it is true that $\mathfrak{L}_{v_n}^B \subset \mathfrak{L}_{v_n}^B \subset$

$$p_n^{B'}(a)^{k_B} \leqslant p_n^B(a)^{k_{B'}}$$
 (2.3)

for each $n \in \mathbb{N}$ and $a \in A_B$.

For each pair $B, B' \in \beta_A$ with $B \prec B'$, let $i_{B'B}$ denote the canonical injection of A_B into $A_{B'}$ and for each $B \in \beta_A$ let i_B denote the canonical injection of A_B into A. Then

$$p_n^{B'}(i_{B'B}(a))^{k_B} \leqslant p_n^{B}(a)^{k_{B'}}$$

for each $n \in \mathbb{N}$ and $a \in A_B$ by the equality (2.3). Taking this into account, $\{A_B, i_{B'B}; \beta_A\}$ is an inductive system (with continuous canonical injections $i_{B'B}$) of metrizable locally m-(k_B -convex) algebras A_B and A is, by (2.1), a regular inductive limit of this system (with not necessarily continuous canonical injections i_B).

2) Let A be a locally m-pseudoconvex Hausdorff algebra with pseudoconvex von Neumann bornology \mathcal{B}_A . Then the injection i_B from A_B into A is continuous for each $B \in \beta_A$. To show this, let $B \in \beta_A$ and O be an arbitrary neighbourhood of zero in A. Since A is locally m-pseudoconvex, then there are a number $k \in (0,1]$ and a closed absolutely k-convex idempotent neighbourhood O_0 of zero in A such that $O_0 \subset O$. Moreover, there exists a number $A_B \in (0,1]$ such that $A_B \in \mathcal{B}_A$ because $A_B \in \mathcal{B}_A$ is pseudoconvex. Similarly as above (see the footnote), we can

⁵Without loss of generality, we can assume that $k_{B'} \leq k_B$, otherwise in the role of k_B we can take the number $k_{B'}$ since $\Gamma_{k_{B'}}(B) \subset \Gamma_{k_B}(B)$ if $k_B \leq k_{B'}$ (in this case $\Gamma_{k_{B'}}(B) \in \mathcal{B}_A$). Thus, if $k_{B'} \leq k_B$, then $\Gamma_{k_B}(U) \subset \Gamma_{k_{B'}}(U)$ for any $U \subset A$.

assume that $k \leq k_B$. Now O_0 defines a number $n_0 \in \mathbb{N}$ such that $O_0 \in \mathfrak{L}_{v_{n_0}}^B$ by (2.2). Hence $\mathfrak{D}_{n_0}^B \subset O_0$. Therefore, from

$$O_{n_0}^B \subset C_{n_0}^B(k_B) = \operatorname{cl}_A(\Gamma_{k_B}(\mathfrak{O}_{n_0}^B)) \subset \operatorname{cl}_A(\Gamma_k(\mathfrak{O}_{n_0}^B)) \subset \operatorname{cl}_A\Gamma_k(O_0) = O_0 \subset O$$

follows that $i_B(O_{n_0}^B) \subset O$, where $O_{n_0}^B = \{a \in A_B : p_{n_0}^B(a) < 1\}$ is a neighbourhood of zero in A_B for each fixed $B \in \beta_A$. Hence, i_B is continuous.

Next, let U be a bounded subset in A_B . Then for any $n \in \mathbb{N}$ there is a positive number M_n such that $p_n^B(u) \leq M_n^{k_B}$ for all $u \in U$. Hence O defines $n \in \mathbb{N}$ such that

$$U \subset M_n C_n^B(k_B) = M_n \operatorname{cl}_A(\Gamma_k(\mathfrak{O}_n^B)) \subset M_n \operatorname{cl}_A\Gamma_k(O_0) = M_n O_0 \subset M_n O$$
.

That is, $U \in \mathcal{B}_A$. Consequently, every locally m-pseudoconvex Hausdorff algebra A with pseudoconvex von Neumann bornology \mathcal{B}_A is a bornological inductive limit of metrizable m-(k_B -convex) subalgebras A_B with continuous canonical injections from A_B into A.

Let now, in addition, A be sequentially \mathcal{B}_A -complete, $B \in \beta_A$, (a_m) a Cauchy sequence in A_B ,

$$V_B = \{a_k - a_l : k, l \in \mathbb{N}\}\$$

and

$$O_{n\nu}^B = \{ a \in A_B : p_n^B(a) < \nu \}$$

for each $n \in \mathbb{N}$ and $\nu > 0$. Then V_B is bounded in A_B , $O_{n\nu}^B$ is a neighbourhood of zero in A_B and $O_{n\nu}^B = \nu^{\frac{1}{k_B}} O_{n1}^B$ for each $n \in \mathbb{N}$ and $\nu > 0$. Hence, for each $n \in \mathbb{N}$ there exists a number $\mu_n > 0$ such that $V_B \subset \mu_n O_{n1}^B$. Now, let $\epsilon > 0$, (α_n) a sequence of positive numbers, which converges to 0, $\lambda_n = \frac{\mu_n}{\alpha_n}$ for each $n \in \mathbb{N}$ and

$$U = \bigcap_{n \in \mathbb{N}} \lambda_n O_{n1}^B.$$

Then U is a bounded and balanced subset in A_B , $\frac{\lambda_n}{\mu_n} = \frac{1}{\alpha_n}$ tends to ∞ , if $n \to \infty$, and there is a number $s \in \mathbb{N}$ such that $\frac{\lambda_n}{\mu_n} \geqslant \frac{1}{\epsilon}$ for each n > s. Hence $\mu_n \leqslant \epsilon \lambda_n$ and $V_B \subset \mu_n O_{n1}^B \subset \epsilon \lambda_n O_{n1}^B$ for each n > s. Since

$$W_B = \bigcap_{n \le s} \epsilon \lambda_n O_{n1}^B$$

is a neighborhood of zero in A_B , then there exists $l \in \mathbb{N}$ and $\alpha > 0$ such that $O_{l\alpha}^B \subset W_B$. Thus

$$V_B \cap O_{l\alpha}^B \subset \left(\bigcap_{n>s} \epsilon \lambda_n O_{n1}^B\right) \cap \left(\bigcap_{n \leqslant s} \epsilon \lambda_n O_{n1}^B\right) = \bigcap_{n \in \mathbb{N}} \epsilon \lambda_n O_{n1}^B = \epsilon U. \tag{2.4}$$

As (a_m) is a Cauchy sequence in A_B , then there is a number $r \in \mathbb{N}$ such that $a_s - a_t \in O_{l\alpha}^B$, whenever s > t > r. Taking this into account, it is clear by (2.4), that $a_s - a_t \in \epsilon U$, whenever s > t > r. Consequently, (a_m) is a Mackey–Cauchy sequence in A_B . Since, the canonical injection i_B of A_B into A is continuous, then U is bounded in A in the present case and (a_m) is a Cauchy-Mackey sequence also in A. Hence, (a_m) converges in A say, to a_0 .

As (a_m) is a bounded sequence in A_B , then for each fixed $n \in \mathbb{N}$ there exists a number $M_n > 0$ such that

$$p_n^B(a_m) < M_n^{k_B}$$

for all $m \in \mathbb{N}$. Hence, $a_m \in M_n C_n^B(k_B)$ for each fixed $n \in \mathbb{N}$ and all $m \in \mathbb{N}$. It is easy to see that $M_n C_n^B(k_B)$ is a closed and balanced subset of A. Therefore

$$a_0 \in M_n C_n^B(k_B) = \mu \left(\frac{M_n}{\mu}\right) C_n^B(k_B) \subset \mu C_n^B(k_B),$$

whenever $|\mu| \geqslant M_n$. Consequently, $C_n^B(k_B)$ absorbs a_0 for each $n \in \mathbb{N}$. Hence, $a_0 \in A_B$. Since (a_n) is a Cauchy sequence in A_B , then for each $\epsilon > 0$ there exist $\delta \in (0, \epsilon)$ and $r_\delta \in \mathbb{N}$ such that $p_n^B(a_s - a_t) < \delta$, whenever $s > t > r_\delta$. Taking this into account, $p_n^B(a_0 - a_t) \leq \delta < \epsilon$ for each $t > r_\delta$, because p_n^B is continuous on A_B . Consequently, (a_n) converges to a_0 in A_B . It means that every A_B is a locally m-(k-convex) Fréchet algebra.

Let now A be a sequentially advertibly complete locally m-pseudoconvex Hausdorff algebra with pseudoconvex von Neumann bornology \mathcal{B}_A , β_A a basis of \mathcal{B}_A and let $B \in \beta_A$. Then the canonical injection i_B from A_B into A is continuous (as it has been shown above). Therefore the topology τ_{A_B} on A_B , defined by the system of seminorms $\{p_n^B : n \in \mathbb{N}\}$, is stronger than the topology $\tau|_{A_B}$ on A_B , induced by the topology of A. If (a_n) is a Cauchy sequence in A_B which is advertibly convergent, then there exists an element $a \in A_B$ such that sequences $(a \circ a_n)$ and $(a_n \circ a)$ converge to θ_A in the topology τ_{A_B} . Since τ_{A_B} is stronger than $\tau|_{A_B}$, then (a_n) is a Cauchy sequence in A which advertibly converges in the topology of A as well. Hence, (a_n) converges in A, because A is sequentially advertibly complete.

Let a_0 be the limit of (a_n) in A. It is easy to see that a_0 is the quasi-inverse of a in A. Since every Cauchy sequence is bounded, then, similarly as above, $C_n^B(k_B)$ absorbs a_0 for all $n \in \mathbb{N}$. Thus, $a_0 \in A_B$. Since $(a_n) = (a_0 \circ (a \circ a_n))$ converges to $a_0 \circ \theta_A = a_0$, then A_B is an advertibly complete metrizable locally m- $(k_B$ -convex) algebra with $k_B \in (0,1]$ for each $B \in \mathcal{B}$.

3. Applications

1. Let A be a topological algebra over \mathbb{C} , QinvA the set of all quasi-invertible elements (if A is a unital algebra, let InvA be the set of all invertible elements) in A and let $a \in A$. The set

$$\operatorname{sp}_A(a) = \{ \lambda \in \mathbb{C} \setminus \{0\} : \frac{a}{\lambda} \notin \operatorname{Qinv} A \} \cup \{0\}$$

(if A has a unit e_A , then $\operatorname{sp}_A(a) = \{\lambda \in \mathbb{C} : a - \lambda e_A \notin \operatorname{Inv} A\}$) is the spectrum of a and

$$r_A(a) = \sup\{|\lambda| : \lambda \in \operatorname{sp}_A(a)\}$$

the $spectral\ radius$ of a. If hom A is not empty, then

$$\{\varphi(a):\varphi\in \mathrm{hom}\,A\}\subset\mathrm{sp}_A(a)$$

for each $a \in A$. In particular, when

$$\operatorname{sp}_A(a) = \{ \varphi(a) : \varphi \in \operatorname{hom} A \} \cup S,$$

where $S = \{0\}$ if $a \notin \bigcup \{\ker \varphi : \varphi \in \text{hom } A\}$ and $S = \emptyset$ otherwise, we will say that A is a topological algebra with functional spectrum.

2. For any topological algebra A let τ_M denote the Mackey closure topology on A, that is,

$$\tau_M =$$

 $\{O \subset A : \ \forall \ a \in O \text{ and } \forall \text{ balanced } B \in \mathcal{B}_A \ \exists \ \lambda > 0 \text{ such that } a + \lambda B \subset O\}.$

Then every element of τ_M is a $Mackey\ open$ subset and every element U, for which $A \setminus U \in \tau_M$, is a $Mackey\ closed$ subset in A. It is easy to show (see, for example, [18], p. 37 and p. 120) that a subset $O \subset A$ is Mackey open if and only if for every $a \in O$ and for every net $(a_\lambda)_{\lambda \in \Lambda}$ in A, which converges to a in the sense of Mackey, there is an index $\lambda_0 \in \Lambda$ such that $a_\lambda \in O$ for all $\lambda \succ \lambda_0$ and O is Mackey closed if and only if for every net $(a_\lambda)_{\lambda \in \Lambda}$ in O, which converges to a_0 in the sense of Mackey, element $a_0 \in O$. A topological algebra A is called a Q-algebra ($Mackey\ Q$ -algebra) if the set Q-algebra (if A is a unital algebra, then the set Q-algebra is a Mackey Q-algebra. Nevertheles, there are Mackey Q-algebras (see [16], Example 3.9) which are not Q-algebras.

Lemma 3.1. Let A be a topological algebra. Then A is a Mackey Q-algebra if and only if QinvA has a non-empty interior in the Mackey closure topology.

Proof. Let S denote the interior of QinvA in the Mackey closure topology. If A is a Mackey Q-algebra, then $\theta_A \in S$. Assume now that S is not empty. For every fixed $b \in A$ let $l_b(a) = b \circ a$ and $r_b(a) = a \circ b$ for each $a \in A$. It is easy to see that the maps l_b and r_b are Mackey continuous on A. If now $a \in \text{Qinv}A$ and $s \in S$, then $l_{s \circ a_a^{-1}}(a) = r_{a_a^{-1} \circ s}(a) = s \in S$. To show that

$$W=l_{s\circ a_q^{-1}}^{-1}(S)\cap r_{a_q^{-1}\circ s}^{-1}(S)\subset \mathrm{Qinv}A,$$

let $w \in W$ an arbitrary element. Then

$$l_{s \circ a_q^{-1}}(w), r_{a_q^{-1} \circ s}(w) \in S \subset \text{Qinv} A.$$

Hence, there exist $x, y \in A$ such that

$$x\circ l_{s\circ a_q^{-1}}(w)=l_{s\circ a_q^{-1}}(w)\circ x=\theta_A$$

and

$$y \circ r_{a_q^{-1} \circ s}(w) = l_{s \circ a_q^{-1}}(w) \circ y = \theta_A.$$

Therefore

$$[x\circ (s\circ a_q^{-1})]\circ w=x\circ [(s\circ a_q^{-1})\circ w]=\theta_A$$

and

$$w \circ [(a_q^{-1} \circ s) \circ y] = [w \circ (a_q^{-1} \circ s)] \circ y = \theta_A.$$

Now $x \circ (s \circ a_q^{-1}) = (a_q^{-1} \circ s) \circ y$ and $w \in \text{Qinv}A$.

To show that W is Mackey open, let $w_0 \in W$ and $(w_\alpha)_{\alpha \in \mathcal{A}}$ be a net in A which Mackey converges to w_0 . Since $l_{s \circ a_q^{-1}}$ and $r_{a_q^{-1} \circ s}$ are Mackey continuous maps, then $(l_{s \circ a_q^{-1}}(w_\alpha))_{\alpha \in \mathcal{A}}$ converges to $l_{s \circ a_q^{-1}}(w_0) \in S$ and $(r_{a_q^{-1} \circ s}(w_\alpha))_{\alpha \in \mathcal{A}}$ converges

⁶Here and later on a_q^{-1} denotes the quasi-inverse of $a \in A$.

to $r_{a_q^{-1} \circ s}(w_0) \in S$ in the sense of Mackey. Therefore, there exist $\alpha_1, \alpha_2 \in \mathcal{A}$ such that $l_{s \circ a_q^{-1}}(w_\alpha) \in S$, whenever $\alpha \succ \alpha_1$ and $r_{a_q^{-1} \circ s}(w_\alpha) \in S$, whenever $\alpha \succ \alpha_2$. Let $\alpha_0 \in \Lambda$ be such that $\alpha_0 \succ \alpha_1$ and $\alpha_0 \succ \alpha_2$. Then $w_\alpha \in W$, whenever $\alpha \succ \alpha_0$. Consequently, W is a Mackey open neighbourhood of a, because of which Qinv A is a Mackey open set in A.

Proposition 3.2. Let A be a topological Hausdorff algebra over \mathbb{C} with pseudoconvex von Neumann bornology \mathcal{B}_A . If hom A is not empty and, in addition, A satisfies the following conditions:

- (α) A is sequentially \mathcal{B}_A -complete;
- (β) if $a \in A$ and $r_A(a) < 1$, then the set $\{a^n : n \in \mathbb{N}\}$ is bounded in A;
- (γ) if $a \in A$ and $\varphi(a) \neq 1$ for each $\varphi \in \text{hom } A$, then $a \in \text{Qinv } A$;
- (δ) A is representable in the form of a regular inductive limit of barrelled subalgebras A_i of A with $i \in I$ such that the canonical injections $\iota_i : A_i \to A$ are continuous,

then the following statements are equivalent:

- (a) every $a \in A$ is bounded⁸;
- (b) $\operatorname{sp}_A(a)$ is bounded for each $a \in A$;
- (c) $\operatorname{sp}_A(a)$ is compact for each $a \in A$;
- (d) r_A is a bounded map from A into $[0, \infty)$;
- (e) r_A is Mackey continuous at θ_A ;
- (f) r_A is a Mackey continuous map;
- (g) the set $\{a \in A : r_A(a) < 1\}$ is Mackey open;
- (h) the interior of QinvA in the Mackey closure topology on A is not empty;
- (i) A is a Mackey Q-algebra;
- (j) HomA is an equibounded set.

Proof. (a) \Rightarrow (b) It is known (see [7], Theorem 4.2) that $r_A(a) < \infty$ if A is sequentially \mathcal{B}_A -complete and every element in A is bounded. Therefore from the statement (a) follows (b).

- (b) \Rightarrow (a) Let $a \in A$ and let $\operatorname{sp}_A(a)$ be bounded. Then there is a number M > 0 such that $\operatorname{r}_A(a) < M$ or $\operatorname{r}_A(\frac{a}{M}) < 1$. Therefore $\{\left(\frac{a}{M}\right)^n : n \in \mathbb{N}\}$ is bounded in A by the assumption (β) . It means that from the statement (b) follows (a).
- (b) \Rightarrow (c) Suppose that there is an element $a \in A$ such that $\operatorname{sp}_A(a)$ is not closed in \mathbb{C} . Then there exists a complex number

$$\mu_a \in \operatorname{cl}_{\mathbb{C}}(\operatorname{sp}_A(a)) \setminus \operatorname{sp}_A(a)$$

⁷ If $a \in A \setminus \bigcup \{\ker \varphi : \varphi \in \text{hom } A\}$ and $\lambda \in \operatorname{sp}_A(a) \setminus \{0\}$, then $\frac{a}{\lambda} \notin \operatorname{Qinv} A$. Hence, by applying the statement (γ) , there exists a map $\varphi \in \operatorname{hom} A$ such that $\lambda = \varphi(a)$. It means that $\operatorname{sp}_A(a) \setminus \{0\} \subset \{\varphi(a) : \varphi \in \operatorname{hom} A\}$. Otherwise $\operatorname{sp}_A(a) \subset \{\varphi(a) : \varphi \in \operatorname{hom} A\}$. Hence, from (γ) follows that A has functional spectrum.

⁸An $a \in A$ is bounded if there is a $\lambda \in \mathbb{C} \setminus \{0\}$ such that the set $\{(\frac{a}{\lambda})^n : n \in \mathbb{N}\}$ is bounded in A.

⁹Here and later on Hom A denotes the set of nontrivial (not necessarily continuous) homomorphisms from A onto \mathbb{C} . A family \mathcal{F} of maps f from a topological linear space X into another topological linear space Y is equibounded if the set $\bigcup \{f(B) : f \in \mathcal{F}\}$ is bounded in Y for each bounded set B of X.

such that $\frac{1}{\mu_a}a \in \text{Qinv} A \ (\mu_a \neq 0 \text{ because } 0 \in \text{sp}_A(a)).$ Since

$$\operatorname{sp}_A(a) = \{ \varphi(a) : \varphi \in \operatorname{hom} A \} \cup S,$$

where $S = \{0\}$ if $a \notin \bigcup \{\ker \varphi : \varphi \in \text{hom } A\}$ and $S = \emptyset$ otherwise, by the assumption (γ) , then there is a sequence (φ_n) in hom A such that the sequence $(\varphi_n(a))$ converges to μ_a in \mathbb{C} . It is well known (see, for example, [27], Theorem 1.6.11) that

$$\operatorname{sp}_A(a_q^{-1}) = \left\{ \frac{\lambda}{\lambda - 1} : \lambda \in \operatorname{sp}_A(a) \right\}.$$

Therefore

$$\operatorname{sp}_{A}\left[\left(\frac{a}{\mu_{a}}\right)_{q}^{-1}\right] = \left\{\frac{\varphi(a)}{\varphi(a) - \mu_{a}} : \varphi \in \operatorname{hom} A\right\}.$$

Thus,

$$\operatorname{sp}_A\left[\left(\frac{a}{\mu_a}\right)_q^{-1}\right]$$

is not bounded which is not possible. Hence, $\operatorname{sp}_A(a)$ is closed in $\mathbb C$ for each $a \in A$ and every bounded closed subset in $\mathbb C$ is compact.

- $(c) \Rightarrow (b)$ is clear.
- $(b) \Rightarrow (d)$ Since

$$r_A(a) = \sup\{f_{\varphi}(a) : \varphi \in \text{hom } A\} < \infty$$

for each $a \in A$ by the condition (b) and the assumption (γ), where the function f_{φ} , defined by $f_{\varphi}(a) = |\varphi(a)|$ for each $a \in A$ and each $\varphi \in \text{hom } A$, is continuous (consequently, is lower semicontinuous too), then r_A is a lower semicontinuous function on A (see, for example, [28], p. 97). Therefore

$$O_{\varepsilon} = \{ a \in A : r_A(a) \leqslant \varepsilon \}$$

is closed set in A for each $\varepsilon > 0$.

Let $B_0 \in \mathcal{B}_A$. By the assumption (δ) there are barrelled subalgebras A_i with $i \in I$ in A such that A is a regular inductive limit of subalgebras A_i and the cannonical injections $\iota_i : A_i \to A$ are continuous. Therefore, there exists an index $i_0 \in I$ such that $B_0 \subset A_{i_0}$ and B_0 is bounded in A_{i_0} . Moreover, if $g_{i_0} = \mathbf{r}_A \circ \iota_{i_0}$, then

$$U_{i_0}^{\varepsilon} = \{b \in A_{i_0} : g_{i_0}(b) \leqslant \varepsilon\} = \iota_{i_0}^{-1}(O_{\varepsilon})$$

is a barrel in A_{i_0} for each $\varepsilon > 0$. Hence, $U_{i_o}^{\varepsilon}$ is a neighbourhood of zero in A_{i_0} for each $\varepsilon > 0$, because every A_i is barrelled. Now $U_{i_0}^{\varepsilon}$ defines a number $\mu_{\varepsilon} > 0$ such that $B_0 \subset \mu_{\varepsilon} U_{i_0}^{\varepsilon}$. Since $g_{i_0}(A_{i_0}) \subset [0, \infty)$ by the contition (b) and $\{[0, \delta) : \delta > 0\}$ is a base of 0 in $[0, \infty)$, then for every neighbourhood O of zero in $[0, \infty)$ there is a number $\varepsilon > 0$ such that $[0, \varepsilon] \subset O$. Therefore,

$$r_A(B_0) \subset \mu_{\varepsilon} g_{i_0}(U_{i_0}^{\varepsilon}) \subset \mu_{\varepsilon}[0, \varepsilon] \subset \mu_{\varepsilon}O.$$

Consequently, r_A is a bounded map.

(d) \Rightarrow (e) Let $(a_{\lambda})_{{\lambda}\in{\Lambda}}$ be a net in A which converges to θ_A in the sense of Mackey. Then there exist a balanced set $B \in \mathcal{B}_A$ and for any $\varepsilon > 0$ an index $\lambda_0 \in \Lambda$ such that $a_{\lambda} \in \varepsilon B$, whenever $\lambda \succ \lambda_0$. Since $r_A(a_{\lambda}) \in \varepsilon r_A(B)$, whenever $\lambda \succ \lambda_0$ and $r_A(B)$ is bounded in $[0, \infty)$ by the statement (d), then $(r_A(a_{\lambda}))_{{\lambda}\in{\Lambda}}$

converges to $r_A(\theta_A) = 0$ in $[0, \infty)$ in the sense of Mackey. Therefore, r_A is Mackey continuous at θ_A .

(e) \Rightarrow (f) Let $(a_{\lambda})_{{\lambda}\in\Lambda}$ be a net in A which converges to $a_0 \in A$ in the sense of Mackey. Then the net $(a_{\lambda} - a_0)_{{\lambda}\in\Lambda}$ converges to θ_A in A in the sense of Mackey. Therefore the net $(r_A(a_{\lambda} - a_0))_{{\lambda}\in\Lambda}$ converges to 0 in $[0, \infty)$ (because from the convergence of net in the sense of Mackey follows the convergence of it in the sense of topology). Since r_A is subadditive by the assumption (γ) , then

$$|\mathbf{r}_A(a) - \mathbf{r}_A(b)| \leqslant \mathbf{r}_A(a-b)$$

for all $a, b \in A$. Hence, the net $(r_A(a_\lambda))_{\lambda \in \Lambda}$ converges to $r_A(a_0)$ in the sense of topology, consequently, also in the sense of Mackey (because $[0, \infty)$ is a metric space).

- (f) \Rightarrow (g) Let $U = A \setminus \{a \in A : r_A(a) < 1\}$ and $(a_\lambda)_{\lambda \in \Lambda}$ a net in U which converges to $a_0 \in A$ in the sense of Mackey. Then $r_A(a_\lambda) \geqslant 1$ for each $\lambda \in \Lambda$. Since the net $(r_A(a_\lambda))_{\lambda \in \Lambda}$ converges to $r_A(a_0)$ by the statement (f), then $r_A(a_0) \geqslant 1$ or $a_0 \in U$. Hence, U is Mackey closed. Consequently, $\{a \in A : r_A(a) < 1\}$ is Mackey open.
- (g) \Rightarrow (h) The set $O = \{a \in A : r_A(a) < 1\}$ is a neighbourhood of zero in A in the Mackey closure topology by the statement (g). If now $a \in O$, then $\varphi(a) < 1$ for each $\varphi \in \text{hom } A$ because A has functional spectrum by the assumption (γ) and $O \subset \text{Qinv} A$. Consequently, the interior of Qinv A in the Mackey closure topology is not empty.
 - (h) \Rightarrow (i) The statement (i) follows from (g) by Lemma 3.1.
- (i) \Rightarrow (b) The set QinvA is a neighbourhood of zero in the Mackey closure topology on A by the statement (i). Therefore for each $a \in A$ there is a number $\mu_a > 0$ such that $\frac{a}{\mu_a} \in \text{Qinv}A$ or $\mu_a \neq \text{sp}_A(a)$. Hence, $r_A(a) < \mu_a$. It means that $\text{sp}_A(a)$ is bounded for each $a \in A$.
 - $(d) \Rightarrow (j)$ Since

$$\{\varphi(a):\varphi\in \mathrm{hom}\,A\}\subset \{\varphi(a):\varphi\in \mathrm{Hom}A\}\subset \mathrm{sp}_A(a)$$

for each $a \in A$ and A has functional spectrum by the assumption (γ) , then

$$r_A(a) = \sup\{|\varphi(a)| : \varphi \in \text{Hom}A\}$$

for each $a \in A$. Hence,

$$\bigcup_{\varphi \in \operatorname{Hom} A} \varphi(B)$$

is bounded in $[0, \infty)$ for each $B \in \mathcal{B}_A$ by the statement (d). Hence, Hom A is a equibounded set.

- (j) \Rightarrow (d) Let Hom A be an equibounded set. Then for each $B \in \mathcal{B}_A$ there exists a number $M_B > 0$ such that $|\varphi(a)| < M_B$ for all $a \in B$ and $\varphi \in \text{Hom } A$. Therefore, $r_A(B)$ is bounded. Hence, the statement (d) is true.
- **Theorem 3.3.** Let A be a commutative unital locally m-pseudoconvex Hausdorff algebra over \mathbb{C} with pseudoconvex von Neumann bornology. If, at the same time, A is sequentially \mathcal{B}_A -complete and advertibly complete, then all the statements (a)–(j) of Proposition 3.2 are equivalent.

Proof. Let A be a commutative unital locally m-pseudoconvex Hausdorff algebra over \mathbb{C} . Then A is an advertive (see [3], Corollary 2) simplicial (see [6], Corollary 5; for complete case see [3], Proposition 2) Gelfand–Mazur algebra (see [2], Corollary 2, or [1], Lemma 1.11). Therefore (see [3], Proposition 8), hom A is not empty and A satisfies the condition (γ) of Proposition 3.2. Let $\{p_{\lambda} : \lambda \in \Lambda\}$ be a saturated family of k_{λ} -homogeneous seminorms (with $k_{\lambda} \in (0,1]$ for each $\lambda \in \Lambda$), which defines the topology of A. If $a \in A$ and $r_A(a) < 1$, then there is a number ρ such that $r_A(a) < \rho < 1$. Since A is advertibly complete, then

$$r_A(a) = \sup_{\lambda \in \Lambda} \lim_{n \to \infty} \sqrt[k_{\lambda}]{p_{\lambda}(a^n)}$$

for each $a \in A$ (see [3], Proposition 12). Therefore, for every $\lambda \in \Lambda$ there is a number $n_{\lambda} \in \mathbb{N}$ such that $p_{\lambda}(a^n) < \rho^{k_{\lambda}} < 1$, whenever $n > n_{\lambda}$. It means that $p_{\lambda}(a^n) < \infty$ for all $\lambda \in \Lambda$. Hence, the set $\{a^n : n \in \mathbb{N}\}$ is bounded in A. That is, A satisfies the condition (β) of Proposition 3.2. Since A satisfies also the condition (δ) of Proposition 3.2 by Theorem 2.1, then the statements (a)–(j) are equivalent by Proposition 3.2.

Corollary 3.4. Let A be a commutative unital locally m-(k-convex) Hausdorff algebra over \mathbb{C} for some $k \in (0,1]$. If, at the same time, A is sequentially \mathcal{B}_A -complete and advertibly complete (in particular, A is complete), then all the statements (a)-(j) of Proposition 3.2 are equivalent.

Remark 3.5. Corollary 3.4 in case k = 1 has been partly proved in many papers (see, for example, [12], Proposition 4.3, and [26], Proposition 4.1, for complete case see [25], Proposition 3.3; [11], Theorem on the p. 61 and others).

References

- Mart Abel, Structure of Gelfand-Mazur algebras, Dissertationes Mathematicae Universitatis Tartuensis 31, Tartu University Press, Tartu, 2003.
- Mati Abel, Gelfand-Mazur algebras, Topological vector spaces, algebras and related areas, (Hamilton, ON, 1994), 116–129, Pitman Res. Notes Math. Ser. 316, Longman Sci. Tech., Harlow, 1994.
- 3. Mati Abel, Advertible topological algebras, General topological algebras (Tartu, 1999), 14–24, Math. Stud. (Tartu), 1, Est. Math. Soc., Tartu, 2001.
- Mati Abel, Descriptions of the topological radical in topological algebras, General topological algebras (Tartu, 1999), 25–31, Math. Stud. (Tartu), 1, Est. Math. Soc., Tartu, 2001.
- 5. Mati Abel, Survey of results on Gelfand–Mazur algebras, Non-normed topological algebras (Rabat, 2000), 14–25, E. N. S. Takaddoum Publ., Rabat, 2004.
- Mati Abel, Inductive limits of Gelfand-Mazur algebras, Int. J. Pure Appl. Math. 16 (2004), no. 3, 363-378.
- Mati Abel, Topological algebras with pseudoconvexly bounded elements, Topological algebras, their applications, and related topics, 21–33, Banach Center Publ., 67, Polish Acad. Sci., Warsaw, 2005.
- 8. Mati Abel, A. Kokk, *Locally pseudoconvex Gelfand–Mazur algebras*, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. **37** (1988), no. 4, 377–386 (in Russian).
- M. Akkar, Sur la structure des algèbres topologiques localement multiplicativement convexes,
 C. R. Acad. Sc. Paris Ser. A 279 (1974), 941–944.
- M. Akkar, Etude spectrale et structures d'algèbres topologiques et bornologiques complètes, Thése Sci. Math., Univ. de Bordeaux, 1976.

- 11. M. Akkar, Caractèrisation des algébres localement m-convexes dont l'ensemble des caractères est équiborné, Colloq. Math. 68 (1995), no. 1, 59–65.
- 12. M. Akkar, A. Beddaa, M. Oudadess, Sur une classe d'algèbres topologiques, Bull. Belg. Math. Soc. Simon Stevin 3 (1996), no. 1, 13–24.
- 13. V.K. Balachandran, *Topological algebras*, North-Holland Mathematics Studies, **185**, North-Holland Publishing Co., Amsterdam (2000).
- E. Beckenstein, L. Narici and Ch. Suffel, Topological algebras, North-Holland Mathematics Studies, 24, North-Holland Publ. Co., Amsterdam-New York-Oxford (1977).
- 15. A. Beddaa, Algèbres localement convexes advertiblement complètes et continuité automatique des morphismes, These Docteur d'Etat Sciences Mathematiques. Univ. Mohamed V de Rabat, Rabat, 1997.
- A. El Kinani, Advertible complétude et structure de Q-algèbre, Rend. Circ. Mat. Palermo
 50, no. 3, (2001),427-442.
- 17. H. Hogbe-Nlend, *Théorie des bornologies et applications*, Lecture Notes in Mathematics **213**, Springer-Verlag, Berlin-New York, 1971.
- H. Hogbe-Nlend, Bornologies and Functional Analysis. Introductory course on the theory of duality topology-bornology and its use in functional analysis., North-Holland Mathematics Studies 26, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
- H. Jarchow, Locally Convex Spaces. Mathematische Leitfäden, B.G. Teubner, Stuttgart, 1981.
- J.-P. Ligaud, Sur les rapports entre topologies et bornologies pseudoconvexes, C. R. Acad. Sci. Paris. Sér. A-B 271 (1970), A1058-A1060.
- 21. A. Mallios, *Topologial Algebras. Selected Topics*, North-Holland Mathematics Studies **124**, North-Holland Publishing Co., Amsterdam, 1986.
- 22. R.C. Metzler, A remark on bounded sets in linear topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 317–318.
- E.A. Michael, Locally multiplicatively-convex topologial algebras, Mem. Amer. Math. Soc., 1952.
- 24. V. Murali, Locally idempotent algebras, Math. Japon. 30 (1985), N. 5, 736–776.
- 25. M. Oudadess, A note on m-convex and pseudo-Banach structures, Rend. Circ. Mat. Palermo (2) 41 (1992), no. 1, 105–110.
- 26. M. Oudadess, Functional boundedness of some M-complet m-convex algebras, Bull. Greek Math. Soc. **39** (1997), 17–20.
- 27. C.E. Rickart, *General theory of Banach algebras*, D. van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960.
- 28. Z. Semadeni, Banach spaces of continuous functions, Vol. I, PWN, Warszawa, 1971.
- 29. W. Żelazko, Metric generalizations of Banach Algebras, Rozprawy Mat. XLVII, PWN, Warszawa, 1965.
- 30. W. Zelazko, Selected topics in topological algebras, Lecture Notes Series 31, Aarhus Universitet, Aarhus, 1971.
- 31. L. Waelbroeck, *Bornological quotients. With the collaboration of Guy Noël*, Académie Royale de Belgique, Classe des Sciences, Brussels, 2005.

E-mail address: mati.abel@ut.ee

 $^{^{1}}$ Institute of Pure Mathematics, University of Tartu, Liivi 2–614, 50409 Tartu, Estonia.