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ABSTRACT. It is shown that every locally idempotent (locally m-pseudoconvex)
Hausdorff algebra A with pseudoconvex von Neumann bornologyis a regular
(respectively, bornological) inductive limit of metrizable locally m-(kg-convex)
subalgebras Ap of A. In the case where A, in addition, is sequentially
B 4-complete (sequentially advertibly complete), then every subalgebra Ap is
a locally m-(kp-convex) Fréchet algebra (respectively, an advertibly complete
metrizable locally m-(kp-convex) algebra) for some kg € (0, 1]. Moreover, for
a commutative unital locally m-pseudoconvex Hausdorff algebra A over C with
pseudoconvex von Neumann bornology, which at the same time is sequentially
B 4-complete and advertibly complete, the statements (a)—(j) of Proposition
-2 are equivalent.

1. INTRODUCTION

1. Let K be the field R of real numbers or C of complex numbers. A topological
algebra A over K with separately continuous multiplication (in short a topological
algebra) is locally pseudoconvex if it has a base L of neighbourhoods of zero,
consisting of balanced and pseudoconvex sets that is, of sets O which satisfy
the condition pO C O for |u| < 1 and define a number ko € (0,1] such that
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O+0C 2%0. In particular, when inf{ko : O € L} =0, then A is a degenerated
locally pseudoconver algebra and when inf{kp : O € L} =k > 0, A is a locally
k-convex algebra. Moreover, A is a locally convex algebra if k = 1.

A topological algebra A is a locally idempotent algebra if it has a base of idem-
potent neighbourhoods of zero, that is, of neighbourhoods O such that OO C O.
This class of topological algebras has been introduced in [29], p. 31. A topological
algebra A is locally m-pseudoconvex (locally m-(k-convez)) if, at the same time, it
is locally idempotent and locally pseudoconvex (respectively, locally idempotent
and locally k-convex). In this case A has a base of neighbourhoods of zero which
consists of idempotent and absolutely pseudoconvexﬂ (respectively, idempotent
and absolutely k-convex) sets. A locally m-(k-convex) algebra is locally m-convex
if & = 1. Locally m-convex algebras (see, for example, [21], [23], [29] and [30])
and locally m-pseudoconvex algebra (see [1]-[8]) have been well studied, locally
idempotent algebras (without any additional requirements) have been studied
only in [24].

2. For any topological algebra A, U C A and k > 0 let

['w(U) = {Zavuv :n € N,u, € U, a, € K with Z o |* < 1}.
v=1 v=1

The von Neumann bornology B, of a topological algebra A is the collection of all
bounded subsets in A. If for every B € By there exists a number kg € (0, 1] such
that I'y, (B) € Ba, then By is pseudoconvex (see, [IT], p. 101, or [20], p. A1058).
In particular, when the number kp does not depend on B (that is, when kg = k
for all B € By), then By is k-convex (see [31]), and when k£ = 1, then B, is conver.
It is known that the von Neumann bornology on any locally k-convex space is
k-convex (see [31], Proposition 1.2.15) and there exists a non-convex space with
convex von Neumann bornology (see [31], Example 1.2.7). Moreover (see [20],
Theorems 1 and 2, [22] and [17], p. 102-103), the von Neumann bornology By4
on a locally pseudoconvex space A is pseudoconvex if B4 has a countable base,
and every metrizable linear space is locally k-convex for some k € (0,1] if By is
pseudoconvex.

3. A net (z))xea in a topological linear space X is said to converge in the
sense of Mackey (sometimes, to converge bornologically) to an element zq € X
if there exist a balanced set B € B, and for every ¢ > 0 an index A\. € A such
that =) — o € €B whenever A > \.. It is easy to see that every net which
converges in the sense of Mackey (shortly, is Mackey convergent) converges also
in the topological sense. The converse is false in general (see [18], p. 122, or [31],
Proposition 1.2.4), but it is true in case when X is a metrizable topological linear
space (see, [18], p. 27).

A map f from X into another topological linear space Y is Mackey continuous
at xg € X (see, for example, [I7], p. 10) if for each net (z))xea, which converges
to xp in X in the sense of Mackey, the net (f(z)))rea converges to f(xg) in Y

LA subset U C A is absolutely k-convex if Mu+ pv € U for all u,v € U and A, € K with
IAI¥ 4+ |u|* < 1 and is absolutely pseudoconves if it is absolutely k-convex for some k € (0,1],
which depends on the set U.
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in the sense of Mackey. Moreover, a map f from X into Y is called Mackey
continuous if f is Mackey continuous at every point of X, and f is bounded if
f(B) € By for each B € Bx.

A net (x))xea in a topological linear space X is called a Mackey—Cauchy net
if there exist a balanced set B € Bx and for every € > 0 a number A\, € A such
that xy — x, € eB whenever A > u > A.. It is easy to see that every Mackey—
Cauchy net is a Cauchy net in the sense of topology. The converse statement is
false in general (see [I§], p. 122) but it is true in case of metrizable topological
linear spaces (see [I8], p. 27, or [31], Proposition 1.2.5). We say that a topological
linear space X is sequentially By -complete if every Mackey—-Cauchy sequence in X
converges in the sense of topology. Consequently, every sequentially complete (as
well as complete) topological linear space X is sequentially By-complete space.

4. For any topological algebra A (over K) let m(A) denote the set of all closed
regular two-sided ideals in A (which are maximal as left or right ideals) and
let hom A denote the set of all nontrivial continuous linear and multiplicative
maps from A onto K. A topological algebra A is a Gelfand—Mazur algebra (see,
for example, [I]-[8] and [21]) if A/M is topologically isomorphic to K for each
M € m(A). Tt is easy to see that every Gelfand—Mazur algebra A with non-
empty set m(A) is exactly such topological algebra for which there is a bijection
¢ — ker ¢ between hom A and m(A). Therefore, only in case of Gelfand-Mazur
algebras it is possible to use the Gelfand theory, well-known for commutative
(complex) Banach algebras.

5. A topological algebra A is simplicial (see [3], p. 15) if every closed regular
left (right or two-sided) ideal of A is contained in some closed maximal left (re-
spectively, right or two-sided) ideal of A. It is known (sed| [6], Corollary 6) that
every commutative unital locally m-pseudoconvex Hausdorff algebra is simplicial.

6. It is known that every locally m-convex Hausdorff algebra is a bornolog-
ical inductive limit (with continuous canonical injections) of metrizable locally
m-convex subalgebras of A (see [9], Proposition on p. 943, or [10], Theorem
I1.4.3) and every complete locally m-convex algebra is a bornological inductive
limit (with continuous canonical injections) of locally m-convex Fréchet subal-
gebras of A (see [9], p. 941, or [10], Theorem I1.4.2). Later on this result was
generalized to the case of a sequentially B-complete locally m-convex Hausdorff
algebra A (see [26], Theorem 2.1) and to the case of an advertibly complete lo-
cally m-convex Hausdorff algebra A (see [12], Theorem 6.2, or [15], Theorem
3.14). All these results hold in case of locally m-(k-convex) algebras as well, but
not in general in the case of degenerated locally m-pseudoconvex algebras.

In this paper these results are generalized to the case of locally idempotent
Hausdorff algebras A with pseudoconvex von Neumann bornology. It is shown (as
an application) that for every commutative unital locally m-pseudoconvex Haus-
dorff algebra A over C with pseudoconvex von Neumann bornology, which at the
same time is sequentially Bs-complete and advertibly complete, the statements
(a)—(j) of Proposition [3.2] are equivalent.

2For complete algebras see [d], Proposition 2, or [I3], Corollary 7.1.14, and for locally
m-convex algebras see, for example, [14], pp. 321-322.
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2. MAIN RESULT

The following structural result for locally idempotent algebras holds.

Theorem 2.1. 1) Let A be a locally idempotent Hausdorff algebra with pseu-
doconvex von Neumann bornology Ba. Then every basis B4 of Ba defines an
inductive system {Ag : B € B4} of metrizable locally m-(kp-convex) subalgebras
Ap of A with kg € (0,1] such that A is a reqular inductive limiﬂ of this system.

2) Let A be a locally m-pseudoconvex Hausdorff algebra with pseudoconvex von
Neumann bornolog@ﬂ Ba. Then every basis 4 of Ba defines an inductive sys-
tem {Ap: B € [a} of metrizable locallym-(kp-convex) subalgebras Ag of A with
kg € (0,1] such that A is a bornological inductive limit of this system with con-
tinuous canonical injections from Ap into A.

In case, when A, in addition, is sequentially Ba-complete, then every subalgebra
Ap in the inductive system {Ap : B € Ba} is a locally m-(kp-convex) Fréchet
algebra, and when A is sequentially advertibly complete, then every Apg in the
inductive system {Ag : B € [a} is an advertibly complete metrizable locally
m-(kg-conver) algebra for each B € (4.

Proof. 1) Let A be a locally idempotent Hausdorff algebra such that the von
Neumann bornology B, of A is pseudoconvex, (34 a basis of B4 and £4 a base of

idempotent balanced neighbourhoods of zero in A. Then every B € (34 defines a
number kg € (0, 1] such that I'y,(B) € B4. For each n € N and B € (4 let

£58 =10 € £, : T, (B) C nO}.

If for fixed B € 34 some of the sets £2 are empty, then we omit such sets £5,
receiving in this way a sequence of numbers (v,) (which depends on B) and a
sequence of sets (an), in which all members SUB; are non-empty. Further, we put

OF=([0:0e2l}.
As every set O is non-empty and idempotent in A, then
Cy (k) = cla(Tw, (D7)

is a closed, idempotent (see [19], p. 103, and [23], Lemma 1.3) and absolutely
kp-convex subset of A for each n € Nand B € (34. Therefore, there is a countable
set of kp-homogeneous submultiplicative seminorms p? on

Ap ={a € A: CP(kg) absorbs a for each n € N},

defined by
P (a) = inf{[pu]*? : a € pC (kp)}

3An iductive limit A of A; with i € I is a regular inductive limit (see, for example, [T9], p.
83), if Ba C |U{Ba, : i € I}, and A is a bornological inductive limit (see, for example, [18], p.
34), if By = U{BAz NS I}.

4For example, when A is a locally m-(k-convex) Hausdorff algebra for some k € (0, 1], because
in this case the von Newmann bornology B4 is k-convex (see [31], Proposition 1.2.15).
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for each a € Ap. It is not difficult to verify that B C Ag for each B € (4
(because B C v,CB(kg) for each n € N), Ap is a subalgebra of A,

A= |J 45 (2.1)

Be pa

and

ga=J el (2.2)
neN
for each fixed B € 4. Moreover, every U € B4 defines a set By € (34 such that
U C By C 'y, (By). Since

LU C O C Ty (D5) € O (k)
for each n € N, then CP0(kp,) absorbs U for each n € N. Hence U C Ap, and
pPo(u) < |v, [P0 for each u € U and each fixed n € N. It means that U is bounded
in Ap,. Consequently, every bounded subset of A is bounded in some subalgebra
Ap of A, where B € (34.

Let now n € N be fixed and B, B’ € (34. We define the ordering on 84 by
inclusion: we say that B < B’if and only if B C B’. Since 34 is a basis of B4, then
for any B, B’ € 34 there exists a B” € 34 such that BUB" C B” (see, for example,
[18], p. 18). Hence, (£a4, <) is a directed set. Now for any B, B’ € 4 with B < B’
it is true tha eB c 2B 08 c OF CP(kp) C CF(kp), Ap C Ap and

pr (@) < py(a)* (2.3)

for each n € N and a € Ap.
For each pair B, B’ € §4 with B < B’, let igp denote the canonical injection

of Ap into Ap: and for each B € 34 let iz denote the canonical injection of Ag
into A. Then
oy (ips(a)™® < pf(a)*

for each n € N and a € Ap by the equality . Taking this into account,
{Ap,ipp; B4} is an inductive system (with continuous canonical injections ip/p)
of metrizable locally m-(kp-convex) algebras Ap and A is, by (2.1)), a regular
inductive limit of this system (with not necessarily continuous canonical injections
iB).

2) Let A be a locally m-pseudoconvex Hausdorff algebra with pseudoconvex von
Neumann bornology B4. Then the injection ip from Ap into A is continuous for
each B € (4. To show this, let B € 34 and O be an arbitrary neighbourhood of
zero in A. Since A is locally m-pseudoconvex, then there are a number k € (0, 1]
and a closed absolutely k-convex idempotent neighbourhood Oy of zero in A such
that Oy C O. Moreover, there exists a number kg € (0, 1] such that T'y,(B) € By,
because B4 is pseudoconvex. Similarly as above (see the footnote®), we can

SWithout loss of generality, we can assume that kg < kp, otherwise in the role of kg we can
take the number kp since 'y, (B) C I'x, (B) if kp < kp/ (in this case I'y,, (B) € Ba). Thus,
if kp: < kp, then I'y, (U) C 'y, (U) for any U C A.
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assume that k < kg. Now Oy defines a number ng € N such that Oy € Sfi . by
(2.2). Hence OF C Oy. Therefore, from

Ofo C Oﬁ(/ﬂB) = CIA(FkB(DEO)) C CIA(Fk<DEO)) C ClAPk(O()) =0y CO

follows that ig(Of) C O, where OF = {a € Ap : p§ (a) < 1} is a neighbourhood
of zero in Ap for each fixed B € (34. Hence, ig is continuous.

Next, let U be a bounded subset in Ag. Then for any n € N there is a positive
number M, such that pZ(u) < MF2 for all u € U. Hence O defines n € N such
that

U C M,CB(kp) = Mucla(Tr(9F)) € M,claTx(0y) = M, Oy C M,0.

That is, U € B4. Consequently, every locally m-pseudoconvex Hausdorff algebra
A with pseudoconvex von Neumann bornology B4 is a bornological inductive limit
of metrizable m-(kp-convex) subalgebras Ap with continuous canonical injections
from Ap into A.

Let now, in addition, A be sequentially B-complete, B € (4, (a,,) a Cauchy
sequence in Ag,

VB:{ak—al:k,leN}
and
OB ={acAp:pP(a) <v}

for each n € N and v > 0. Then V3 is bounded in Ag, O, is a neighbourhood

nv
of zero in Ap and OB, = l/éOfl for each n € N and v > 0. Hence, for each
n € N there exists a number p,, > 0 such that Vg C p,,0F. Now, let € > 0, (a,)
a sequence of positive numbers, which converges to 0, A, = Z—Z for each n € N
and

U= ) MO%.

n € N

Then U is a bounded and balanced subset in Ag, ;\L—Z = i tends to oo, if n — o0,
and there is a number s € N such that l’)—z > % for each n > s. Hence u, < e\,
and Vg C 11,08 C e\, 0B for each n > s. Since

Ws =[] e\O}

n < s

is a neighborhood of zero in Ap, then there exists [ € N and a > 0 such that
Opf c Wpg. Thus

Vs NOE ( N eAnOT’?l) N ( N e)\nOfl> = MOB =cU.  (24)

n>s n<s neN

As (a,,) is a Cauchy sequence in Ap, then there is a number » € N such that
as — a; € OB whenever s > t > r. Taking this into account, it is clear by ,
that a; — a; € €U, whenever s >t > r. Consequently, (a,,) is a Mackey—Cauchy
sequence in Ag. Since, the canonical injection ig of Ap into A is continuous, then
U is bounded in A in the present case and (a,,) is a Cauchy-Mackey sequence

also in A. Hence, (a,,) converges in A say, to a.
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As (a,,) is a bounded sequence in Ag, then for each fixed n € N there exists a
number M,, > 0 such that
pf(am) < MrIfB
for all m € N. Hence, a,, € M,,CZ(kp) for each fixed n € N and all m € N. It is
easy to see that M,,CB(kp) is a closed and balanced subset of A. Therefore

M,
ay € MyCP(kp) = u(7)05<k3> C uCB(kp),

whenever |u| > M,. Consequently, CZ(kg) absorbs ag for each n € N. Hence,
ap € Ap. Since (a,) is a Cauchy sequence in Ap, then for each € > 0 there exist
§ € (0,¢) and r; € N such that pZ(a, — a;) < §, whenever s > t > rs. Taking
this into account, pf (ag — a;) < 6 < e for each t > rs, because pf is continuous
on Ag. Consequently, (a,) converges to ag in Ag. It means that every Ap is a
locally m-(k-convex) Fréchet algebra.

Let now A be a sequentially advertibly complete locally m-pseudoconvex Haus-
dorff algebra with pseudoconvex von Neumann bornology B4, B4 a basis of By
and let B € 34. Then the canonical injection ig from Apg into A is continuous
(as it has been shown above). Therefore the topology 74, on Ag, defined by
the system of seminorms {p? : n € N}, is stronger than the topology 7|4, on
Apg, induced by the topology of A. If (a,) is a Cauchy sequence in Ap which is
advertibly convergent, then there exists an element a € Ag such that sequences
(a o a,) and (a, o a) converge to 04 in the topology 74,. Since 74, is stronger
than 7|4,, then (a,) is a Cauchy sequence in A which advertibly converges in
the topology of A as well. Hence, (a,) converges in A, because A is sequentially
advertibly complete.

Let ap be the limit of (a,) in A. It is easy to see that ag is the quasi-inverse
of a in A. Since every Cauchy sequence is bounded, then, similarily as above,
CB(kp) absorbs aq for all n € N. Thus, ay € Ag. Since (a,) = (ag o (a0 ay))
converges to ag o 04 = ag, then Ap is an advertibly complete metrizable locally
m-(kp-convex) algebra with kg € (0, 1] for each B € B. O

3. APPLICATIONS

1. Let A be a topological algebra over C, QinvA the set of all quasi-invertible
elements (if A is a unital algebra, let InvA be the set of all invertible elements)
in A and let a € A. The set

spa(a) = (A € C\ {0} : 5 # QinvA} U {0}

(if A has a unit ey4, then spy(a) = {A € C:a— Xey & InvA}) is the spectrum of
a and

ra(a) =sup{|A| : A € spy(a)}
the spectral radius of a. If hom A is not empty, then

{e(a) : ¢ € hom A} C sp,(a)
for each a € A. In particular, when

spa(a) = {¢(a) : p € hom A} U S,
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where S = {0} if a & U{kerp : ¢ € hom A} and S = () otherwise, we will say
that A is a topological algebra with functional spectrum.
2. For any topological algebra A let 73, denote the Mackey closure topology
on A, that is,
™ =
{OCA: VaeOandV balanced B € B4 3 A > 0 such that a + AB C O}.

Then every element of 7, is a Mackey open subset and every element U, for
which A\ U € 7, is a Mackey closed subset in A. It is easy to show (see, for
example, [18], p. 37 and p. 120) that a subset O C A is Mackey open if and only
if for every a € O and for every net (aj)yea in A, which converges to a in the
sense of Mackey, there is an index \g € A such that ay, € O for all A = Ay and
O is Mackey closed if and only if for every net (ay)xea in O, which converges to
ap in the sense of Mackey, element ay € O. A topological algebra A is called a
Q-algebra (Mackey Q-algebra) if the set QinvA (if A is a unital algebra, then the
set InvA) is open (respectively, is Mackey open) in A. It is easy to see that every
Q-algebra is a Mackey Q-algebra. Nevertheles, there are Mackey Q-algebras (see
[16], Example 3.9) which are not Q-algebras.

Lemma 3.1. Let A be a topological algebra. Then A is a Mackey Q-algebra if
and only if QinvA has a non-empty interior in the Mackey closure topology.

Proof. Let S denote the interior of QinvA in the Mackey closure topology. If A
is a Mackey @-algebra, then 64 € S. Assume now that S is not empty. For every
fixed b € Alet ly(a) =boa and ry(a) = aob for each a € A. It is easy to see that

the maps [, and r, are Mackey continuous on A. If now a € QinvA and s € S,
thenﬂ lyoaz1(a) = T4-15(a) = s € S. To show that
W = l;olagl(S) N 7”;;1105(5) C QinvA,
let w € W an arbitrary element. Then
Lygazt (W), 715, (w) € 5 C QinvA.
Hence, there exist x,y € A such that

T 0l (w) = lyg,-1(w) 0w =04

and
yo 7naq_los(fw) = lsoaq_1<w) oYy = HA'
Therefore
[xo(soa,)]ow=azo[(soa,")ow] =04
and

wo[(aq’los)oy] = [wo(a;los)]oy:HA.
Now z o (soa,") = (a;' os)oy and w € QinvA,

To show that W is Mackey open, let wy € W and (wg)aeca be a net in A which
Mackey converges to wy. Since [ -1 and Tglos AT€ Mackey continuous maps,

then ({

soaq 0s

soazt (Wa))aca converges to I ,,—1(wo) € S and (r-1,,(wa))aca converges

6Here and later on a;l denotes the quasi-inverse of a € A.
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to ra;1os(w0) € S in the sense of Mackey. Therefore, there exist oy, ay € A such
that [,,,-1(ws) € S, whenever a - ay and r -1, (wa) € S, whenever a > as. Let
ag € A be such that ag = a7 and ag > as. Then w, € W, whenever a > «y.
Consequently, W is a Mackey open neighbourhood of a, because of which QinvA
is a Mackey open set in A. O

Proposition 3.2. Let A be a topological Hausdorff algebra over C with pseudo-
convex von Neumann bornology B4. If hom A is not empty and, in addition, A
satisfies the following conditions:

() A is sequentially B-complete;

(B) ifa € A andra(a) <1, then the set {a™ : n € N} is bounded in A;

(7) if a € A and p(a) # 1 for each ¢ € hom A, thenﬁ a € QinvA;

(0) A is representable in the form of a regular inductive limit of barrelled sub-
algebras A; of A with i € I such that the canonical injections v; : A; — A are
continuous,

then the following statements are equivalent:

(a

) every a € A is boundedy;

(b) sp4(a) is bounded for each a € A;

(c) spa(a) is compact for each a € A;

(d) r4 is a bounded map from A into [0, 00);

(e) ra is Mackey continuous at 04;

(f) ra is a Mackey continuous map;

(g) the set {a € A:ra(a) < 1} is Mackey open;

(h) the interior of QinvA in the Mackey closure topology on A is not empty;
(i) A is a Mackey Q-algebra;

(j) HomA is an equiboundeaﬂ set.

Proof. (a) = (b) It is known (see [7], Theorem 4.2) that ra(a) < oo if A is
sequentially B4-complete and every element in A is bounded. Therefore from the
statement (a) follows (b).

(b) = (a) Let a € A and let sp4(a) be bounded. Then there is a number M > 0
such that r4(a) < M or ra(&) < 1. Therefore {(Z)" : n € N} is bounded in A
by the assumption (). It means that from the statement (b) follows (a).

(b) = (c) Suppose that there is an element a € A such that sp4(a) is not closed
in C. Then there exists a complex number

fta € cle(spy(a)) \ spyla)

"Ifa € A\ U{kerp : ¢ € hom A} and X € spy(a)\ {0}, then & $ & QinvA. Hence, by
applying the statement (), there exists a map ¢ € hom A such that A = ¢(a). It means
that sp,(a) \ {0} C {¢(a) : ¢ € hom A}. Otherwise sp,(a) C {¢(a) : ¢ € hom A}. Hence,
from (v) follows that A has functional spectrum.

8An a € A is bounded if there is a A € C\ {0} such that the set {(%)n :n € N} is bounded
in A.

9Here and later on HomA denotes the set of nontrivial (not necessarily continuous) homo-
morphisms from A onto C. A family F of maps f from a topological linear space X into another
topological linear space Y is equibounded if the set |J{f(B): f € F} is bounded in Y for each
bounded set B of X.
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such that u—laa € QinvA (p, # 0 because 0 € spy(a)). Since
spa(a) = {¢(a) : ¢ € hom A} U S,

where S = {0} if a & [J{kerp : ¢ € hom A} and S = () otherwise, by the
assumption (), then there is a sequence (¢,,) in hom A such that the sequence
(pn(a)) converges to p, in C. It is well known (see, for example, [27], Theorem
1.6.11) that

ala) = {2 A€ spala)}.
spA[(i):] = {% L € homA}.

(o), ]

a

Therefore
Thus,

is not bounded which is not possible. Hence, sp4(a) is closed in C for each a € A
and every bounded closed subset in C is compact.

(¢) = (b) is clear.

(b) = (d) Since

ra(a) =sup{f,(a): ¢ € hom A} < oo

for each a € A by the condition (b) and the assumption (), where the function
[, defined by f,(a) = |p(a)| for each a € A and each ¢ € hom A, is continuous
(consequently, is lower semicontinuous too), then ry is a lower semicontinuous
function on A (see, for example, [28], p. 97). Therefore

O.={a€ A:ry(a) <c}

is closed set in A for each ¢ > 0.

Let By € B4. By the assumption (§) there are barrelled subalgebras A; with
1 € I in A such that A is a regular inductive limit of subalgebras A; and the
cannonical injections ¢; : A; — A are continuous. Therefore, there exists an index
19 € I such that By C A;, and By is bounded in A;,. Moreover, if g;, =14 0 ¢;,,
then

U;, ={be Ay gi,(b) <e} =1 (O.)

is a barrel in A;, for each € > 0. Hence, U; is a neighbourhood of zero in A;, for
each € > 0, because every A; is barrelled. Now U; defines a number . > 0 such
that By C p.U;,. Since gy,(A;,) C [0,00) by the contition (b) and {[0,d) : § > 0}
is a base of 0 in [0, 00), then for every neighbourhood O of zero in [0, 00) there is
a number £ > 0 such that [0,e] C O. Therefore,

rA(BO) - ﬂegm(UiEO) - ME[()?E] - IUEO

Consequently, r4 is a bounded map.

(d) = (e) Let (ax)rea be a net in A which converges to 64 in the sense of
Mackey. Then there exist a balanced set B € B and for any € > 0 an index
Ao € A such that a) € eB, whenever A > )\g. Since rq(ay) € era(B), whenever
A > Ao and r4(B) is bounded in [0, 00) by the statement (d), then (ra(ax))aea
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converges to r4(64) = 0in [0, 00) in the sense of Mackey. Therefore, r4 is Mackey
continuous at 84.

(e) = (f) Let (ax)aea be a net in A which converges to ag € A in the sense of
Mackey. Then the net (ay — ag)rea converges to 64 in A in the sense of Mackey.
Therefore the net (rs(ay — ag))aea converges to 0 in [0,00) (because from the
convergence of net in the sense of Mackey follows the convergence of it in the
sense of topology). Since r4 is subadditive by the assumption (), then

raa) —1a(b)| <1a(a —0)

for all a,b € A. Hence, the net (rs(ay))rea converges to ru(ag) in the sense of
topology, consequently, also in the sense of Mackey (because [0, 00) is a metric
space).

(f) = (g) Let U = A\ {a € A :r4(a) < 1} and (ax)rea a net in U which
converges to ag € A in the sense of Mackey. Then rs(ay) > 1 for each A € A.
Since the net (r4(ay))rea converges to r4(ag) by the statement (f), thenra(ag) > 1
or ap € U. Hence, U is Mackey closed. Consequently, {a € A : ry(a) < 1} is
Mackey open.

(g) = (h) The set O = {a € A:rs(a) < 1} is a neighbourhood of zero in A in
the Mackey closure topology by the statement (g). If now a € O, then p(a) < 1
for each ¢ € hom A because A has functional spectrum by the assumption ()
and O C QinvA. Consequently, the interior of QinvA in the Mackey closure
topology is not empty.

(h) = (i) The statement (i) follows from (g) by Lemma (3.1}

(i) = (b) The set QinvA is a neighbourhood of zero in the Mackey closure
topology on A by the statement (i). Therefore for each a € A there is a number
fta > 0 such that = € QinvA or i, # spy(a). Hence, ra(a) < pe. It means that
sp4(a) is bounded for each a € A.

(d) = (j) Since

{p(a) : ¢ € hom A} C {p(a) : ¢ € HomA} C spy(a)
for each a € A and A has functional spectrum by the assumption (), then
ra(a) = sup{[p(a)| : ¢ € HomA}
for each a € A. Hence,
U «®)

€ HomA

is bounded in [0,00) for each B € By by the statement (d). Hence, HomA is a
equibounded set.

(j) = (d) Let HomA be an equibounded set. Then for each B € By there
exists a number Mp > 0 such that |p(a)| < Mp for all @ € B and ¢ € HomA.
Therefore, r4(B) is bounded. Hence, the statement (d) is true. O

Theorem 3.3. Let A be a commutative unital locally m-pseudoconvex Hausdorff
algebra over C with pseudoconvex von Neumann bornology. If, at the same time,
A is sequentially Ba-complete and advertibly complete, then all the statements
(a)—(j) of Proposition are equivalent.
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Proof. Let A be a commutative unital locally m-pseudoconvex Hausdorff algebra
over C. Then A is an advertive (see [3], Corollary 2) simplicial (see [6], Corollary 5;
for complete case see [3], Proposition 2) Gelfand-Mazur algebra (see [2], Corollary
2, or [1], Lemma 1.11). Therefore (see [3], Proposition 8), hom A is not empty and
A satisfies the condition (v) of Proposition [3.2] Let {p : A € A} be a saturated
family of ky-homogeneous seminorms (with k) € (0, 1] for each A € A), which
defines the topology of A. If a € A and ra(a) < 1, then there is a number p such
that ra(a) < p < 1. Since A is advertibly complete, then

ra(a) =sup lim "{/py(a)
>\€A n—oo

for each a € A (see [3], Proposition 12). Therefore, for every A € A there is a
number ny, € N such that py(a") < p* < 1, whenever n > ny. It means that
pa(a™) < oo for all A € A. Hence, the set {a" : n € N} is bounded in A. That
is, A satisfies the condition (8) of Proposition [3.2] Since A satisfies also the
condition (8) of Proposition [3.2 by Theorem [2.1] then the statements (a)—(j) are
equivalent by Proposition [3.2] O

Corollary 3.4. Let A be a commutative unital locally m-(k-convex) Hausdorff
algebra over C for some k € (0,1]. If, at the same time, A is sequentially
B4-complete and advertibly complete (in particular, A is complete), then all the
statements (a)—(j) of Proposz'tion are equivalent.

Remark 3.5. Corollary in case k = 1 has been partly proved in many papers
(see, for example, [12], Proposition 4.3, and [26], Proposition 4.1, for complete
case see [25], Proposition 3.3; [11], Theorem on the p. 61 and others).
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