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A statistic based on increment ratios (IR’s) and related to zero crossings of an increment sequence is defined
and studied for the purposes of measuring the roughness of random paths. The main advantages of this
statistic are robustness to smooth additive and multiplicative trends and applicability to infinite variance
processes. The existence of the IR statistic limit (which we shall call the IR-roughness) is closely related
to the existence of a tangent process. Three particular cases where the IR-roughness exists and is explicitly
computed are considered. First, for a diffusion process with smooth diffusion and drift coefficients, the
IR-roughness coincides with the IR-roughness of a Brownian motion and its convergence rate is obtained.
Second, the case of rough Gaussian processes is studied in detail under general assumptions which do not
require stationarity conditions. Third, the IR-roughness of a Lévy process with an α-stable tangent process
is established and can be used to estimate the fractional parameter α ∈ (0,2) following a central limit
theorem.

Keywords: diffusion processes; estimation of the local regularity function of stochastic process; fractional
Brownian motion; Hölder exponent; Lévy processes; limit theorems; multifractional Brownian motion;
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1. Introduction and statement of main results

It is well known that random functions are typically “rough” (non-differentiable), which raises
the question of determining and measuring “roughness”. Probably, the most widely studied
roughness measures are the Hausdorff dimension and the p-variation index. There exists a con-
siderable body of literature on statistical estimation of these and related quantities from a discrete
grid. Hence, different estimators of the Hausdorff dimension have been studied, such as the box-
counting estimator; see [26] for stationary Gaussian processes or [31] for Gaussian processes
with stationary increments. To the best of our knowledge, the H -variation estimator, where H

is a measurable function, was first proposed by Guyon and Leon [25] for stationary Gaussian
processes where central and non-central limit theorems were established following the Hermite
rank of H and the asymptotic local properties of the variogram and its second derivative. Further
studies provided a continuation of this seminal paper in different ways. Istas and Lang [29] stud-
ied generalized quadratic variations of Gaussian processes with stationary increments. Coeurjolly
[12,13] studied �p-variations of fractional Brownian motion and �2-variations of multifractional
Brownian motion. Coeurjolly [14] discussed L-variations based on linear combinations of em-
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pirical quantiles for Gaussian locally self-similar processes. An estimator counting the number
of level crossings was investigated by Feuerverger et al. [21] for stationary Gaussian processes.

In the present paper, we introduce a new characteristic of roughness, defined as a sum of ratios
of consecutive increments. For a real-valued function f = (f (t), t ∈ [0,1]), define recursively

�
1,n
j f := f

(
j + 1

n

)
− f

(
j

n

)
,

�
p,n
j f := �

1,n
j �

p−1,n
j f =

p∑
i=0

(−1)p−i

(
p

i

)
f

(
j + i

n

)
, (1.1)

so that �
p,n
j f denotes the p-order increment of f at j

n
, p = 1,2, . . . , j = 0,1, . . . , n − p. Let

Rp,n(f ) := 1

n − p

n−p−1∑
k=0

|�p,n
k f + �

p,n

k+1f |
|�p,n

k f | + |�p,n

k+1f | (1.2)

with the convention that 0
0 := 1. In particular,

R1,n(f ) = 1

n − 1

n−2∑
k=0

|f ((k + 1)/n) − f (k/n) + f ((k + 2)/n) − f ((k + 1)/n)|
|f ((k + 1)/n) − f (k/n)| + |f ((k + 2)/n) − f ((k + 1)/n)| . (1.3)

Note that the ratio on the right-hand side of (1.2) is either 1 or less than 1, depending on whether
the consecutive increments �

p,n
k f and �

p,n

k+1f have the same sign or different signs, respec-
tively; moreover, in the latter case, this ratio is generally small whenever the increments are
similar in magnitude (“cancel each other out”). Clearly, 0 ≤ Rp,n(f ) ≤ 1 for any f,n,p. Thus,
if limRp,n(f ) exists when n → ∞, the quantity Rp,n(f ) can be used to estimate this limit which
represents the “mean roughness of f ”, also called the pth order IR-roughness of f below. We will
show that these definitions can be extended to sample paths of very general random processes,
for instance, stationary processes, processes with stationary and non-stationary increments and
even L

q -processes with q < 1.
Let us describe the main results of this paper. Section 2 derives some general results on

asymptotic behavior of this estimator. Proposition 2.1 states that, for a sufficiently smooth
function f , the limit limn→∞ Rp,n(f ) = 1. In the majority of the paper, f = X is a random
process. Following Dobrushin [18], we say that X = (Xt , t ∈ R) has a small scale limit Y (t0) at
point t0 ∈ R if there exists a normalization A(t0)(δ) → ∞ when δ → 0 and a random process
Y (t0) = (Y

(t0)
τ , τ ≥ 0) such that

A(t0)(δ)(Xt0+τδ − Xt0)
f.d.d.−→
δ→0

Y (t0)
τ , (1.4)

where
f.d.d.−→ stands for weak convergence of finite-dimensional distributions. A related definition

is given in [19,20], where the limit process Y (t0) is called a tangent process (at t0); see also [9].
In many cases, the normalization A(t0)(δ) = δH(t0), where 0 < H(t0) < 1 and the limit tangent
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process Y (t0) is self-similar with index H(t0) ([20] or [18]). Proposition 2.2 states that if X

satisfies a condition similar to (1.4), then the statistic Rp,n(X) converges to the integral

Rp,n(X)
P−→

n→∞

∫ 1

0
E

[ |�p

0 Y (t) + �
p

1 Y (t)|
|�p

0 Y (t)| + |�p

1 Y (t)|
]

dt, (1.5)

where �
p
j Y (t) = �

p,1
j Y (t) = ∑p

i=0(−1)p−i
(
p
i

)
Y

(t)
j+i , j = 0,1, is the corresponding increment of

the tangent process Y (t) at t ∈ [0,1). In the particular case where X has stationary increments,
relation (1.5) becomes

Rp,n(X)
P−→

n→∞ E

[ |�p

0 Y + �
p

1 Y |
|�p

0 Y | + |�p

1 Y |
]
. (1.6)

Section 3 discusses the convergence in (1.5) for diffusion processes X admitting a stochastic
differential dX = at dB(t) + bt dt , where B is a standard Brownian motion and (at ), (bt ) are
random (adapted) functions. It is clear that under general regularity conditions on the diffusion
and drift coefficients (at ), (bt ), the process X admits the same local Hölder exponent as B at
each point t0 ∈ (0,1) and therefore the IR-roughness of X in (1.5) should not depend on these
coefficients and should coincide with the corresponding limit for X = B . This is indeed the case
since the tangent process of X at t is easily seen to be Y (t) = atB and the multiplicative factor
at cancels in the numerator and the denominator of the fraction inside the expectation in (1.5).
See Theorem 3.1 for details, where the convergence rate O(n1/3) (a.s.) in (1.5) with explicit limit
values �p(1/2) is established for diffusions X and p = 1,2.

Considerable attention is given to the asymptotic behavior of the statistic Rp,n(X) for “frac-
tal” Gaussian processes (see Section 4). In such a framework, fractional Brownian motion (fBm)
is a typical example. Indeed, if X is an fBm with parameter H ∈ (0,1), then X is also its own
tangent process for any t ∈ [0,1] and (see Section 4)

Rp,n(X)
a.s.−→

n→∞ �p(H), p = 1,2, (1.7)

√
n
(
Rp,n(X) − �p(H)

) D−→
n→∞ N (0,�p(H)) if

{
p = 1, 0 < H < 3/4,
p = 2, 0 < H < 1,

(1.8)

where
D−→

n→∞ stands for weak convergence of probability distributions. The expressions for �p(H)

and
√

�p(H) (p = 1,2) are given in (4.19) and (4.22), respectively, and their graphs in Figures 1
and 2, respectively.

The difference in the range of the parameter H for p = 1 and p = 2 in the central limit
theorem in (1.8) is due to the fact that the second-order increment process (�2

jBH , j ∈ Z) is
a short-memory stationary Gaussian process for any H ∈ (0,1), in contrast to the first-order
increment process (�1

jBH , j ∈ Z) which has long memory for H > 3/4.
Generalizations of (1.7) and (1.8) to Gaussian processes having non-stationary increments are

proposed in Section 4. Roughly speaking, Rp,n(X),p = 1,2, converge a.s. and satisfy a central
limit theorem, provided that for any t ∈ [0,1], the process X admits an fBm with parameter
H(t) as a tangent process (more precise assumptions (A.1), (A.1)′ and (A.2)p are provided in
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Figure 1. The graphs of �1(H) (left) and �2(H) (right).

Section 4). In such frameworks, the limits in (1.7) are
∫ 1

0 �p(H(t))dt instead of �p(H) and
the asymptotic variances in (1.8) also change. The case of Gaussian processes with stationary
increments is discussed in detail and the results are used to define a

√
n-consistent estimator

of H , under semi-parametric assumptions on the asymptotic behavior of the variogram or the
spectral density. Bardet and Surgailis [6] study a punctual estimator of H(t0) obtained from a
localization around t0 ∈ (0,1) of the statistic R2,n(X).

The main advantages of estimators of the type (1.2) involving a scaling invariant function of
increments seem to be the following. First, the estimator Rp,n(X) essentially depends on the
local regularity of the process X and not on possible “multiplicative and additive factors” such

Figure 2. The graphs of
√

�p(H), p = 1 (with a pole at 3/4) and p = 2 (with a pole at 7/4) (from [36],
with kind permission of the authors).



Measuring the roughness of random paths 753

as diffusion and drift coefficients in Section 3 or smoothly multiplicative and additive trended
Gaussian processes; see Proposition 4.1 of Section 4. This property is important when deal-
ing with financial data involving heteroscedasticity and volatility clustering. Such a robustness
property (also satisfied by the estimators based on generalized quadratic variations of wavelet
coefficients) represents a clear advantage over classical parametric Whittle or semi-parametric
log-periodogram estimators. Second, the estimators in (1.2) are bounded functionals and have
finite moments of any order. Section 5 discusses jump Lévy processes, with the Lévy measure
regularly varying with fractional index α ∈ (0,2) at the origin. Using a modification of (1.2),
we define a

√
n-consistent estimator of α, together with a central limit theorem, in a very gen-

eral semi-parametric framework. This result is new and interesting because there exist very few
papers providing consistent estimators of α (to the best of our knowledge, the only compara-
ble results have been established in [7] and [1], in a financial and somewhat different context).
Finally, in the Gaussian case, using the approximation formula provided in Remark 4.3, an esti-
mator of H based on R2,n(X) can be extremely simply computed:

Ĥ (2)
n 	 1

0.1468

×
(

1

n − 2

n−3∑
k=0

|X(k+2)/n − 2X(k+1)/n + Xk/n + X(k+3)/n − 2X(k+2)/n + X(k+1)/n|
|X(k+2)/n − 2X(k+1)/n + Xk/n| + |X(k+3)/n − 2X(k+2)/n + X(k+1)/n|

− 0.5174

)
.

In the R language, if X is the vector (X1/n,X2/n, . . . ,X1), then

Ĥ (2)
n 	 (

mean
(
abs

(
diff(diff(X[−1])) + diff(diff(X[−length(X)])))

/
(
abs(diff(diff(X[−1]))) + abs(diff(diff(X[−length(X)])))))

− 0.5174
)
/0.1468.

Therefore, its computation is very fast and does not require any tuning parameters such as the
scales for estimators based on quadratic variations or wavelet coefficients. The convergence rate
of our estimator is

√
n, as for the parametric Whittle or the generalized quadratic variation esti-

mators and hence it is more accurate than most of other well-known semi-parametric estimators
(log-periodogram, local Whittle or wavelet-based estimators).

Estimators of the form (1.2) can also be applied to discrete-time (sequences) instead of
continuous-time processes (functions). For instance, Surgailis et al. [38] extended the statistic
R2,n(X) to discrete-time processes and used it to test for I (d) behavior (−1/2 < d < 5/4) of
observed time series. Vaičiulis [40] considered estimation of the tail index of i.i.d. observations
using an increment ratio statistic.

Remark 1.1. The referee noted that the IR-roughness might be connected to the level cross-
ing index; see [21]. To our surprise, such a connection indeed exists, as explained below.
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Figure 3. The proof of (1.9): this follows by |Yn(j/n)+Yn((j+1)/n)|
|Yn(j/n)|+|Yn((j+1)/n)| = n|U1 − U2|.

Let Yn(t), t ∈ [0,1 − 1
n
], be the linear interpolation of the “differenced” sequence �

1,n
j X =

X(
j+1
n

) − X(
j
n
), j = 0,1, . . . , n − 1:

Yn(t) = n

[(
j + 1

n
− t

)
�

1,n
j X +

(
t − j

n

)
�

1,n
j+1X

]
, t ∈

[
j

n
,
j + 1

n

)
,

j = 0,1, . . . , n − 2. Then, using Figure 3 as a proof,

R1,n(X) = n

n − 1

n−2∑
j=0

∣∣∣∣meas

{
t ∈

[
j

n
,
j + 1

n

)
:Yn(t) > 0

}

− meas

{
t ∈

[
j

n
,
j + 1

n

)
:Yn(t) < 0

}∣∣∣∣ (1.9)

= n

n − 1

n−2∑
j=0

∣∣∣∣∫ (j+1)/n

j/n

(
1
(
Yn(t) > 0

) − 1
(
Yn(t) < 0

))
dt

∣∣∣∣.
Let ψ(x1, x2) := |x1 + x2|/(|x1| + |x2|),ψ0(x1, x2) := 1(x1x2 ≥ 0). Clearly, the two quantities
1 − ψ(Yn(

j
n
), Yn(

j+1
n

)) and 1 − ψ0(Yn(
j
n
), Yn(

j+1
n

)) are both strictly positive if and only if Yn

crosses the zero level in the interval [ j
n
,

j+1
n

), but the former quantity measures not only the fact

but also the “depth” of the crossing so that 1 −ψ(Yn(
j
n
), Yn(

j+1
n

)) attains its maximal value 1 in

the case of a “perfect” crossing in the middle of the interval [ j
n
,

j+1
n

); see Figure 3.
It seems that similar asymptotic results can be obtained for R

p,n

0 (X) := 1
n−p

×∑n−p−1
k=0 ψ0(�

p,n
k X,�

p,n

k+1X), measuring the number of zero crossings of the increment se-
quence �

p,n
k X, k = 0,1, . . . , n − p, and other similar statistics obtained by replacing the func-

tions ψ or ψ0 by other scaling invariant functions. Let us note that R
1,n
0 (X) is related to the

zero-crossings’ counting statistic studied in [27] for stationary Gaussian time series. Also, note
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that the Hermite rank of ψ0 is 2 and that the corresponding limit function λ0(r) = 1
π arccos(−r)

is strictly increasing on the interval (−1,1) similarly to the function λ(r) in (4.20). On the other
hand, while the statistic R

p,n

0 (X) is certainly of interest, the statistic Rp,n(X) seems preferable
to it for the reasons explained above. In particular, in the case of symmetric Lévy processes X

with independent increments studied in Section 5, the latter statistic leads to an estimator of the
fractional index, while the former statistic can be easily shown to converge to 1/2.

The paper is organized as follows. Section 2 discusses some general (consistency) properties
of the estimators Rp,n(X). Section 3 deals with the case where X is a diffusion. The case of
Gaussian processes X is considered in Section 4, while the case of Lévy processes is studied
in Section 5. The Appendix contains sketches of the proofs of Theorems 4.1 and 4.2 and other
derivations. Complete proofs can be found in the extended version of the paper on arXiv (see
http://arxiv.org/abs/0802.0489).

Below, we write C for generic constants, the value of which may change from line to line.

2. Some asymptotic results

The definition of Rp,nf in (1.2) can be extended to more general increments (the so-called
generalized variations). Consider a filter a := (a0, . . . , aq) ∈ R

q+1 such that there exists p ∈ N,
p ≤ q , satisfying

q∑
�=0

�ia� = 0 for i = 0, . . . , p − 1 and
q∑

�=0

�pa� 
= 0. (2.1)

The class of such filters will be denoted by A(p, q). For n ∈ N
∗ := {1,2, . . .} and a function

f = (f (t), t ∈ [0,1]), define the generalized variations of f by

�
a,n
j f :=

q∑
�=0

a�f

(
j + �

n

)
, j = 0,1, . . . , n − q. (2.2)

A particular case of (2.2) corresponding to q = p ≥ 1, a� = (−1)p−�
(
p
�

)
is the p-order increment

�
p,n
j f in (1.1). For a filter a ∈ A(p, q), let

Ra,n(f ) := 1

n − q

n−q−1∑
k=0

|�a,n
k f + �

a,n
k+1f |

|�a,n
k f | + |�a,n

k+1f | . (2.3)

It is easy to prove that R1,n(f ) −→
n→∞ 1 if f is continuously differentiable on [0,1] and the

derivative f ′ does not vanish on [0,1], except perhaps for a finite number of points. Moreover, it
is obvious that R1,n(f ) = 1 if f is monotone on [0,1]: the IR-roughness of a monotone function
is the same as that of a smooth function, which is not surprising since a similar fact holds for
other measures of roughness, such as the p-variation index or the Hausdorff dimension.

http://arxiv.org/abs/0802.0489
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We conjecture that Rp,n(f ) → 1 and Ra,n(f ) → 1 for any q ≥ p ≥ 1, a ∈ A(p, q) and
f : [0,1] → R which is (p − 1) times differentiable, and the derivative f (p−1) has bounded
variation on [0,1] with the support supp(f (p−1)) = [0,1]. However, we can prove a weaker
result.

Proposition 2.1. Let f be (p − 1)-times continuously differentiable (p ≥ 1) with f (p−1) being
absolutely continuous on [0,1] and having the Radon–Nikodym derivative g = (f (p−1))′. As-
sume that g 
= 0 a.e. in [0,1]. Then, Rp,n(f ) −→

n→∞ 1 and Ra,n(f ) −→
n→∞ 1 for any a ∈ A(p, q),

q ≥ p.

Proof. We restrict the proof to the case p = 2 since the general case is analogous. Using sum-
mation by parts, we can rewrite �

a,n
j f as

�
a,n
j f =

q∑
i=0

bi�
2,n
i+j f, (2.4)

where bi := ∑i
k=0

∑k
�=0 a�, i = 0,1, . . . , q, bq−1 = bq = 0 and b̄ := ∑q

i=0 bi = 1
2

∑q

i=1 i2ai 
=
0 in view of the assumption a ∈ A(2, q).

Assume that n is large enough and, for a given t ∈ (0,1), let kn(t) ∈ {0, . . . , n−2} be chosen so
that t ∈ [kn(t)/n, (kn(t) + 1)/n) and therefore kn(t) = [nt] − 1. We claim that for a.e. t ∈ (0,1),

lim
n→∞n2�

a,n
kn(t)

f = b̄g(t), lim
n→∞n2�

a,n
kn(t)+1f = b̄g(t). (2.5)

Using the fact that the function (x1, x2) �→ |x1+x2||x1|+|x2| is continuous on R
2\{(0,0)}, we obtain

ha,n(t) := |n2�
a,n
kn(t)f + n2�

a,n
kn(t)+1f |

|n2�
a,n
kn(t)f | + |n2�

a,n
kn(t)+1f | −→

n→∞
|b̄g(t) + b̄g(t)|
|b̄g(t)| + |b̄g(t)| = 1 (2.6)

for a.e. t ∈ (0,1), where we have used the fact that b̄g(t) 
= 0 a.e. Since, for n ≥ q , Ra,n(f ) can
be written as Ra,n(f ) = n

n−q

∫ 1
0 ha,n(t)dt , relation Ra,n(f ) −→

n→∞ 1 follows by the dominated

convergence theorem and the fact that 0 ≤ ha,n(t) ≤ 1.
Relations (2.5) can be proven using the Lebesgue–Vitali theorem (see [35], Chapter 4, Sec-

tion 10, Theorem 1), as follows. Consider the signed measure μ on Borel subsets of [0,1/2]2

given by

μ(A) =
∫

A

g(x1 + x2)dx1 dx2.

Note that �
2,n
k f = μ((k/2n, (k + 2)/2n] × (k/2n, (k + 2)/2n]), k = 0, . . . , n − 2. Since rectan-

gles [x1, x1 +h]×[x2, x2 +h],0 ≤ xi < xi +h ≤ 1/2, i = 1,2, form a Vitali system on [0,1/2]2,
the aforementioned Lebesgue–Vitali theorem implies that

φn(t1, t2) := n2μ

((
kn(t1)

2n
,
kn(t1) + 2

2n

]
×

(
kn(t2)

2n
,
kn(t2) + 2

2n

])
−→
n→∞g

(
t1 + t2

2

)
(2.7)
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a.e. in [0,1]2. Taking into account the form of the measure μ and the limiting function in (2.7),
it follows the convergence n2�

2,n
kn(t)f = φn(t, t) −→

n→∞g(t) a.e. on [0,1]. Next, for any fixed i =
0,1, . . . , the sequence of rectangles (

kn(t1)+i
2n

,
kn(t1)+i+2

2n
] × (

kn(t2)+i
2n

,
kn(t2)+i+2

2n
], n = 1,2, . . . ,

is regularly contracting to (t1, t2) ∈ (0,1)2 in the sense of [35], Chapter 4, Section 10. Hence,
using the lemma on page 214 of that monograph, it follows that n2μ((

kn(t1)+i
2n

,
kn(t1)+i+2

2n
] ×

(
kn(t2)+i

2n
,

kn(t2)+i+2
2n

]) −→
n→∞g( t1+t2

2 ) a.e. in [0,1]2, implying that

n2�
2,n
kn(t)+if −→

n→∞g(t) a.e. on [0,1], for any i = 0,1, . . . .

Together with (2.4), this proves (2.5) and the proposition. �

Let us now turn to the case when f (t) = Xt , t ∈ [0,1] is a random process. Now and hereafter,
Rp,n(X),Ra,n(X) are denoted Rp,n,Ra,n, respectively. Below, we formulate a general condition
for the convergence of Rp,n and Ra,n to a deterministic limit.

Assumption (A). For a.e. pairs (t1, t2) ∈ (0,1)2, t1 
= t2, for i = 1,2, there exist:

(i) normalizations A(ti )(δ) → ∞ (δ → 0);
(ii) (mutually) independent random processes Y (ti ) = (Y (ti )(τ ), τ ∈ [0,1]),

such that for δ → 0, s1 → t1, s2 → t2

(
A(t1)(δ)(Xs1+δτ − Xs1),A

(t2)(δ)(Xs2+δτ − Xs2)
) f.d.d.−→ (

Y (t1)(τ ), Y (t2)(τ )
)
. (2.8)

Remark 2.1. Relation (2.8) implies the existence of a joint small scale limit (Y (t1), Y (t2)) at
a.e. pair (t1, t2) ∈ (0,1), with independent components Y (t1), Y (t2). Note that Assumption (A)
and Proposition 2.2 below are very general, in the sense that they do not assume any particular
structure or distribution of X.

Proposition 2.2. Let a = (a0, . . . , aq) ∈ A(p, q),1 ≤ p ≤ q , be a filter and let X satisfy As-
sumption (A). Assume, in addition, that P(|�a

jY
(t)| > 0) = 1, j = 0,1, for a.e. t ∈ (0,1), where

�a
jZ ≡ �

a,1
j Z = ∑q

�=0 a�Z(j + �). Then,

E

(
Ra,n −

∫ 1

0
E

[ |�a
0Y (t) + �a

1Y (t)|
|�a

0Y (t)| + |�a
1Y (t)|

]
dt

)2

−→
n→∞ 0. (2.9)

Proof. The statement follows from

ERa,n −→
n→∞

∫ 1

0
E

[ |�a
0Y (t) + �a

1Y (t)|
|�a

0Y (t)| + |�a
1Y (t)|

]
dt and E(Ra,n − ERa,n)2 −→

n→∞ 0. (2.10)
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Write ERa,n = n
n−q

∫ 1
0 Eh

a,n
X (t)dt , where (cf. (2.6))

h
a,n
X (t) := A(t)(1/n)(|�a,n

kn(t)X + �
a,n
kn(t)+1X|)

A(t)(1/n)(|�a,n
kn(t)X| + |�a,n

kn(t)+1X|)
D−→

n→∞
|�a

0Y (t) + �a
1Y (t)|

|�a
0Y (t)| + |�a

1Y (t)| =: ha
Y (t)

for a.e. t ∈ (0,1), according to Assumption (A) and the continuous mapping theorem. Using the
fact that 0 ≤ h

a,n
X ≤ 1 and the Lebesgue dominated convergence theorem, the first relation in

(2.10) then follows. Moreover,

E(Ra,n − ERa,n)2 =
(

n

n − q

)2 ∫ 1

0

∫ 1

0
E[ha,n

X (t)h
a,n
X (t ′)]dt dt ′ − (ERa,n)2

and, with the same arguments as previously and the independence of Y (t) and Y (t ′) when t 
= t ′,

E[ha,n
X (t)h

a,n
X (t ′)] −→

n→∞ E

[ |�a
0Y (t) + �a

1Y (t)|
|�a

0Y (t)| + |�a
1Y (t)| · |�a

0Y (t ′) + �a
1Y (t ′)|

|�a
0Y (t ′)| + |�a

1Y (t ′)|
]

= Eha
Y (t) · Eha

Y (t ′)

and therefore ( n
n−q

)2
∫ 1

0

∫ 1
0 E[ha,n

X (t)h
a,n
X (t ′)]dt dt ′ − (

∫ 1
0 Eh

a,n
X (t)dt)2 −→

n→∞ 0, thereby proving

the second relation in (2.10) and the proposition. �

The following easy, but interesting, corollary can also be added to this result. It proves that
smooth multiplicative or additive trends do not change the L

2-asymptotic behavior of Ra,n. Let
Cp[0,1] denote the class of all p-times continuously differentiable functions on [0,1].

Corollary 2.1. Let a ∈ A(p, q) and X satisfy the conditions of Proposition 2.2 with A(t)(δ) =
O(δ−1) (δ → 0) for each t ∈ [0,1]. Assume that α ∈ C 1[0,1], β ∈ Cp[0,1], inft∈[0,1] α(t) > 0
and supt∈[0,1] |X(t)| < ∞ a.s. Define Z such that Zt = α(t)Xt + β(t), t ∈ [0,1]. Then, (2.9)
holds with Rp,n = Rp,n(X) replaced by Rp,n(Z).

Remark 2.2. By definition, the statistics Rp,n and Ra,n for a ∈ A(p, q), 1 ≤ p ≤ q , are invariant
with respect to additive polynomial trends of order less than p; in particular, R3,n is insensitive
to a quadratic trend, while R2,n does not have this property. On the other hand, Corollary 2.1
(see also Proposition 4.1) states that under weak additional conditions on X, any sufficiently
smooth additive or multiplicative trends do not affect the limit of Rp,n, provided that p ≥ 1.
In the important special case where the limit process Y (t) = BH in Assumption (A) and (2.9)
is a fractional Brownian motion with parameter H ∈ (0,1) independent of t , the statistic Rp,n

converges in mean square to the expectation E
|�p

0 BH +�
p
1 BH |

|�p
0 BH |+|�p

1 BH | = λ(ρp(H)); cf. (4.19)–(4.21).

Numerical computations show that the correlation coefficient ρp(H) is a monotone function
of H for any p ≥ 1 and tends to the constant value −1 on the interval (0,1) as p increases.
Therefore, for larger values of p, the range of λ(ρp(H)) is rather small and Rp,n seems less
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capable of estimating H . A final reason for our concentrating on the “lower order” statistics
Rp,n,p = 1,2, in the rest of the paper is the fact that R2,n satisfies the central limit theorem in
(1.8) on the whole interval H ∈ (0,1).

3. Diffusions

Let

Xt = X0 +
∫ t

0
as dB(s) +

∫ t

0
bs ds, t ∈ [0,1], (3.1)

be a diffusion (or Itô) process on R. In (3.1), we assume the existence of a right-continuous
filtration F = (Ft , t ∈ [0,1]) and a standard Brownian motion B adapted to F ; moreover,
as, bs, s ∈ [0,1] are adapted random functions satisfying

∫ 1
0 |bs |ds < ∞,

∫ 1
0 a2

s ds < ∞ a.s.
and X0 is an F0-measurable r.v. Write Et [·] = E[·|Ft ] for the conditional expectation. Let
�1(1/2) = λ(ρ1(1/2)) 	 0.7206 and �2(1/2) = λ(ρ2(1/2)) 	 0.5881. The proof of the fol-
lowing Lemma 3.1 is given in the arXiv version of the paper; see http://arxiv.org/abs/0802.0489.

Lemma 3.1. Let ψ(x1, x2) := |x1 + x2|/(|x1| + |x2|) (x1, x2 ∈ R) and let Zi, i = 1,2, be inde-
pendent N (0,1) r.v.’s. Then, for any random variables ξ1, ξ2,

|Eψ(Z1 + ξ1,Z2 + ξ2) − Eψ(Z1,Z2)| ≤ 20 max
i=1,2

(Eξ2
i )1/3. (3.2)

Theorem 3.1. Assume the following conditions: there exist random variables K1,K2 such that
0 < Ki < ∞ a.s. and such that, for any sufficiently small h > 0 and any 0 ≤ t < t + h ≤ 1, the
following inequalities hold, a.s.:

|at | ≥ K1, Et b
2
t+h ≤ K2 and Et (at+h − at )

2 ≤ K2h. (3.3)

Then,

Rp,n − �p(1/2) = O(n−1/3) a.s. (p = 1,2). (3.4)

Proof. We restrict the proof to the case p = 1 since the case p = 2 is analogous. For notational
simplicity, assume that n is odd. Define

ηn(k) := |�1,n
k X + �

1,n
k+1X|

|�1,n
k X| + |�1,n

k+1X| , η′
n(k) := Ek/n[ηn(k)], η′′

n(k) := ηn(k) − η′
n(k) (3.5)

and, correspondingly, write R1,n = R′
n + R′′

n,R′
n := (n − 1)−1 ∑n−2

k=0 η′
n(k),R′′

n1 := (n −
1)−1 ∑(n−2)/2

k=0 η′′
n(2k), R′′

n2 := (n − 1)−1 ∑(n−4)/2
k=0 η′′

n(2k + 1). As (η′′
n(2k), F(2k+2)/n, k =

0, . . . , (n − 2)/2) is a martingale difference sequence, by Burkholder’s inequality, we have

E(R′′
n1)

8 ≤ Cn−8

(
(n−2)/2∑

k=0

E1/4(η′
n(2k))8

)4

≤ Cn−4

http://arxiv.org/abs/0802.0489
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and therefore
∞∑

n=1

P(|R′′
n1| > n−1/3) ≤ C

∞∑
n=1

n8/3n−4 < ∞,

implying that R′′
n1 = O(n−1/3) a.s. A similar fact holds for R′′

n2. Thus, it remains to prove

R′
n − �1(1/2) = O(n−1/3) a.s. (3.6)

Observe that

η′
n(k) − �1(1/2) = Ek/n

[ |Z1(k) + ξ1(k) + Z2(k) + ξ2(k)|
|Z1(k) + ξ1(k)| + |Z2(k) + ξ2(k)|

]
− E

[ |Z1(k) + Z2(k)|
|Z1(k)| + |Z2(k)|

]
,

where

Z1(k) := n1/2�
1,n
k B, Z2(k) := n1/2�

1,n
k+1B,

ξ1(k) := n1/2
∫ (k+1)/n

k/n

(
as

ak/n

− 1

)
dB(s) + n1/2

∫ (k+1)/n

k/n

bs

ak/n

ds,

ξ2(k) := n1/2
∫ (k+2)/n

(k+1)/n

(
as

ak/n

− 1

)
dB(s) + n1/2

∫ (k+2)/n

(k+1)/n

bs

ak/n

ds.

According to Lemma 3.1 above, |η′
n(k) − �1(1/2)| ≤ 36 maxi=1,2(Ek/nξ

2
i (k))1/3 and therefore

|R′
n − �1(1/2)| ≤ 36 max{(Ek/nξ

2
i (k))1/3 : i = 1,2, k = 0,1, . . . , n − 1},

whence, (3.6) follows from the following fact: there exists an r.v. K < ∞, independent of n and
such that for any n ≥ 1, k = 0, . . . , n − 1, i = 1,2,

Ek/nξ
2
i (k) ≤ Kn−1 a.s. (3.7)

Indeed, using (3.3),

Ek/nξ
2
1 (k) = n

∫ (k+1)/n

k/n

Ek/n

(
as

ak/n

− 1

)2

ds + nEk/n

(∫ (k+1)/n

k/n

bs

ak/n

ds

)2

≤ nK−2
1

∫ (k+1)/n

k/n

Ek/n(as − ak/n)
2 ds + K−2

1

∫ (k+1)/n

k/n

Ek/nb
2
s ds

≤ K2K
−2
1 n−1 a.s.

and the bound (3.7) for i = 2 follows similarly. This proves (3.7) as well as Theorem 3.1. �

Let us present some examples of Itô processes X satisfying conditions (3.3).
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Example 3.1. Let (Xt , t ∈ [0,1]) be a Markov process satisfying a stochastic equation

Xt = x0 +
∫ t

0
a(Xs)dB(s) +

∫ t

0
b(Xs)ds, (3.8)

where x0 ∈ R is non-random, a(x), b(x), x ∈ R, are real measurable functions and B is a standard
Brownian motion. Let Ft := σ {B(s), s ≤ t}, 0 ≤ t ≤ 1, be the natural filtration. Assume that

|a(x) − a(y)| ≤ K|x − y|, |b(x) − b(y)| ≤ K|x − y| (x, y ∈ R) (3.9)

for some constant K < ∞. Equation (3.8) then admits a unique adapted solution; see, for exam-
ple, [23]. Let at = a(Xt ), bt = b(Xt ). Assume, in addition, that |a(x)| ≥ K1 (x ∈ R) for some
non-random constant K1 > 0. The first inequality in (3.3) is then trivially satisfied; moreover, the
second and third relations in (3.3) are also satisfied, with K2 = C(1 + sup0≤t≤1 X2

t ) < ∞ and
K3 = C, where C is non-random and depends on the constant K in (3.9) only.

Example 3.2. Let Xt := g(t,B(t)), where B is a standard Brownian motion and g(t, x) is a
(jointly) continuous function on [0,1] × R, having continuous partial derivatives gt (t, x) :=
∂g(t, x)/∂t, gx(t, x) := ∂g(t, x)/∂x, gxx(t, x) = ∂2g(t, x)/∂x2. By Itô’s lemma,

dXt = gx(t,B(t))dB(t) + (
gt (t,B(t)) + 1

2gxx(t,B(t))
)

dt

so that X admits the representation (3.1) with at = gx(t,B(t)), bt = gt (t,B(t)) + 1
2gxx(t,B(t))

and the same filtration as in the previous example. Assume that

|gx(t, x)| ≥ K1, |gx(s, y) − gx(t, x)| ≤ K(|s − t |1/2 + |y − x|)
for all (t, x), (s, y) ∈ [0,1] × R and some constants 0 < K1,K < ∞. Then, X satisfies the con-
ditions in (3.3).

4. Gaussian processes

4.1. Assumptions

Let X = (Xt , t ∈ [0,1]) be a Gaussian process with zero mean. Without loss of generality, assume
that X0 = 0. Define σ 2

p,n(k), the variance of �
p,n
k X, and ρp,n(k), the correlation coefficient

between �
p,n
k X and �

p,n

k+1X, that is,

σ 2
p,n(k) := E[(�p,n

k X)2], ρp,n(k) := E[�p,n
k X�

p,n

k+1X]
σp,n(k)σp,n(k + 1)

. (4.1)

Let BH = (BH (t), t ∈ R) be a fractional Brownian motion (fBm) with parameter 0 < H < 1,
that is, a Gaussian process with zero mean and covariance such that EBH (s)BH (t) = 1

2 (|t |2H +
|s|2H − |t − s|2H ). Its pth order increments (�

p
j BH , j ∈ Z) form a stationary Gaussian process
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for any p ≥ 1. In particular, the covariance function of �jBH ≡ �1
jBH = BH (j + 1) − BH (j)

and �2
jBH = BH (j + 2) − 2BH (j + 1) + BH (j) can be explicitly calculated:

E[�0BH �jBH ] = 2−1(|j + 1|2H + |j − 1|2H − 2|j |2H ), (4.2)

E[�2
0BH �2

jBH ] = 2−1(−|j + 2|2H + 4|j + 1|2H − 6|j |2H

(4.3)
+ 4|j − 1|2H − |j − 2|2H ).

From a Taylor expansion,

E[�0BH �jBH ] ∼ 2H(2H − 1)j2H−2,

E[�2
0BH �2

jBH ] ∼ 2H(2H − 1)(2H − 2)(2H − 3)j2H−4

as j → ∞ and therefore the first increment, (�jBH ), has a summable covariance if and only
if 0 < H < 3/4, while the second increment, (�2

jBH ), has a summable covariance for any 0 <

H < 1.
We now introduce the following conditions:

(A.1) there exist continuous functions H(t) ∈ (0,1) and c(t) > 0 for t ∈ [0,1] such that
∀j ∈ N

∗,

lim
n→∞ sup

t∈(0,1)

∣∣∣∣E(X([nt]+j)/n − X[nt]/n)
2

(j/n)2H(t)
− c(t)

∣∣∣∣ = 0 with (4.4)

lim
n→∞ sup

t∈(0,1)

∣∣∣∣H(t) − H

(
t + 1

n

)∣∣∣∣ logn = 0; (4.5)

(A.1)′ there exist continuous functions H(t) ∈ (0,1) and c(t) > 0 for t ∈ [0,1] such that
∀j ∈ N

∗,

lim
n→∞ sup

t∈(0,1)

√
n

∣∣∣∣E(X([nt]+j)/n − X[nt]/n)
2

(j/n)2H(t)
− c(t)

∣∣∣∣ = 0 with (4.6)

lim
n→∞ sup

t∈(0,1)

∣∣∣∣H(t) − H

(
t + 1

n

)∣∣∣∣√n logn = 0 and

(4.7)

lim
n→∞ sup

t∈(0,1)

∣∣∣∣c(t) − c

(
t + 1

n

)∣∣∣∣√n = 0;

(A.2)p there exist d > 0, γ > 1/2 and 0 ≤ θ < γ/2 such that for any 1 ≤ k < j ≤ n with
n ∈ N

∗,

|E[�p,n
k X�

p,n
j X]| ≤ dσp,n(k)σp,n(j) · nθ · |j − k|−γ . (4.8)

A straightforward application of assumption (A.1) (or (A.1)′) implies that
√

c(t)BH(t) is the
tangent process of X for all t ∈ (0,1) and, more precisely, the following property.
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Property 4.1. Assumptions (A.1), (A.1)′ respectively imply that, for any j ∈ Z and p = 1,2,

lim
n→∞ sup

t∈(0,1)

∣∣∣∣ E[�p,n
[nt]X�

p,n
j+[nt]X]

E[�p,n

0 BH(t)�
p,n
j BH(t)]

− c(t)

∣∣∣∣ = 0, (4.9)

lim
n→∞

√
n sup

t∈(0,1)

∣∣∣∣ E[�p,n
[nt]X�

p,n
j+[nt]X]

E[�p,n

0 BH(t)�
p,n
j BH(t)]

− c(t)

∣∣∣∣ = 0. (4.10)

Moreover, for any t ∈ (0,1) and p = 1,2,(
nH(t)�

p,n
j+[nt]X

)
j∈Z

f.d.d.−→
n→∞

(√
c(t)�

p
j BH(t)

)
j∈Z

.

The proof of Property 4.1 (as well as the proofs of the remaining statements in this section)
is given in the arXiv version of the paper. Assumption (A.1) can be characterized as uniform
local self-similarity of (Xt ) (the uniformity refers to the supremum over t ∈ (0,1) in (4.4)). Note
that for X having stationary increments and variogram V (t) = EX2

t , assumption (A.1) reduces
to V (t) ∼ ct2H (c > 0, 0 < H < 1). For j = 0,1, relation (4.9) implies that for any t ∈ (0,1),
the variance and the (1/n)-lag correlation coefficient of �

p,n
[nt]X satisfy the following relations:

σ 2
1,n([nt]) ∼

n→∞ c(t)σ 2
1 (H(t)) = c(t)E

[(
�0BH(t)

)2] = c(t)

(
1

n

)2H(t)

, (4.11)

ρ1,n([nt]) −→
n→∞ ρ1(H(t)) = corr

(
BH(t)(1),BH(t)(2) − BH(t)(1)

) = 22H(t)−1 − 1, (4.12)

σ 2
2,n([nt]) ∼

n→∞ c(t)σ 2
2 (H(t)) = c(t)E

[(
�2

0BH(t)

)2] = c(t)
(
4 − 4H(t)

)(1

n

)2H(t)

, (4.13)

ρ2,n([nt]) −→
n→∞ ρ2(H(t)) = corr

(
BH(t)(2) − 2BH(t),BH(t)(3) − 2BH(t)(2) + BH(t)(1)

)
[−8pt] (4.14)

= −32H(t) + 22H(t)+2 − 7

8 − 22H(t)+1
;

see (A.15). Moreover, relations (4.11)–(4.14) hold uniformly in t ∈ (0,1). Condition (4.5) is a
technical condition which implies (and is “almost equivalent” to) the continuity of the function
t → H(t). Assumption (A.1)′ is a sharper convergence condition than assumption (A.1), required
for establishing central limit theorems.

Condition (4.8) specifies a non-asymptotic inequality satisfied by the correlation of incre-
ments �

p,n
k X. The particular case of stationary processes allows this point to be better under-

stood. Indeed, if (Xt ) has stationary increments, then the covariance of the stationary process
(�

p,n
k X, k ∈ Z) is completely determined by the variogram V (t), for instance,

E[�1,n
k X�

1,n
j X] = 1

2

{
V

(
k − j + 1

n

)
+ V

(
k − j − 1

n

)
− 2V

(
k − j

n

)}
. (4.15)

In the “most regular” case, when X = BH is an fBm and therefore V (t) = t2H , it is easy to
check that assumption (A.2)2 holds with θ = 0 and γ = 4 − 2H > 2 (0 < H < 1), while (A.2)1
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with θ = 0, γ = 2 − 2H is equivalent to H < 3/4 because of the requirement that γ > 1/2.
However, for X = BH , (A.2)1 holds with appropriate θ > 0 in the wider region 0 < H < 7/8, by
choosing θ < 2 − 2H arbitrarily close to 2 − 2H and then γ < 2 − 2H + θ arbitrarily close to
4 − 4H . A similar choice of parameters θ and γ allows (A.2)p to be satisfied for more general
X with stationary increments and variogram V (t) ∼ ct2H (t → 0), under additional regularity
conditions on V (t) (see below).

Property 4.2. Let X have stationary increments and variogram V (t) ∼ ct2H (t → 0) with c >

0,H ∈ (0,1).

(i) Assume, in addition, that 0 < H < 7/8 and |V ′′(t)| ≤ Ct−κ (0 < t < 1) for some C > 0
and 4 − 4H > κ ≥ 2 − 2H , κ > 1/2. Assumption (A.2)1 then holds.

(ii) Assume, in addition, that |V (4)(t)| ≤ Ct−κ (0 < t < 1) for some C > 0 and 8 − 4H >

κ ≥ 4 − 2H . Assumption (A.2)2 then holds.

The following property provides a sufficient condition for (A.2)p in spectral terms, which does
not require differentiability of the variogram.

Property 4.3. Let X be a Gaussian process having stationary increments and the spectral rep-
resentation (see, e.g., [15])

Xt =
∫

R

(eitξ − 1)f 1/2(ξ)W(dξ) for all t ∈ R, (4.16)

where W(dx) = W(−dx) is a complex-valued Gaussian white noise with zero mean and variance
E|W(dx)|2 = dx and f is a non-negative even function, called the spectral density of X, such
that ∫

R

(1 ∧ |ξ |2)f (ξ)dξ < ∞. (4.17)

Moreover, assume that f is differentiable on (K,∞) and that

f (ξ) ∼ cξ−2H−1 (ξ → ∞), |f ′(ξ)| ≤ Cξ−2H−2 (ξ > K) (4.18)

for some constants c,C,K > 0. Then, X satisfies assumption (A.2)1 for 0 < H < 3/4 and as-
sumption (A.2)2 for 0 < H < 1.

4.2. Limit theorems

Before establishing limit theorems for the statistics Rp,n for Gaussian processes, we introduce
the following notation:

�p(H) := λ(ρp(H)), (4.19)

λ(r) := 1

π
arccos(−r) + 1

π

√
1 + r

1 − r
log

(
2

1 + r

)
, (4.20)
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ρp(H) := corr(�p

0 BH ,�
p

1 BH ), and (4.21)

�p(H) :=
∑
j∈Z

cov

( |�p

0 BH + �
p

1 BH |
|�p

0 BH | + |�p

1 BH | ,
|�p

j BH + �
p

j+1BH |
|�p

j BH | + |�p

j+1BH |
)

. (4.22)

It can now be proven (see the Appendix) that∫ 1

0
E

[ |�p

0 BH(t) + �
p

1 BH(t)|
|�p

0 BH(t)| + |�p

1 BH(t)|
]

dt =
∫ 1

0
�p(H(t))dt.

Straightforward computations show that assumptions (A.1) and (A.2)p imply Assumption (A)
with A(t)(δ) = δ−H(t), Y (t) = √

c(t)BH(t). Therefore, Proposition 2.2 ensures the convergence

(in L
2) of the statistics Rp,n to

∫ 1
0 �p(H(t))dt . Bardet and Surgailis [5] proved a.s. convergence

in Theorem 4.1 below, using a general moment bound for functions of multivariate Gaussian
processes (see Lemma A.1 in the Appendix). A sketch of this proof can be found in the Appendix.

Theorem 4.1. Let X be a Gaussian process satisfying assumptions (A.1) and (A.2)p . Then,

Rp,n a.s.−→
n→∞

∫ 1

0
�p(H(t))dt (p = 1,2). (4.23)

Corollary 4.1. Assume that X is a Gaussian process having stationary increments, whose vari-
ogram satisfies the conditions of Properties 4.2 or 4.3. Then,

Rp,n a.s.−→
n→∞�p(H) (p = 1,2). (4.24)

The following Theorem 4.2 is also established in [5]. Its proof (see a sketch of this proof
in the Appendix) uses a general central limit theorem for Gaussian subordinated non-stationary
triangular arrays (see Theorem A.1 in the Appendix). Note that the Hermite rank of ψ(x1, x2) =
|x1 + x2|/(|x1| + |x2|) is 2 and this explains the difference between the cases p = 1 and p = 2
in Theorem 4.2: in the first case, the inequalities in (A.8) for (Yn(k)), as defined in (A.5)–
(A.6), hold only if supt∈[0,1] H(t) < 3/4, while in the latter case, these inequalities hold for 0 <

supt∈[0,1] H(t) < 1. A similar fact is also true for the estimators based on generalized quadratic
variations; see [12,28].

Theorem 4.2. Let X be a Gaussian process satisfying assumptions (A.1)′ and (A.2)p with θ = 0.
Assume further that supt∈[0,1] H(t) < 3/4 if p = 1. Then, for p = 1,2,

√
n

(
Rp,n −

∫ 1

0
�p(H(t))dt

)
D−→

n→∞ N
(

0,

∫ 1

0
�p(H(τ))dτ

)
(4.25)

with �p(H) and �p(H) given in (4.19) and (4.22), respectively.

The following proposition shows that the previous theorems are satisfied when smooth multi-
plicative and additive trends are considered.
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Proposition 4.1. Let Z = (Zt = α(t)Xt + β(t), t ∈ [0,1]), where X = (Xt , t ∈ [0,1]) is a
zero-mean Gaussian process and α,β are deterministic continuous functions on [0,1] with
inft∈[0,1] α(t) > 0.

(i) Let X satisfy the assumptions of Theorem 4.2 and α ∈ Cp[0,1], β ∈ Cp[0,1]. The state-
ment of Theorem 4.2 then holds with X replaced by Z.

(ii) Let X satisfy the assumptions of Theorem 4.1 and α ∈ C 1[0,1], β ∈ C 1[0,1]. The state-
ment of Theorem 4.1 then holds with X replaced by Z.

Remark 4.1. A version of the central limit theorem in (4.25) is established in [5] with∫ 1
0 �p(H(t))dt replaced by ERp,n under a weaker assumption than (A.1)′ or even (A.1): only

properties (4.11)–(4.12) (for p = 1) and (4.13)–(4.14) (for p = 2), in addition to (A.2)p with
θ = 0, are required.

The particular case of Gaussian processes having stationary increments can also be studied, as
we shall now see.

Corollary 4.2. Assume that X is a Gaussian process having stationary increments and that there
exist c > 0, C > 0 and 0 < H < 1 such that at least one of the two following conditions hold:

(a) variogram V (t) = ct2H (1 + o(t1/2)) for t → 0 and |V (2p)(t)| ≤ Ct2H−2p4 for all t ∈
(0,1];

(b) spectral density f satisfies (4.17), (4.18) and f (ξ) = cξ−2H−1(1 + o(ξ−1/2)) (ξ → ∞).

Then,

√
n
(
Rp,n − �p(H)

) D−→
n→∞ N (0,�p(H)) if

{
p = 1, 0 < H < 3/4,
p = 2, 0 < H < 1.

(4.26)

Moreover, with the expression and graph of s2
2(H) given in the Appendix, we have

√
n
(
�−1

2 (R2,n) − H
) D−→

n→∞ N (0, s2
2(H)). (4.27)

The proof of Corollary 4.2 can be found in the Appendix. Therefore, Ĥn = �−1
2 (R2,n) is an

estimator of the parameter H following a central limit theorem with a convergence rate
√

n under
semi-parametric assumptions. Similar results were obtained by Guyon and Leon [25] and Istas
and Lang [29] for generalized quadratic variations under less general assumptions.

Remark 4.2. In the context of Corollary 4.2 and H ∈ (3/4,1), we expect that R1,n follows a
non-Gaussian limit distribution with convergence rate n2−2H .

Remark 4.3. Figure 1 shows that H �→ �2(H) is nearly linear and is well approximated by
0.1468H + 0.5174. Consequently,

∫ 1
0 �2(H(t))dt ≈ 0.1468H̄ + 0.5174, where H̄ = ∫ 1

0 H(t)dt

is the mean value of the function H(·).
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Another interesting particular case of Theorem 4.2 leads to a punctual estimator of the function
H(t) from a localization of the statistic R2,n. For t0 ∈ (0,1) and α ∈ (0,1), we define

R2,n
α (t0) := 1

2nα

[nt0+nα]∑
k=[nt0−nα]

|�2,n
k X + �

2,n
k+1X|

|�2,n
k X| + |�2,n

k+1X| .

This estimator is studied in [6] and compared to the estimator based on generalized quadratic
variations discussed in [8] and [13].

4.3. Examples

Below, we provide some concrete examples of Gaussian processes which admit an fBm as the
tangent process. For some examples, the hypotheses of Theorems 4.1–4.2 and the subsequent
corollaries are satisfied. For other examples, the verification of our hypotheses (in particular, of
the crucial covariance bound (A.2)p) remains an open problem and will be discussed elsewhere.

Example 4.1. Fractional Brownian motion (fBm). As noted above, an fBm X = BH satisfies
(A.1)′ as well as (A.2)1 (for 0 < H < 3/4 if θ = 0 and 0 < H < 7/8 if 0 < θ < 2 − 2H with θ

arbitrary close to 2 − 2H so that γ < 2 − 2H + θ arbitrary close to 4 − 4H may satisfy γ > 1/2)
and (A.2)2 (for 0 < H < 1) with H(t) ≡ H , c(t) ≡ c. Therefore, for fBm, both Theorems 4.1 (the
almost sure convergence, satisfied for 0 < H < 7/8 when p = 1 and for 0 < H < 1 when p = 2)
and 4.2 (the central limit theorem, satisfied for 0 < H < 3/4 when p = 1 and for 0 < H < 1
when p = 2) apply. Obviously, an fBm also satisfies the conditions of Corollary 4.2. Thus, the
rate of convergence of the estimator �−1

2 (R2,n) =: Ĥn of H is
√

n. However, in such a case, the
self-similarity property of fBm allows the use of asymptotically efficient Whittle or maximum
likelihood estimators (see [22] or [17]). However, for an fBm with continuously differentiable
multiplicative and additive trends, which leads to a semi-parametric context, the convergence
rate of Ĥn is still

√
n, while parametric estimators cannot be applied.

Example 4.2. Multiscale fractional Brownian motion (see [4]), defined as follows: for � ∈ N
∗, an

(M�)-multiscale fractional Brownian motion X = (Xt , t ∈ R) ((M�)-fBm for short) is a Gaussian
process having stationary increments and a spectral density f such that

f (ξ) = σ 2
j

|ξ |2Hj +1
1(ωj ≤ |ξ | < ωj+1) for all ξ ∈ R (4.28)

with ω0 := 0 < ω1 < · · · < ω� < ω�+1 := ∞, σi > 0 and Hi ∈ R for i ∈ {0, . . . , �}, with H0 < 1
and H� > 0. Therefore, condition (4.18) of Property 4.3 is satisfied with K = ω� and H = H�.
Moreover, the condition f (ξ) = cξ−2H−1(1 + o(ξ−1/2)) (ξ → ∞) required in Corollary 4.2
is also checked with H = H�. Consequently, the same conclusions as in the previous example
also apply for this process, in the respective regions determined by the parameter H� at high
frequencies x > ω�. The same result is also obtained for a more general process defined by
f (ξ) = cξ−2H−1 for |ξ | ≥ ω and condition (4.17) is only required elsewhere. Once again, such
conclusions also hold in the case of continuously differentiable multiplicative and additive trends.
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Example 4.3. Multifractional Brownian motion (mBm) (see [3]). An mBm X = (Xt , t ∈ [0,1])
is a Gaussian process defined by

Xt = BH(t)(t) = g(H(t))

∫
R

eitx − 1

|x|H(t)+1/2
W(dx), (4.29)

where W(dx) is the same as in (4.16), H(t) is a (continuous) function on [0,1] taking values in
(0,1) and, finally, g(H(t)) is a normalization such that EX2

t = 1. It is well known that an mBm
is locally asymptotically self-similar at each point t ∈ (0,1) having an fBm BH(t) as its tangent
process at t (see [9]). This example is studied in more detail in [6].

Example 4.4. Time-varying fractionally integrated processes. Philippe et al. [32,33] introduced
two classes of mutually inverse time-varying fractionally integrated filters with discrete time and
studied long-memory properties of the corresponding filtered white noise processes. Surgailis
[37] extended these filters to continuous time and defined “multifractional” Gaussian processes
(Xt , t ≥ 0) and (Yt , t ≥ 0) as follows:

Xt =
∫

R

{∫ t

0

1

�(H(τ) − 0.5)
(τ − s)

H(τ)−1.5
+ eA−(s,τ ) dτ

}
dB(s), (4.30)

Yt =
∫

R

1

�(H(s) + 0.5)

{
(t − s)

H(s)−0.5
+ e−A+(s,t) − (−s)

H(s)−0.5
+ e−A+(s,0)

}
dB(s), (4.31)

where sα+ := sα1(s > 0), B is a Brownian motion,

A−(s, t) :=
∫ t

s

H(u) − H(t)

t − u
du, A+(s, t) :=

∫ t

s

H(s) − H(v)

v − s
dv (s < t)

and where H(t), t ∈ R, is a general function taking values in (0,∞) and satisfying some weak
additional conditions. Surgailis [37] studied small and large scale limits of (Xt ) and (Yt ) and
showed that these processes resemble an fBm with Hurst parameter H = H(t) at each point
t ∈ R (i.e., admit an fBm as a tangent process) similarly to the mBm in the previous example.
That paper also argues that these processes present a more natural generalization of fBm than
the mBm and have nicer dependence properties of increments. We expect that the assumptions
(A.1), (A.1)′, (A.2)p can be verified for (4.30), (4.31); however, this question requires further
work.

5. Processes with independent increments

In this section, we assume that X = (Xt , t ≥ 0) is a (homogeneous) Lévy process, with a.s.
right-continuous trajectories, X0 = 0. It is well known that if the generating triplet of X satisfies
certain conditions (in particularly, if the Lévy measure ν behaves regularly at the origin with
index α ∈ (0,2)), then X has a tangent process Y which is an α-stable Lévy process. A natural
question is how to estimate the parameter α with the help of the introduced statistics Rp,n.
Unfortunately, the limit of these statistics, as defined in (1.5) via the tangent process, also depends
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on the skewness parameter β ∈ [−1,1] of the α-stable tangent process Y and so this limit cannot
be used for determining α if β is unknown.

In order to avoid this difficulty, we shall slightly modify our ratio statistic, as follows. First,
observe that the second differences �

2,n
k X of Lévy process have a symmetric distribution (in

contrast to the first differences �
1,n
k X, which are not necessarily symmetric). For notational

simplicity, we shall assume in this section that n is even. The modified statistic

R̃2,n := 1

n/2 − 1

(n−4)/2∑
k=0

ψ(�
2,n
2k X,�

2,n
2k+2X), ψ(x, y) := |x + y|

|x| + |y|

is written in terms of “disjoint” (independent) second-order increments (�
2,n
2k X,�

2,n
2k+2X) having

a symmetric joint distribution. Instead of extending the general result of Proposition 2.2 to R̃2,n,
we shall directly obtain its convergence under suitable assumptions on X. First, note that

ER̃2,n = Eψ
(
X

(2)
1/n − X

(1)
1/n,X

(4)
1/n − X

(3)
1/n

)
, (5.1)

where X(i), i = 1, . . . ,4, are independent copies of X.

Proposition 5.1. Let there exist a limit

lim
n→∞ ER̃2,n = �̃. (5.2)

Then,

R̃2,n a.s.−→
n→∞ �̃. (5.3)

Proof. We write R̃2,n = ER̃2,n + (n/2 − 1)−1Qn, where Qn is a sum of centered 1-dependent
r.v.’s which are bounded by 1 in absolute value. Therefore, E((n/2 − 1)−1Qn)

4 = O(n−2) and
the a.s. convergence (n/2 − 1)−1Qn → 0 follows by the Chebyshev inequality. �

Next, we discuss conditions on X for the convergence in (5.2). Recall that the distribution of
Xt is infinitely divisible and that its characteristic function is given by

EeiθXt = exp

{
t

(
iγ θ − 1

2
a2θ2 +

∫
R

(
eiuθ − 1 − iuθ1(|u| ≤ 1)

)
ν(du)

)}
, θ ∈ R, (5.4)

where γ ∈ R, a ≥ 0 and ν is a measure on R such that
∫

R
min(u2,1)ν(du) < ∞. The triplet

(a, γ, ν) is called the generating triplet of X [34]. Let X(i), i = 1,2, be independent copies of X.
Note that Wt := X

(1)
t − X

(2)
t is a Lévy process having the characteristic function

EeiθWt = exp

{
t

(
−a2θ2 + 2

∫ ∞

0
Re(1 − eiuθ )dK(u)

)}
, θ ∈ R, (5.5)
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where

K(u) := ν
(
(−∞,−u] ∪ [u,∞)

)
is monotone non-increasing on (0,∞). We introduce the following condition: there exist 0 <

α ≤ 2 and c > 0 such that

K(u) ∼ c

uα
, u ↓ 0. (5.6)

It is clear that if such number α exists, then α := inf{r ≥ 0 :
∫
|x|≤1 |x|rν(dx) < ∞} is the so-called

fractional order or the Blumenthal–Getoor index of the Lévy process X.
Let Zα be a standard α-stable r.v. with characteristic function EeiθZα = e−|θ |α and Z

(i)
α , i =

1,2,3, be independent copies of Zα .

Proposition 5.2. Assume that either a > 0, or else a = 0 and condition (5.6) holds with 0 <

α ≤ 2 and c > 0. Then, t−1/α(X
(1)
t − X

(2)
t )

D−→
t→0

c̃Zα with c̃ depending on c and (5.2), (5.3) hold

with

�̃ ≡ �̃(α) := Eψ
(
Z(1)

α ,Z(2)
α

)
.

Moreover, with σ̃ 2(α) := 2 var(ψ(Z
(1)
α ,Z

(2)
α )) + 4 cov(ψ(Z

(1)
α ,Z

(2)
α ),ψ(Z

(2)
α ,Z

(3)
α )),

√
n(R̃2,n − ER̃2,n)

D−→
n→∞ N (0, σ̃ 2(α)). (5.7)

Proof. The relation t−1/αWt = t−1/α(X
(1)
t − X

(2)
t )

D−→
t→0

c̃Zα is an easy consequence of the as-

sumptions of the proposition and the general criterion of weak convergence of infinitely divisible
distributions in [34], Theorem 8.7. It implies (5.2) by the fact that ψ is a.e. continuous on R

2.
Since R̃2,n is a sum of 1-dependent stationary and bounded r.v.’s, the central limit theorem in
(5.7) follows from convergence of the variance:

nvar(R̃2,n) → σ̃ 2(α); (5.8)

see, for example, [10]. Rewrite R̃2,n = (n/2 − 1)−1 ∑(n−4)/2
k=0 η̃n(k), η̃n(k) := ψ(�

2,n
2k X,

�
2,n
2k+2X). We have

nvar(R̃2,n) = n

n/2 − 1
var(η̃n(0)) + 2n(n/2 − 2)

(n/2 − 1)2
cov(η̃n(0), η̃n(1)),

where var(η̃n(0)) −→
n→∞ var(ψ(Z

(1)
α ,Z

(2)
α )), cov(η̃n(0), η̃n(1)) −→

n→∞ cov(ψ(Z
(1)
α ,Z

(2)
α ),ψ(Z

(2)
α ,

Z
(3)
α )) similarly as in the proof of (5.2) above. This proves (5.8) and hence the proposition. �

The graph of �̃(α) is given in Figure 4. Note that �̃(2) = �1(1/2) 	 0.72: this is the case of
Brownian motion.
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Figure 4. The graphs of α �→ �̃(α) = E |Z(1)
α +Z

(2)
α |

|Z(1)
α |+|Z(2)

α | (left) and α �→ σ̃ (α) (right) for a process with inde-

pendent increments.

In order to evaluate the decay rate of the bias ER̃2,n − �̃(α) we need a uniform convergence
rate in Lemma 5.1 below, for

‖Fn − Gα‖∞ := sup
x∈R

|Fn(x) − Gα(x)|, Fn(x) := P(n1/αW1/n ≤ x),

Gα(x) := P(Z̃α ≤ x),

where Z̃α := c̃Zα is the limiting α-stable r.v. in Proposition 5.2 and (Wt , t ≥ 0) is the symmetric
Lévy process with characteristic function as in (5.5). The proof of Lemma 5.1 is given in the
arXiv version of the paper.

Lemma 5.1. (i) Let a = 0 and K satisfy (5.6). Define K1(u) := K(u) − cu−α, |K1|(u) :=∫ ∞
u

|dK1(v)|, the variation of K1 on [u,∞). Moreover, assume that there exist some con-
stants β, δ > 0 such that

|K1|(u) = O
(
u−(α−β)+)

(u → 0), |K1|(u) = O(u−δ) (u → ∞),

where x+ := max(0, x). Then

‖Fn − Gα‖∞ =
⎧⎨⎩O(n−β/α), if β < α,

O(n−1 logn), if β = α,
O(n−1), if β > α.

(ii) Let a > 0 and K satisfy

K(u) = O(u−α) (u → 0), K(u) = O(u−δ) (u → ∞)

for some 0 ≤ α < 2, δ > 0. Then

‖Fn − Gα‖∞ =
{

O(n−1+α/2), if α > 0,
O(n−1 logn), if α = 0.
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Proposition 5.3. Assume either a > 0, or else a = 0 and condition (5.6) holds. Then, for any
α ∈ (0,2],

|ER̃2,n − �̃(α)| ≤ 2C‖Fn − Gα‖∞, C :=
∫ ∞

0
(1 + z)−2 dz < ∞. (5.9)

Proof. Let ψ̃(x, y) := |x − y|/(x + y), x, y > 0, and let Fn,Gα be the same as in Lemma 5.1.
Similarly as in the proof of [40], Theorem 1, we write

ER̃2,n − �̃(α) = 2
∫ ∞

0

∫ ∞

0
ψ̃(x, y)

(
dFn(x)dFn(y) − dGα(x)dGα(y)

)
= 2(W1 + W2),

where W1 := ∫ ∞
0

∫ ∞
0 ψ̃(x, y)dFn(x)(dFn(y) − dGα(y)),W2 := ∫ ∞

0

∫ ∞
0 ψ̃(x, y)dGα(y) ×

(dFn(x) − dGα(x)). Integrating by parts yields

|W1| = 2
∫ ∞

0
|x|dFn(x)

∫ ∞

0
|Fn(y) − Gα(y)| dy

(x + y)2

≤ 2‖Fn − Gα‖∞
∫ ∞

0
|x|dFn(x)

∫ ∞

0

dy

(x + y)2
= C‖Fn − Gα‖∞

since
∫ ∞

0 dFn(x) = 1/2. A similar estimate holds for W2. This proves (5.9). �

Propositions 5.2, 5.3 and Lemma 5.1, together with the delta method, yield the following
corollary.

Corollary 5.1. Let a and K satisfy either the assumptions of Lemma 5.1(i) with β > α/2 or the
assumptions of Lemma 5.1(ii). Then,

√
n
(
R̃2,n − �̃(α)

) D−→
n→∞ N (0, σ̃ 2(α)).

Moreover, if we define α̂n := �̃−1(R̃2,n), then

√
n(̂αn − α)

D−→
n→∞ N (0, s̃2(α)),

where s̃2(α) := [ ∂�̃
∂α

(α)]−2σ̃ 2(α),0 < α ≤ 2.

There exist very few papers concerning the estimation of α in such a semi-parametric frame-
work. Nonparametric estimation of parameters of Lévy processes based on the empirical char-
acteristic function has recently been considered in [30] and [24], but the convergence rates there
are (logn)κ with κ > 0. Aït-Sahalia and Jacod [1] have proposed an estimator of the degree of
activity of jumps (which is identical to the fractional order in the case of a Lévy process) in
a general semimartingale framework using small increments of high-frequency data. However,
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from the generality of their model, the convergence rate of the estimator is not rate-efficient (in
fact, it is smaller than n1/5). A recent paper of Belomestny [7] provides an efficient data-driven
procedure to estimate α using a spectral approach, but in a different semi-parametric framework
from ours. Thus, Corollary 5.1 appears as a new and interesting result since the estimator α̂n

follows a
√

n-central limit theorem.

Appendix: Proofs

Sketch of the proof of Theorem 4.1

The proof of Theorem 4.1 is based on the moment inequality in Lemma A.1 below, which
extends a similar inequality in [39], Lemma 4.5, to vector-valued non-stationary Gaussian
processes. The proof of Lemma A.1 uses the diagram formula and is given in [5]. To formu-
late this lemma, we need the following definitions. Let X be a standard Gaussian vector in
R

ν(ν ≥ 1) and let L
2(X) denote the Hilbert space of measurable functions f : Rν → R satis-

fying ‖f ‖2 := E(f (X))2 < ∞. Let L
2
0(X) = {f ∈ L

2(X) : Ef (X) = 0}. Let (X1, . . . ,XN) be a

collection of standardized Gaussian vectors Xt = (X
(1)
t , . . . ,X

(ν)
t ) ∈ R

ν having a joint Gaussian
distribution in R

νN . Let ε ∈ [0,1] be a fixed number. Following Taqqu [39], we call (X1, . . . ,XN)

ε-standard if |EX
(u)
t X

(v)
s | ≤ ε for any t 
= s, 1 ≤ t, s ≤ N and any 1 ≤ u,v ≤ ν. Finally,

∑′ de-
notes the sum over all distinct integers 1 ≤ t1, . . . , tp ≤ N, ti 
= tj (i 
= j).

Lemma A.1. Let (X1, . . . ,XN) be an ε-standard Gaussian vector, Xt = (X
(1)
t , . . . ,X

(ν)
t ) ∈ R

ν

(ν ≥ 1), and let Gj,t,N ∈ L
2(X), 1 ≤ j ≤ p (p ≥ 2), 1 ≤ t ≤ N . For given integers m,N ≥ 1,

define

QN := max
1≤t≤N

∑
1≤s≤N,s 
=t

max
1≤u,v≤ν

∣∣EX
(u)
t X(v)

s

∣∣m. (A.1)

Assume that for some integer 0 ≤ α ≤ p, the functions G1,t,N , . . . ,Gα,t,N have a Hermite rank
at least equal to m for any N ≥ 1, 1 ≤ t ≤ N , and that ε < 1

νp−1 . Then,∑ ′E|G1,t1,N (Xt1) · · ·Gp,tp,N (Xtp )| ≤ C(ε,p,m,α, ν)KNp−α/2Q
α/2
N ,

where the constant C(ε,p,m,α, ν) depends only on ε,p,m,α, ν and where K :=∏p

j=1 max1≤t≤N ‖Gj,t,N‖.

Sketch of the proof of Theorem 4.1. The convergence limn→∞ ERp,n = ∫ 1
0 �p(H(t))dt is

easy (see the proof of Proposition 2.2). Hence, (4.23) follows from

R̃p,n := Rp,n − ERp,n a.s.−→
n→∞ 0. (A.2)

Relation (A.2) follows from the Chebyshev inequality and the following bound: there exist
C,κ > 1 such that for any n ≥ 1,

E(R̃p,n)4 ≤ Cn−κ . (A.3)
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By definition, R̃p,n = 1
n−p

∑n−p−1
k=0 η̃n(k), where η̃n(k) := ηn(k) − Eηn(k) and ηn(k) :=

ψ(�
p,n
k X,�

p,n

k+1X), ψ(x, y) = |x + y|/(|x| + |y|) are nonlinear functions of Gaussian vectors
(�

p,n
k X,�

p,n

k+1X) ∈ R
2 having the Hermite rank 2; however, these vectors are not ε-standard and

therefore Lemma A.1 cannot be directly applied to estimate the left-hand side of (A.3) (with
p = 1, . . . ,4, ν = 2). To this end, we first need to “decimate” the sum R̃p,n, as follows. (A sim-
ilar “trick” was used in [16].) Let � = [nθ/γ ] be the sequence of integers increasing to ∞ (at a
rate o(n1/2) by condition θ < γ/2) and write

R̃p,n =
�−1∑
j=0

R̃
p,n
� (j) + o(1), R̃

p,n
� (j) := 1

n − 1

[(n−2−j)/�]∑
k=0

η̃n(k� + j).

Then,

E(R̃p,n)4 ≤ �4 max
0≤j<�

E(R̃
p,n
� (j))4.

Write ηn(k) as a (bounded) function in standardized Gaussian variables:

ηn(k) = fk,n(Yn(k)), (A.4)

where Yn(k) = (Y
(1)
n (k), Y

(2)
n (k)) ∈ R

2,

Y (1)
n (k) := �

p,n
k X

σp,n(k)
, (A.5)

Y (2)
n (k) := − �

p,n
k X

σp,n(k)

ρp,n(k)√
1 − ρ2

p,n(k)
+ �

p,n

k+1X

σp,n(k + 1)

1√
1 − ρ2

p,n(k)
and (A.6)

fk,n

(
x(1), x(2)

) := ψ

(
x(1),

σp,n(k + 1)

σp,n(k)

(
ρp,n(k)x(1) +

√
1 − ρ2

p,n(k)x(2)
))

, (A.7)

where σ 2
p,n(k), ρp,n(k) are defined in (4.1). Then, for each k, Yn(k) := (Y

(1)
n (k), Y

(2)
n (k)) has

a standard Gaussian distribution in R
2 and η̃n(k) = fk,n(Yn(k)) − Efk,n(Yn(k)). Moreover, the

vector (Yn(k�+j), k = 0,1, . . . , [(n−2−j)/�]) ∈ R
2([(n−2−j)/�]+1) is ε-standard, provided that

� is large enough. Now, Lemma A.1 can be used and it implies the bound (A.3) using assumptions
(A.1) and (A.2)p . The details of this proof can be found in [5]. �

Sketch of the proof of Theorem 4.2

The proof of Theorem 4.1 uses the following central limit theorem for Gaussian subordinated
multidimensional triangular arrays. Theorem A.1 is proved in [5]. It extends the earlier results in
[11] and [2]. Below, similarly as in Lemma A.1, X ∈ R

ν designates a standard Gaussian vector.
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Theorem A.1. Let (Yn(k))1≤k≤n,n∈N be a triangular array of standardized Gaussian vectors

with values in R
ν,Yn(k) = (Y

(1)
n (k), . . . , Y

(ν)
n (k)),EY

(p)
n (k) = 0,EY

(p)
n (k)Y

(q)
n (k) = δpq . For a

given integer m ≥ 1, we introduce the following assumption: there exists a function ρ : N → R

such that for any 1 ≤ p,q ≤ ν,

∀(j, k) ∈ {1, . . . , n}2
∣∣EY

(p)
n (j)Y

(q)
n (k)

∣∣ ≤ |ρ(j − k)| with
∑
j∈Z

|ρ(j)|m < ∞. (A.8)

Moreover, assume that for any τ ∈ [0,1] and any J ∈ N
∗,

(
Yn([nτ ] + j)

)
−J≤j≤J

D−→
n→∞(Wτ (j))−J≤j≤J , (A.9)

where (Wτ (j))j∈Z is a stationary Gaussian process taking values in R
ν and depending on pa-

rameter τ ∈ (0,1). Let f̃k,n ∈ L
2
0(X) (n ≥ 1, 1 ≤ k ≤ n) be a triangular array of functions all

having Hermite rank at least m. Assume that there exists an L
2
0(X)-valued continuous function

φ̃τ , τ ∈ [0,1], such that

sup
τ∈[0,1]

∥∥f̃[τn],n − φ̃τ

∥∥2 = sup
τ∈[0,1]

E
(
f̃[τn],n(X) − φ̃τ (X)

)2 −→
n→∞ 0. (A.10)

Then, with σ 2 = ∫ 1
0 dτ(

∑
j∈Z

E[φ̃τ (Wτ (0))φ̃τ (Wτ (j))]) < ∞,

n−1/2
n∑

k=1

f̃k,n(Yn(k))
D−→

n→∞ N (0, σ 2). (A.11)

Sketch of the proof of Theorem 4.2. It suffices to show that

√
n

∣∣∣∣ERn,p −
∫ 1

0
�p(H(t))dt

∣∣∣∣ −→
n→∞ 0 (A.12)

and

√
n(Rp,n − ERp,n)

D−→
n→∞ N

(
0,

∫ 1

0
�p(H(τ))dτ

)
. (A.13)

The proof of (A.12) uses assumption (A.1)′ or (4.10) and the easy fact that for Gaussian vec-
tors (Z

(1)
n ,Z

(2)
n ) ∈ R

2, n ∈ N, with zero mean, EZ
(i)
n ≡ 0, i = 1,2, n ∈ N and E(Z

(1)
0 )2 =

E(Z
(2)
0 )2 = 1, |EZ

(1)
0 Z

(2)
0 | < 1

∣∣Eψ
(
Z

(1)
0 Z

(2)
0

) − Eψ
(
Z(1)

n ,Z(2)
n

)∣∣ ≤ C

2∑
i,j=1

∣∣EZ
(i)
0 Z

(j)

0 − Z(i)
n Z

(j)
n

∣∣. (A.14)
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The proof of (A.13) is deduced from Theorem A.1 with the sequence of standardized Gaussian
vectors Yn(k) = (Y

(1)
n (k), Y

(2)
n (k)) (ν = 2) given in (A.5)–(A.6) and the centered functions

f̃k,n

(
x(1), x(2)

) := fk,n

(
x(1), x(2)

) − Efk,n(Yn(k)),

φ̃τ

(
x(1), x(2)

) := φτ

(
x(1), x(2)

) − Eφτ (X)

with fk,n : R2 → R given in (A.7) and the (limit) function

φτ

(
x(1), x(2)

) := ψ
(
x(1), ρp(H(τ))x(1) +

√
1 − ρ2

p(H(τ))x(2)
)
.

Thanks to symmetry properties of these functions, it is clear that the Hermite rank of f̃k,n (for
any k and n) and φ̃τ (for any τ ∈ [0,1]) is m = 2. Using assumptions (A.1)′ and (A.2)p (with
θ = 0, γ > 1/2), we can show that the conditions of Theorem A.1 are satisfied for the above
f̃n,k, φ̃τ and the limit process (Wτ (j))j∈Z in (A.9) is written in terms of increments of fBm
(BH(τ)(j))j∈Z,

Wτ (j) := (
�

p

1 BH(τ)(j),
(−ρp(H(τ))�

p

1 BH(τ)(j) + �
p

1 BH(τ)(j + 1)
)
/

√
1 − ρ2

p(H(τ))
)
,

having standardized uncorrelated components. The details of this proof can be found in [5]. �

Proof of Corollary 4.2

(a) The argument at the end of the proof of Property 4.1 shows that V satisfies assumption (A.1)′,
while (A.2)p follows from Property 4.2. The central limit theorem in (4.26) then follows from
Theorem 4.2.

(b) In this case, (A.2)p follows from Property 4.3. Instead of verifying (A.1)′, it is simpler to
directly verify condition (4.10), which suffices for the validity of the statement of Theorem 4.2.
Using f (ξ) = cξ−2H−1(1 + o(ξ−1/2)) (ξ → ∞), similarly as in the proof of Property 4.3, for
j ∈ N

∗, we obtain

√
n

∣∣∣∣n−2H E[�p,n

0 X�
p,n
j X] − c21+p

∫ ∞

0

(
1 − cos(x)

)p cos(xj)x−2H−1 dx

∣∣∣∣
= 21+p

∣∣∣∣∫ ∞

0

(
1 − cos(x)

)p cos(xj) × √
n
(
n2H+1(f (nx) − c(nx)−2H−1))dx

∣∣∣∣ −→
n→∞ 0

by the Lebesgue dominated convergence theorem since
∫ ∞

0 |(1 − cos(x))p cos(xj) ×
x−2H−3/2|dx < ∞. Therefore, condition (4.10) is satisfied and Theorem 4.2 can be applied.

Finally, the function H �→ �2(H) is a C 1(0,1) bijective function and from the delta method
(see, e.g., [41]), the central limit theorem in (4.27) follows.
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Computation of λ(r)

From the definition of λ(r) and the change of variables x1 = a cosφ, x2 = a sinφ, with |r| < 1,

λ(r) = 1

2π
√

1 − r2

∫
R2

|x1 + x2|
|x1| + |x2|e−(1/(2(1−r2)))(x2

1−2rx1x2+x2
2 ) dx1 dx2

=
√

1 − r2

π

∫ π

0

| cosφ + sinφ|
(| cosφ| + | sinφ|)(1 − r sin(2φ))

dφ

=: I1 + I2,

where

I1 =
√

1 − r2

π

∫ π/2

0

1

1 − r sin(2φ)
dφ

=
√

1 − r2

π

∫ ∞

0

1

1 + t2 − 2rt
dt = 1

2
+ 1

π
arctan

(
r√

1 − r2

)
= 1

π
arccos(−r),

I2 = 2
√

1 − r2

π

∫ π/4

0

cosφ − sinφ

(cosφ + sinφ)(1 + r sin(2φ))
dφ

=
√

1 − r2

π

∫ 1

0

1 − t

(1 + t)(1 + 2rt + t2)
dt

=
√

1 − r2

π(1 − r)
log

(
2

r + 1

)
.

The function λ(r) is monotone increasing on [−1,1];λ(1) = 1, λ(−1) = 0. It is easy to check
that

ρ1(H) = 22H−1 − 1, ρ2(H) = −32H + 22H+2 − 7

8 − 22H+1
(A.15)

are monotone increasing functions; ρ1(1) = 1, ρ2(1) = 0 so that �p(H) = λ(ρp(H)) for
p = 1,2 is also monotone for H ∈ (0,1).

Expression and graph of s2(H)

From the delta method, s2
2(H) = [ ∂

∂x
(�2)

−1(�2(H))]2�2(H) and therefore

s2
2(H) =

( π(8 − 22H+1)2(1 − ρ2(H))

√
1 − ρ2

2(H)

(log 2 − log(1 + ρ2(H)))(22H+29 log 2 − 32H 16 log 3 + 62H 4 log(3/2))

)2

�2(H),

with the approximated graph (using the numerical values of �2(H) from [36]) provided in
Figure 5.



778 J.-M. Bardet and D. Surgailis

Figure 5. The graph of
√

s2
2 (H).
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