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We provide a representation of the maximal difference between a standard Brownian bridge and its concave
majorant on the unit interval, from which we deduce expressions for the distribution and density functions
and moments of this difference. This maximal difference has an application in nonparametric statistics,
where it arises in testing monotonicity of a density or regression curve.
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1. Introduction

Motivated by applications to the theory of nonparametric statistics, described later in this section,
we provide a useful representation of the maximal difference

M := sup
u∈[0,1]

([
C[0,1]B

]
(u) − B(u)

)
,

where (B(u),0 ≤ u ≤ 1) is a Brownian motion and CIf denotes the (least) concave majorant of
a function f defined on an interval I ; see Figure 1.

Our representation of M is presented in the following theorem, in terms of the distribution
of M3, the maximum of a standard Brownian excursion, which can also be represented as the
maximum of a three-dimensional Bessel bridge, or as

M3
d= sup

u∈[0,1]
Bbr(u) − inf

u∈[0,1]B
br(u), (1)

where Bbr denotes the standard Brownian bridge obtained by conditioning B on B(1) = 0; see
[5,13] for background and further information on the distribution of M3, which has been exten-
sively studied.
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Figure 1. Plot of a Brownian bridge and its concave majorant. The bullets depict the vertices, whose times
are indicated by the tick marks on the x-axis. The length of the dotted vertical segment gives the maximum
difference between the Brownian bridge and the concave majorant. The Haar approximation was used to
generate the Brownian bridge on a discrete partition of [0,1] with a mesh equal to 2−15.

Theorem 1. The distribution of the maximal difference M between a Brownian motion B and
its concave majorant is determined by the identity in distribution

M
d= max

j

√
LjM3,j , (2)

where

• (Lj , j = 1,2, . . .) is the uniform stick-breaking process

L1 := W1, L2 := (1 − W1)W2, L3 := (1 − W1)(1 − W2)W3, . . .

derived from a sequence W1,W2, . . . of independent uniform (0,1) variables;
• (M3,j , j = 1,2, . . .) is a sequence of independent random variables, each with the distrib-

ution of M3;
• the two sequences (Wj ) and (M3,j ) are independent.

Moreover, M is independent of B(1), so the identity in distribution (2) also holds if the Brownian
motion B on [0,1] is replaced by the Brownian bridge obtained by conditioning B on B(1) = b,
for arbitrary real b.
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To be more explicit, following Groeneboom [10], we observe that the vertices of the concave
majorant ([C[0,1]B](u),0 ≤ u ≤ 1) partition [0,1] into a countable collection of subintervals,
with accumulation of vertices at both 0 and 1, but with only a finite number of vertices almost
surely in (ε,1 − ε) for each ε > 0. The sequence (Lj ) represents the lengths of these maximal
subintervals, over each of which the concave majorant has a segment with a particular slope.
These Lj are arranged in a suitable random order, while

√
LjM3,j represents the maximum

value of [C[0,1]B](u) − B(u) for u in the interval of length Lj . Here, and throughout the paper,
the length of a segment of a concave majorant refers to the length of the time interval associated
with the segment, rather than the length of the segment in a two-dimensional picture such as
Figure 1.

For the proof of Theorem 1, we combine two different ingredients:

• Groeneboom’s description [10] of the concave majorant of Brownian motion on the infinite
interval [0,∞);

• Suidan’s description [24] of the joint law of ranked lengths of intervals in the partition of
the time interval [0,1] generated by vertices of C[0,1]B .

In principle, the second of these ingredients must be derivable from the first. Following Groene-
boom, we use Doob’s transformation to map Brownian motion on [0,∞) to a Brownian bridge
on [0,1] and this mapping determines the law of the interval partition of [0,1] derived from
C[0,1]Bbr. While we provide some details of this in Section 4, we are unable to fully derive the
stick-breaking representation of interval lengths in this way. Still, by developing the results of
Groeneboom and Suidan and by exploiting the fact that a uniform stick-breaking process is in-
variant under a size-biased random permutation (see [11,18,19]), we see that the Lj appearing in
Theorem 1 can be constructed as follows.

Corollary 2. Let U1,U2, . . . be a sequence of independent uniform (0,1) variables, independent
of the Brownian motion B , and let L1,L2, . . . be the size-biased random permutation of lengths
of segments of C[0,1]B defined by:

• L1 is the length of the interval containing U1;
• L2 is the length of the interval containing the first point Ui that is not in this interval;
• L3 is the length of the interval containing the next point Uj that is not in either of the first

two intervals,

and so on. Then

L1, L2/(1 − L1), L3/(1 − L1 − L2), . . .

is a sequence of independent uniform (0,1) random variables and this sequence is independent
of B(1).

In particular,

• the length L1 of the segment of C[0,1]Bbr covering a uniform random number U1 is itself
uniformly distributed in [0,1].
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We show in the Appendix how this fact can be verified from Groeneboom’s [10] joint density
for the location of vertices of the concave majorant of Brownian motion on [0,∞). However,
the computations are difficult and we are currently unable to extend this method to obtain the
assertions about Lj for j ≥ 2 from Groeneboom’s results. Rather, we rely completely on Suidan’s
approach for this part of the argument, which is essential for our proof of Theorem 1.

To motivate our study of the distribution of M , we recall that in testing whether a density or a
regression function on [0,1] is decreasing, the supremum distance between the empirical estima-
tor of the function and its concave majorant is used as a test statistic; see Kulikov and Lopuhaä
[14] and Durot [8]. From [15], it follows that the supremum distance between the empirical dis-
tribution function and its concave majorant attains its maximum at the uniform density on [0,1].
Moreover, it is known that this statistic, when multiplied by

√
n, converges in distribution to the

maximal difference M between a Brownian motion B on [0,1] and its concave majorant. For the
regression problem, the distribution of M again appears as the limit of a similar scaling of the
supremum distance between the cumulative sum diagram and its concave majorant if the true de-
creasing regression is constant, which is also known to be the least favorable regression function
for the testing problem in question [8]. Durot [8] established continuity of the distribution of M .
It is an immediate corollary of Theorem 1 that M , in fact, has a density and we provide formulas
for this density and for moments of M in Section 3. Additionally, we give an alternative charac-
terization of M , based on the inverse of the Laplace transform of a function involving modified
Bessel functions of the second kind. This other characterization suggests a way of calculating the
quantiles of M at any desired precision using some appropriate approximation method for the
inverse of a Laplace transform, but we do not pursue this here.

2. The concave majorant of Brownian motion on a finite interval

We need to show that, conditionally given C[0,1]B , the difference process C[0,1]B − B behaves
like a succession of independent Brownian excursions between the vertex times of C[0,1]B .
Groeneboom [10] proved a corresponding result for a Brownian motion on [0,∞), stated as
Theorem 3 below. From this result on [0,∞), we will prove a similar theorem on [0,1] by using
a space–time transformation.

For a fixed a > 0, let

Za := max
t≥0

{B(t) − at}
and Da be the time at which the maximum is attained; see also [7]. The point (Da,Za + aDa)

is one vertex of C[0,∞)B and it follows from [10], Theorem 2.1, that (D1/a, a > 0) is a pure
jump process. Let S0 > S1 > S2 > · · · denote the successive slopes of C[0,∞)B to the right of
Da and S−1 < S−2 < · · · the successive slopes of C[0,∞)B to the left of Da , so S0 < a < S−1
almost surely. For i ∈ Z, let Ti denote the length of the interval on which the slope of the concave
majorant is Si so that {Vi := ∑

j≤i Tj , i ∈ Z} is the sequence of times of vertices of C[0,∞)B .

Theorem 3 (Groeneboom [10]). Conditionally given C[0,∞)B , the difference process
(C[0,∞)B(t) − B(t), t ≥ 0) is a succession of independent Brownian excursions of prescribed
lengths Ti = Vi − Vi−1, i ∈ Z, between zeros at the times Vi, i ∈ Z.
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See [4,10,17] for various proofs of this result.
It is important now to distinguish clearly the restriction to [0,1] of C[0,∞)B , the concave majo-

rant of a Brownian motion B on [0,∞), and C[0,1]B , the concave majorant of a Brownian motion
B on [0,1]. The former concave majorant has vertices accumulating only at 0, whereas the lat-
ter, which is the subject of the following proposition, has vertices accumulating at both 0 and 1.
These two concave majorant processes agree on some random interval [0,R] with 0 < R < 1
almost surely and then differ on (R,1], where R is the time of the last vertex of C[0,∞)B before
time 1, whose distribution is determined by formula (16); see also the remark of Groeneboom
[10], page 1022.

Proposition 4. Let B be a Brownian motion on [0,1] and C[0,1]B its concave majorant.

(i) The random set of times of vertices of C[0,1]B is independent of B(1).
(ii) The difference process (C[0,1]B(u) − B(u),0 ≤ u ≤ 1) is independent of B(1).

(iii) Consequently, the distribution of both the random set of vertex times and of the difference
process is the same for an unconditioned Brownian motion B as it is for a Brownian
bridge from (0,0) to (1, b) for every real value of b.

Proof. The first two assertions follow easily from the facts that:

• the set of times of vertices of the concave majorant of a function (f (u),0 ≤ u ≤ 1) is the
same for f (u) as it is for f (u) + cu for arbitrary real c;

• for a Brownian motion B , the process (B(u) − uB(1),0 ≤ u ≤ 1) is a standard Brownian
bridge independent of B(1).

The third assertion follows easily from the first two. �

Theorem 5. Let X be either an unconditioned Brownian motion or a Brownian bridge from
(0,0) to (1, b) for some real b and let {Vi, i ∈ Z} denote an indexing of the times of vertices of
C[0,1]X so that Vi is an increasing function of i ∈ Z with limi→−∞ Vi = 0 and limi→∞ Vi = 1.
Moreover, we assume that this indexing depends only on C[0,1]X.

Then, conditionally given Vi = vi, i ∈ Z, the difference process (C[0,1]X(u) − X(u),0 ≤ u ≤
1) is a concatenation of independent Brownian excursions of prescribed lengths vi − vi−1 be-
tween zeros at the times vi .

Remark 6. Choosing an indexing {Vi, i ∈ Z} that depends only on C[0,1]B is an essential as-
sumption in the theorem above, otherwise the conditional distribution of the difference process
between two successive vertices would not necessarily be that of a Brownian excursion.

Proof of Theorem 5. Based on Proposition 4(iii), it suffices to consider the case where B is
replaced by a standard Brownian bridge Bbr. Then, according to Doob’s transformation,

Bbr(u) = (1 − u)B̂

(
u

1 − u

)
, u ∈ [0,1],
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where B̂ is the standard Brownian motion

B̂(t) = (1 + t)Bbr
(

t

1 + t

)
, t ≥ 0.

It follows that the times Vi of vertices of the concave majorant of Bbr on [0,1] may be constructed
as Vi = Ti/(Ti + 1), where the Ti ’s are the times of vertices of the concave majorant of B̂

on [0,∞). Moreover, the difference between Bbr and its concave majorant on (Vi,Vi+1) is a
transformation of the difference between B̂ and its concave majorant on (Ti, Ti+1).

We will now show that this transformation maps Brownian excursions to Brownian excursions.
Indeed, observe that the transformation between (u,Bbr(u)) and (t, B̂(t)) is the restriction to a
Brownian path of the space–time transformation

T (u, x) = (t, y) :=
(

u

1 − u
,

x

1 − u

)
, (3)

where 0 ≤ u < 1, 0 ≤ t < ∞ and x and y both range over all real numbers.
Consider now the conditioning of Bbr on Bbr(u) = x and Bbr(û) = x̂ for some 0 < u < û < 1

and real numbers x and x̂. The process

X∗(v) := Bbr(u + v(û − u)) − x − v(x̂ − x)√
û − u

, 0 ≤ v ≤ 1,

is a standard Brownian bridge, in terms of which the path of Bbr on [u, û] is represented as

Bbr(u′) = x +
√

û − uX∗
(

u′ − u

û − u

)
+ u′ − u

û − u
(x̂ − x), u′ ∈ [u, û].

On the other hand, with (t, y) = T (u, x) and (t̂ , ŷ) = T (û, x̂), the process

Y ∗(w) := B̂(t + w(t̂ − t)) − y − w(ŷ − y)√
t̂ − t

, 0 ≤ w ≤ 1,

is another standard Brownian bridge in terms of which the path of B̂ on [t, t̂] is represented as

B̂(t ′) = y +
√

t̂ − tY ∗
(

t ′ − t

t̂ − t

)
+ t ′ − t

t̂ − t
(ŷ − y), t ′ ∈ [t, t̂].

It follows that for an arbitrary choice of 0 ≤ u < û < 1 and real values of x and x̂, with (t, y) and
(t̂ , ŷ) denoting the images of (u, x) and (û, x̂), respectively, via the space–time transformation

T in (3),

the image via the space–time transformation of a Brownian bridge from (u, x) to (û, x̂) is a Brownian bridge
from (t, y) to (t̂ , ŷ).

The key observation is that, similarly,
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the image via the space–time transformation of the straight line from (u, x) to (û, x̂) minus a Brownian excursion
of length û − u, shifted to start at time u, is a straight line from (t, y) to (t̂ , ŷ) minus a Brownian excursion of
length t̂ − t , shifted to start at time t .

Intuitively, this is clear from the bridge result, by conditioning each of the bridges to stay above
the line joining its end-points. This can be made rigorous by a weak convergence argument,
conditioning one of the bridges to go no more than a small distance ε above the line, passing to
the limit as ε → 0, and appealing to the result of [6]. �

The limiting argument at the end of the previous proof can also be reduced to an invariance of
laws of standard Brownian bridges and excursions under a family of space–time transformations
indexed by a pair of parameters 0 < u < û < 1. To see this, observe that the relation between Bbr

and B̂ implies that the standard bridge X∗ derived from Bbr on [u, û] and the standard bridge Y ∗
derived from B̂ on [t, t̂] are related by

X∗(v) = 1 − u − v(û − u)√
(1 − u)(1 − û)

Y ∗
(

(1 − u)v

1 − u − v(û − u)

)
, 0 < v < 1. (4)

For the sake of completeness, we give the following lemma, which shows that the mapping from
one standard bridge or excursion to another standard bridge or excursion which is implicit in
Doob’s space–time transformation is non-trivial, but nonetheless easily checked.

Lemma 7. For each fixed choice of 0 ≤ u < û < 1, if (Y ∗(v),0 ≤ v ≤ 1) is a standard Brownian
bridge, then (X∗(v),0 ≤ v ≤ 1) defined by (4) has the same distribution as (Y ∗(v),0 ≤ v ≤ 1).
Moreover, the same is true with the standard Brownian bridge replaced by a standard Brownian
excursion, or by a standard Bessel bridge of any dimension.

Proof. For the standard Brownian bridge, the result can be derived as above, or checked more
directly by observing that Y ∗ is evidently a centered Gaussian process with continuous paths,
so it suffices to check that E(X∗(v)X∗(w)) = E(Y ∗(v)Y ∗(w)) = v(1 − w) for 0 < v < w < 1
and this is easily done. The result for a Bessel bridge of dimension d = 1,2, . . . follows easily
from the representation of the square of this process as the sum of squares of d independent
standard Brownian bridges. For d = 3, this gives the result for the standard excursion, by the
well-known identification of the standard excursion with a three-dimensional Bessel bridge due
to D. Williams. �

3. The distribution of M

Proof of Theorem 1. Proposition 4 implies that the distribution of the maximal difference M

is the same for a standard Brownian motion on [0,1] as for a Brownian bridge from (0,0) to
(1, b) for an arbitrary real number b. Therefore, it is enough to establish the characterization of
M provided in Theorem 1 with a standard Brownian motion B on [0,1] replaced by a standard
Brownian bridge Bbr.
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Let (Vi, i ∈ Z) denote the sequence of times of vertices of C[0,1]Bbr indexed in the same
way as in Proposition 4 and Theorem 5, and let (Ti, i ∈ Z) be the corresponding lengths of the
segments of C[0,1]Bbr; that is, Ti = Vi − Vi−1, i ∈ Z, so the sequence (Ti, i ∈ Z) is independent
of the sequence (M3,i , i ∈ Z), where the M3,i ’s are independent random variables identically
distributed as M3, the maximum of a standard Brownian excursion of length 1.

From the definition of M and Theorem 5, we have readily that

M
d= max

i

√
TiM3,i .

Now, let T (1) ≥ T (2) ≥ · · · denote the values of Ti put in decreasing order. According to the
result of Suidan [24], the distribution of the sequence (T (j), j = 1,2, . . .) is the limiting distri-
bution of ranked lengths of cycles of a uniform random permutation of n elements, with cycle
lengths normalized by n, commonly known as the Poisson–Dirichlet distribution with parame-
ters 0 and 1; see also [9,19,22]. Suidan gives this result for the concave majorant of Brownian
motion on [0,1], but it applies just as well to the Brownian bridge, by Proposition 4. It is also
known [25] that this asymptotic distribution of cycle lengths is obtained by ranking the terms of
a uniform stick-breaking process in decreasing order. Theorem 1 and Corollary 2 follow imme-
diately. �

Theorem 1 provides an easy way of simulating values of M . For the Monte Carlo implemen-
tation, we can use the representation (1) of M3 and the Donsker approximation of Bbr. It also
follows from Theorem 1 that the distribution and density functions of M , denoted hereafter by
FM and fM , respectively, are given by

FM(x) = E

[∏
i

F3

(
x√
Li

)]
, x > 0, (5)

and

fM(x) =
∑

i

E

[
1√
Li

f3

(
x√
Li

)∏
j 
=i

F3

(
x√
Lj

)]
, x > 0, (6)

where F3 and f3 are the distribution and density functions of M3, respectively, known to be given
by

F3(y) = 1 − 2
∞∑

n=1

(4n2y2 − 1)e−2n2y2
, y > 0, (7)

and

f3(y) = 8
∞∑

n=1

n2y(4n2y2 − 3)e−2n2y2
, y > 0;
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Figure 2. The solid line is the plot of a Monte Carlo approximation of FM based on a sample of size 5000.
The dashed line is the plot of the distribution function F3. As the figure suggests, F3(u) ≤ FM(u) for all u.
This is an immediate consequence of (1) and the definition of M .

see, for example, [5,13] for further information about this distribution which has been extensively
studied. Monte Carlo approximations of the distribution function FM and its density fM based
on 5000 independent copies of the uniform stick-breaking process are shown in Figures 2 and 3
along with the distribution and density functions of M3.

Another technique for exploring features of the distribution of M is to introduce a standard
exponential variable γ1 independent of M and observe that

√
γ1M

d= max
i

√
γ1LiM3,i , (8)

where the γ1Li are the points of a Poisson point process with intensity x−1e−x dx for x > 0,
independent of the M3,i ’s. These are the jumps of a gamma process (γs,0 ≤ s ≤ 1) from which
the Li can be recovered by first normalizing the jumps by γ1 and then putting the jumps in
size-biased random order. This leads to the following proposition.

Proposition 8. For all x > 0,

P
(√

γ1M ≤ x
) = exp(−ν(x,∞)),
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Figure 3. The solid line is the plot of a Monte Carlo approximation of fM based on a sample of size 5000.
The dashed line is the plot of the density function f3.

where

ν(x,∞) =
∫ ∞

0
y−1e−y

[
1 − F3

(
x√
y

)]
dy. (9)

Proof. Note that the event {√γ1M ≤ x} occurs if and only if there is no point
√

γ1LiM3,i in the
interval (x,∞). Now, consider the Poisson point process on the product space {(z, t) : z > 0, t >

0} such that
√

γ1LiM3,i are the points of this process on the z-axis when t ∈ (0,1). The intensity
measure ν of this process is equal to the image via the map (x,m) �→ √

xm of the measure

x−1e−x
P(M3 ∈ dm).

It follows that

P
(√

γ1M ≤ x
) = exp(−ν(x,∞)),

with ν(x,∞) given in (9). �

See also [2,3,20] for similar calculations.
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The following theorem gives another representation of FM and fM . Let Km be the modified
Bessel function of the second kind and order m ∈ [0,∞), and consider the function

G(t) =
∞∏

n=1

exp
{−4

[
2
√

2tnK1
(
2
√

2tn
) − K0

(
2
√

2tn
)]}

, t > 0. (10)

Also, let L−1 be the operator of the inverse Laplace transform.

Theorem 9.

(i) For any real r > 0, we have

E(Mr) = 2

�(r/2)

∫ ∞

0
t r−1(1 − G(t)

)
dt. (11)

(ii) For all x > 0, the distribution and density functions FM and fM are given, respectively,
by

FM(x) = [
L−1(G(√

t
)
/t

)]( 1

x2

)
(12)

and

fM(x) = 2

x3

[
L−1(1 − G

(√
t
))]( 1

x2

)
. (13)

Proof. It follows from (7) and (9) that

ν(x,+∞) = 2
∞∑

n=1

∫ ∞

0
y−1e−y(4n2x2y−1 − 1)e−2n2x2y−1

dy

= 2
∞∑

n=1

∫ ∞

0
t−1e−2n2x2t (2t−1 − 1)e−t−1

dt

= 2
∞∑

n=1

(
2An(x) − Bn(x)

)
,

where

An(x) = [L(e−t−1
/t2)](2n2x2) = 2

√
2nxK1

(
2
√

2nx
)

(14)

and

Bn(x) = [L(e−t−1
/t)](2n2x2) = 2K0

(
2
√

2nx
)

(15)
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so that

exp(−ν(x,∞)) =
∞∏

n=1

exp
{−4

[
2
√

2xnK1
(
2
√

2xn
) − K0

(
2
√

2xn
)]} = G(x).

The derivation of the expressions in (14) and (15) is deferred to the Appendix. Now, for r > 0,

E(γ
r/2
1 Mr) =

∫ ∞

0

(
1 − F

γ
r/2
1 Mr (x)

)
dx

=
∫ ∞

0

(
1 − exp(ν(x1/r ,∞))

)
dx

=
∫ ∞

0

(
1 − G(x1/r )

)
dx =

∫ ∞

0
rxr−1(1 − G(x)

)
dx.

The claim in (i) now follows from independence of the random variables γ1 and M .
To show (ii), we again use the independence of γ1 and M . We can write

P
(√

γ1M ≤ x
) =

∫ ∞

0
FM

(
x√
s

)
e−s ds.

Using the change of variable t = s/
√

x, we get∫ ∞

0
FM

(
1√
t

)
e−tx dt = exp

(−ν
(√

x,∞))
/x.

Thus, for all t > 0,

FM

(
1√
t

)
= [

L−1(exp
(−ν

(√
x,∞))

/x
)]

(t)

and the expression of FM follows. The expression fM can be obtained immediately by using
known properties of the operator L. �

The identity in (11) gives a way of calculating the r th moment of M via numerical integration.
We used this approach to compute E(Mr) for r = 1, . . . ,8 and the values are reported in the
first column of Table 1. In the second column are the corresponding empirical estimators for the
same moments using 20 000 simulated independent copies of M . On the other hand, the inverse
Laplace transforms in the expressions of FM and fM given in (12) and (13) can be approximated
with very high precision using, for example, the Gaver–Stehfest algorithm. We refer to [1] for a
detailed description of this method as well as a nice summary of other classical algorithms used
to approximate inverses of Laplace transforms. However, implementation of the Gaver–Stehfest
algorithm requires the use of a multiple precision software package or some adequate arbitrary
precision library. This will be pursued elsewhere.
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Table 1. Approximation of the moments of M of order
r = 1, . . . ,8

r E(Mr) X
r

1 0.999399 0.997366
2 1.060258 1.056803
3 1.195155 1.190869
4 1.431334 1.427101
5 1.819154 1.816777
6 2.448679 2.452149
7 3.481508 3.499897
8 5.212503 5.266828

4. Complements

Groeneboom’s description of C[0,∞)B implies that for each fixed t > 0, the joint density of V −
t ,

the time of the last vertex of C[0,∞)B before time t , and V +
t , the time of first vertex of C[0,∞)B

after time t , is given by the formula

fV −
t ,V +

t
(v1, v2) = 2

(v2 − v1)3/2
E

[
Z+

(
X√
v1

− Z√
v2 − v1

)
+

]
1{0<v1<t<v2},

where y+ = y1y≥0 and X and Z are independent standard normal variables. We show in the
Appendix (Proposition 11) that this joint density can be presented more explicitly as

fV −
t ,V +

t
(v1, v2) = 1

π(v2 − v1)2

(√
v2 − v1

v1
− arctan

(√
v2 − v1

v1

))
1{0<v1<t<v2}. (16)

Using the time transformation t �→ t/(t +1), the joint density of Xu and Yu, the respective last
and first times vertices of the concave majorant of Bbr occurring respectively before and after
u ∈ (0,1), is given by

fXu,Yu(x, y) = 1

π(y − x)2

(√
y − x

x(1 − y)
− arctan

(√
y − x

x(1 − y)

))
(17)

× 1{0<x<u<y<1}.

Now, let L1 be the length of the segment of the concave majorant of a standard Brownian
bridge Bbr on [0,1] covering a uniform random number U1 independent of Bbr and let us verify,
using this formula, that the distribution of L1 is also uniform on [0,1], as shown already by



Maximal difference between a Brownian bridge and its concave majorant 479

Corollary 2. Using the expression in (17), we find, after some algebra, that L1 has density

fL1(l) =
∫ 1−l

0

1

πl

(√
l

x(1 − l − x)
− arctan

(√
l

x(1 − l − x)

))
dx

= 1 − l

πl

∫ 1

0

(
k

1√
l(1 − l)

− arctan

(
k√

u(1 − u)

))
du,

using the change of variable u = x/(1 − l) and putting k = √
l/(1 − l).

Now, ∫ 1

0

du√
u(1 − u)

=
∫ π/2

0
2 dθ = π, by the change of variable u = sin2(θ).

Using the same change of variable, we can write∫ 1

0
arctan

(
k√

u(1 − u)

)
du =

∫ π/2

0
arctan

(
2k

sin(2θ)

)
sin(2θ)dθ

= 1

2

∫ π

0
arctan

(
2k

sin(t)

)
sin(t)dt

= 1

2

[
− cos(t) arctan

(
b

sin(t)

)]π

0

− 1

2
b

∫ π

0

cos2(t)

sin2(t) + b2
dt with b = 2k

= π

2
− b

∫ π/2

0

cos2(t)

sin2(t) + b2
dt

= π

2
− b

b2 + 1

∫ π/2

0

dt

tan2(t) + b2/(b2 + 1)
,

where the last equality follows from the identity 1/ cos2(t) = 1 + tan2(t). Put c = b2/(b2 + 1).
Using the change of variable tan(t) = x, we get∫ π/2

0

dt

tan2(t) + c
=

∫ ∞

0

dx

(1 + x2)(x2 + c)
= 1

1 − c

∫ ∞

0

(
1

x2 + c
− 1

1 + x2

)
dx

= 1

1 − c

π

2

(
1√
c

− 1

)
.

Now,

c = 4l

2l + 1 + l2
= 4l

(l + 1)2
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and hence ∫ 1

0
arctan

(
k√

u(1 − u)

)
du = π

2

[
1 − 2

√
l

1 − l

(
l + 1

2
√

l
− 1

)]
= π

√
l

1 + √
l
,

which implies that fL1(l) = 1 for 0 < l < 1. Thus, we have an independent verification of the
uniform distribution of L1 asserted by Corollary 2. However, it is far from clear how to derive
the further results of Corollary 2 using this approach.

Appendix

In this Appendix, we collect some further identities and computations of an analytic kind which
arise in connection with the material in this paper.

Proposition 10. Let X and Y have the standard bivariate normal distribution with correlation
E(XY) = ρ. We then have

E(X+Y+) = 1

2π

√
1 − ρ2 + ρP (X > 0, Y > 0), (18)

where

P(X > 0, Y > 0) = 1

2π

(
π

2
+ arctan

(
ρ/

√
1 − ρ2

))
, (19)

which, for ρ < 0, can be rewritten as

P(X > 0, Y > 0) = − 1

2π
arctan

(√
1 − ρ2/ρ

)
. (20)

Proof. Rosenbaum [21], formula (5), gives an expression for E(XY1{X>h,Y>k}) in terms of the
probability P(X > h,Y > k) and the standard normal density and distribution functions. In the
present case, h = k = 0 and Rosenbaum’s formula simplifies to (18). Formula (19) is well known;
see, for instance, [23]. If ρ < 0, then the passage from (19) to (20) is made via the trigonometric
identity arctan(x) + arctan(1/x) = −π/2,∀x < 0. �

Proposition 11. Let a, b > 0 and let Z and W be independent standard normal variables. We
then have

E

[
Z+

(
W

a
− Z

b

)
+

]
= 1

2bπ

(
b

a
− arctan

(
b

a

))
,

where y+ = y1y≥0.

Proof. Let t := b/a, X := Z and Y = (tW − Z)/
√

1 + t2. Since (X,Y ) is a standard bivariate
normal with correlation ρ = −1/

√
t2 + 1 < 0, where t = −√

1 − ρ2/ρ > 0, it follows from
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Proposition 10 that

E[Z+(tW − Z)+] = − 1

2πρ

(√
1 − ρ2 − ρ arctan

(√
1 − ρ2/ρ

))
= 1

2π

(
t − arctan(t)

)
and the conclusion follows after replacing t by b/a. �

Proof of the identities (14) and (15). We start by showing (15). Letting z = 2
√

2nx, we need
to show that

K0(z) = 1

2

∫ ∞

0

e−1/t

t
e−z2t/4 dt.

We have that ∫ ∞

0

e−1/t

t
e−z2t/4 dt = e−z

∫ ∞

0

1

t
e−(zt−2)2/4t dt

and putting u = (zt − 2)/(2
√

t), it follows that t = (u + √
u2 + 2z)2/z2 and dt = 2t du/√

u2 + 2z. Hence, ∫ ∞

0

e−1/t

t
e−z2t/4 dt = 2e−z

∫ ∞

−∞
e−u2

√
u2 + 2z

du.

It follows that

1

2

∫ ∞

0

e−1/t

t
e−z2t/4 dt = e−z

∫ ∞

−∞
e−u2

√
u2 + 2z

du = K0(z);

see, for example, Hunter [12]. To show (14), it is enough to show that∫ ∞

0

e−1/t

t2
e−z2t/4 dt = zK1(z).

Using the fact that limz→0 zK1(z) = 1 (see, e.g., [16]) and noting that the integral on the left-hand
side is equal to 1 for z = 1, it is enough to show that

− z

2

∫ ∞

0

e−1/t

t
e−z2t/4 dt = (zK1(z))

′.

The calculations above imply that

− z

2

∫ ∞

0

e−1/t

t
e−z2t/4 dt = −zK0(z).

We conclude by using the well-known identity (zKn(z))
′ = −zKn−1(z), where Km is the modi-

fied Bessel function of the second kind of order m. �
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