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This article considers the problem of multiple hypothesis testing using t-tests. The observed data are as-
sumed to be independently generated conditional on an underlying and unknown two-state hidden model.
We propose an asymptotically valid data-driven procedure to find critical values for rejection regions con-
trolling the k-familywise error rate (k-FWER), false discovery rate (FDR) and the tail probability of false
discovery proportion (FDTP) by using one-sample and two-sample t-statistics. We only require a finite
fourth moment plus some very general conditions on the mean and variance of the population by virtue
of the moderate deviations properties of t-statistics. A new consistent estimator for the proportion of al-
ternative hypotheses is developed. Simulation studies support our theoretical results and demonstrate that
the power of a multiple testing procedure can be substantially improved by using critical values directly, as
opposed to the conventional p-value approach. Our method is applied in an analysis of the microarray data
from a leukemia cancer study that involves testing a large number of hypotheses simultaneously.

Keywords: empirical processes; FDR; high dimension; microarrays; multiple hypothesis testing;
one-sample t-statistics; self-normalized moderate deviation; two-sample t-statistics

1. Introduction

Among the many challenges raised by the analysis of large data sets is the problem of multiple
testing. Examples include functional magnetic resonance imaging, source detection in astronomy
and microarray analysis in genetics and molecular biology. It is now common practice to simul-
taneously measure thousands of variables or features in a variety of biological studies. Many of
these high-dimensional biological studies are aimed at identifying features showing a biological
signal of interest, usually through the application of large-scale significance testing. The possible
outcomes are summarized in Table 1.

Traditional methods that provide strong control of the familywise error rate (FWER = P(V ≥
1)) often have low power and can be unduly conservative in many applications. One way around
this is to increase the number k of false rejections one is willing to tolerate. This results in a
relaxed version of FWER, k-FWER = P(V ≥ k).

Benjamini and Hochberg [1] (hereafter referred to as “BH”) pioneered an alternative. Define
the false discovery proportion (FDP) to be the number of false rejections divided by the number
of rejections (FDP = V/(R ∪ 1)). The only effect of the R ∪ 1 in the denominator is that the

1350-7265 © 2011 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/10-BEJ272
mailto:hycao@uchicago.edu
mailto:kosorok@unc.edu


348 H. Cao and M.R. Kosorok

Table 1. Outcomes when testing m hypotheses

Hypothesis Accept Reject Total

Null true U V m0
Alternative true F S m1
Total W R m

ratio V/R is set to zero when R = 0. Without loss of generality, we treat FDP = V/R and define
the false discovery tail probability FDTP = P(V ≥ αR), where α is pre-specified, based on the
application. Several papers have developed procedures for FDTP control. We shall not attempt a
complete review here, but mention the following: van der Laan, Dudoit and Pollard [26] proposed
an augmentation-based procedure, Lehmann and Romano [18] derived a step-down procedure
and Genoves and Wasserman [13] suggested an inversion-based procedure, which is equivalent
to the procedure of [26] under mild conditions [13].

The false discovery rate (FDR) is the expected FDP. BH provided a distribution-free, finite-
sample method for choosing a p-value threshold that guarantees that the FDR is less than a target
level γ . Since this publication, there has been a considerable amount of research on both the
theory and application of FDR control. Benjamini and Hochberg [2] and Benjamini and Yekutieli
[3] extended the BH method to a class of dependent tests. A Bayesian mixture model approach
to obtain multiple testing procedures controlling the FDR is considered in [11,21–24]. Wu [29]
considered the conditional dependence model under the assumption of Donsker properties of
the indicator function of the true state for each hypothesis and derived asymptotic properties of
false discovery proportions and numbers of rejected hypotheses. A systematic study of multiple
testing procedures is given in the book [9]. Other related work can be found in [6,7].

One challenge in multiple hypothesis testing is that many procedures depend on the propor-
tion of null hypotheses, which is not known in reality. Estimating this proportion has long been
known as a difficult problem. There have been some interesting developments recently, for exam-
ple, the approach of [20] (see also [11,13,17,19]). Roughly speaking, these approaches are only
successful under a condition which [13] calls the “purity” condition. Unfortunately, the purity
condition depends on p-values and is hard to check in practice.

The general framework for k-FWER, FDTP, FDR control and the estimation of the proportion
of alternative hypotheses is based on p-values which are assumed to be known in advance or can
be accurately approximated. However, the assumption that p-values are always available is not
realistic. In some special settings, approximate p-values have been shown to be asymptotically
equivalent to exact p-values for controlling FDR [12,16]. However, these approximations are
only helpful in certain simultaneous error control settings and are not universally applicable.
Moreover, if the p-values are not reliable, any procedures derived later are problematic.

This motivates us to propose a method to find critical values directly for rejection regions to
control k-FWER, FDTP and FDR by using one-sample and two-sample t -statistics. The advan-
tage of using t -tests is that they require minimum conditions on the population, only existence of
the fourth moment, which is relatively easily satisfied by most statistical distributions, rather than
other stringent conditions such as the existence of the moment generating function. In addition,
we approximate tail probabilities of both null and alternative hypotheses accurately, rather than
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p-value approaches that only consider the case under null hypotheses. Thus, a better ranking of
hypotheses is obtained. Furthermore, we propose a consistent estimate of the proportion of alter-
native hypotheses which only depends on test statistics. As long as the asymptotic distribution
of the test statistic is known under the null hypothesis, we can apply our method to estimate this
proportion, resulting in more precise cut-offs.

The BH procedure controls the FDR conservatively at π0γ , where π0 is the proportion of null
hypotheses and γ is the targeted significance level. If π0 is much smaller than 1, then the sta-
tistical power is greatly compromised. The power we use in this paper is NDR = E[S]/m1, as
defined in [8]. In the situation that t -statistics can be used, our procedure gives a better approxi-
mation and more accurate critical values can be obtained by plugging in the estimate of π0. The
validity of our approach is guaranteed by empirical process methods and recent theoretical ad-
vances on self-normalized moderate deviations, in combination with Berry–Esseen-type bounds
for central and non-central t -statistics.

To illustrate, we simulate a Markov chain, as in [25], of Bernoulli variables (Hi), i =
1, . . . ,5000, to indicate the true state of each hypothesis test (Hi = 1 if the alternative is true;
Hi = 0 if the null is true). Conditional on the indicator, observations xij , i = 1, . . . ,5000, j =
1, . . . ,80, are generated according to the model xij = μi + εij . The one-sample t -statistic is used
to perform simultaneous hypothesis testing. Figure 1 shows the plot of 10 000 MCMC results
of the realized and nominal FDR control based on the BH method for different control levels.
From this plot, we can see that as the control level increases, the BH procedure becomes more
and more conservative. For instance, the FDR actually obtained is 0.167 when the nominal level
is set at 0.2, reflecting a significant loss in power.

The three methods of multiple testing control we utilize are k-FWER, FDTP and FDR. The
criterion for using k-FWER is, asymptotically,

P(V ≥ k) ≤ γ. (1.1)

Since we only apply our method when there are discoveries (R > 0), we need the FDTP, with a
given proportion 0 < α < 1 and significance level 0 < γ < 1, to satisfy, asymptotically,

P(V ≥ αR) ≤ γ. (1.2)

Similarly, the criterion for using FDR is, asymptotically,

FDR ≤ γ or
∫ 1

0
P(V ≥ αR)dα ≤ γ. (1.3)

The main contributions of this paper are as follows: (1) Moderate deviation results which
only require the finiteness of fourth moment, from which the statistic is computed in probability
theory, are applied in multiple testing. Thus, the applicability of this procedure is dramatically
expanded: it can deal with non-normal populations and even highly skewed populations. (2) The
critical values for rejection regions are computed directly, which circumvents the intermediate
p-value step. (3) An asymptotically consistent estimation of the proportion of alternative hy-
potheses is developed for multiple testing procedures under very general conditions.

The remainder of the paper is organized as follows. In Section 2, we present the basic data
structure, our goals, the procedures and theoretical results for the one-sample t -test. Two-sample
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Figure 1. Claimed and obtained FDR control using the BH procedure.

t -test results are discussed in Section 3. Section 4 is devoted to numerical investigations us-
ing simulation and Section 5 applies our procedure to detect significantly expressed genes in a
microarray study of leukemia cancer. Some concluding remarks and a discussion are given in
Section 6. Proofs of results from Sections 2 and 3 are given in the Appendix.

2. One-sample t-test

In this section, we first introduce the basic framework for simultaneous hypothesis testing, fol-
lowed by our main results. Estimation of the unknown proportion of alternative hypotheses π1
is presented next. We conclude the section by presenting theoretical results for the special case
of completely independent observations. This special setting is the basis for the more general
main results and is also of independent interest since fairly precise rates of convergence can be
obtained.

2.1. Basic framework

As a specific application of multiple hypothesis testing in very high dimensions, we use gene ex-
pression microarray data. At the level of single genes, researchers seek to establish whether each
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gene in isolation behaves differently in a control versus a treatment situation. If the transcripts
are pairwise under two conditions, then we can use a one-sample t -statistic to test for differential
expression.

The mathematical model is

Xij = μi + εij , 1 ≤ j ≤ n,1 ≤ i ≤ m. (2.1)

It should be noted that the following discussion is under this model and does not hold in gen-
eral. Here, Xij represents the expression level in the ith gene and j th array. Since the subjects
are independent, for each i, εi1, εi2, . . . , εin are independent random variables with mean zero
and variance σ 2

i . The null hypothesis is μi = 0 and the alternative hypothesis is μi �= 0. For the
relationship between different genes, we propose the conditional independence model, as fol-
lows. Let (Hi) be a {0,1}-valued stationary process and, given (Hi)

m
i=1, Xij , i = 1, . . . ,m, are

independently generated. The dependence is imposed on the hypothesis (Hi), where Hi = 0 if
the null hypothesis is true and Hi = 1 if the alternative is true. From Table 1, we can see that∑m

i=1 Hi = m1 and
∑m

i=1(1 − Hi) = m0. It is assumed that (Hi)
m
i=1 satisfy a strong law of large

numbers:

1

m

m∑
i=1

Hi → π1 ∈ (0,1) a.s. (2.2)

This condition is satisfied in a variety of scenarios, for example, the independent case, Markov
models and stationary models. Consider the one-sample t -statistic

Ti = √
nX̄i/Si,

where

X̄i = 1

n

n∑
j=1

Xij , S2
i = 1

n − 1

n∑
j=1

(Xij − X̄i)
2.

If we use t as a cut-off, then the number of rejected hypotheses and the number of false
discoveries are, respectively,

R =
m∑

i=1

1{|Ti |≥t}, V =
m∑

i=1

(1 − Hi)1{|Ti |≥t}. (2.3)

Under the null hypothesis, it is well known that Ti follows a Student t -distribution with n − 1
degrees of freedom if the sample is from a normal distribution. Asymptotic convergence to a
standard normal distribution holds when the population is completely unknown, provided that it
has a finite fourth moment under the null hypothesis. Moreover, under the alternative hypothesis,
Ti can also be approximated by a normal distribution, but with a shift in location. We will show
that

F0(t) := P(|Ti | ≥ t |Hi = 0) = P(|Z| ≥ t)
(
1 + o(1)

) = 2�̄(t)
(
1 + o(1)

)
, (2.4)

F1(t) := P(|Ti | ≥ t |Hi = 1) = E
[
P

(∣∣Z + √
nμi/σi

∣∣ ≥ t |μi,σi

)](
1 + o(1)

)
, (2.5)
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uniformly for t = o(n1/6) under some regularity conditions, where Z denotes the standard normal
random variable, �̄ is the tail probability of the standard normal distribution and the critical
values tn,m that control the FDTP and FDR asymptotically at prescribed level γ are bounded.
These assumptions are fairly realistic in practice. We do not require the critical value for k-
FWER to be bounded. Although we do not typically know m1, F0(t) or F1(t) in practice, we
need the following theorem – the proof of which is given in the Appendix – as the first step.
We will shortly extend this result, in Theorem 2.2 below, to permit estimation of the unknown
quantities.

Theorem 2.1. Assume that E(εij |μi,σ
2
i ) = 0, Var(εij |μi,σ

2
i ) = σ 2

i , lim supEε4
ij < ∞, 0 <

π1 < 1 − α and (2.2) is satisfied. Also, assume that there exist ε0 > 0 and c0 > 0 such that

P
(∣∣√nμi/σi

∣∣ ≥ ε0|Hi = 1
) ≥ c0 ∀n ≥ 1. (2.6)

Let

μm(t) = αm1F1(t) − (1 − α)m0F0(t) (2.7)

and

σ 2
m(t) = α2m1F1(t)

(
1 − F1(t)

) + (1 − α)2m0F0(t)
(
1 − F0(t)

)
. (2.8)

(i) If t
fdtp
n,m is chosen such that

t
fdtp
n,m = inf{t :μm(t)/σm(t) ≥ zγ }, (2.9)

where zγ is the γ th quintile of the standard normal distribution, then

lim
m→∞P(FDP ≥ α) = lim

m→∞P(V ≥ αR) ≤ γ (2.10)

holds.
(ii) If t

fdr
n,m is chosen such that

t
fdr
n,m = inf

{
t :

m0F0(t)

m0F0(t) + m1F1(t)
≤ γ

}
, (2.11)

then

lim
m→∞ FDR = lim

m→∞E(V/R) ≤ γ (2.12)

holds.
(iii) If tk-FWER

n,m is chosen such that

tk-FWER
n,m = inf

{
t :P

(
η(t) ≥ k

) ≤ γ
}
, (2.13)

where η(t) ∼ Poisson(θ(t)) and

θ(t) = moF0(t),
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then

lim
m→∞k-FWER = lim

m→∞P(V ≥ k) ≤ γ (2.14)

holds.

Remark 2.1. In the next section, we use a Gaussian approximation for F0(t) and F1(t) for both
FDTP and FDR, for which the critical values are shown to be bounded. In this case, m can be
arbitrarily large, while the critical value remains bounded. Due to sparsity, we use a Poisson
approximation for k-FWER, for which the critical value is no longer bounded as m → ∞, and
we require logm = o(n1/3).

2.2. Main results

Note that in Theorem 2.1, there are an unknown parameter m1 and unknown functions F0(t) and
F1(t) involved in μm(t) and σm(t). For practical settings, we need to estimate these quantities.
We will begin by assuming that we have a strongly consistent estimate of π1 and will then provide
one such estimate in the next section. Given H, note that p(t) = P(|Ti | ≥ t) = (1 −Hi)P (|Ti | ≥
t |Hi = 0) + HiP (|Ti | ≥ t |Hi = 1) can be estimated from the empirical distribution p̂m(t) of
{|Ti |}, where

p̂m(t) = 1

m

m∑
i=1

I{|Ti |≥t}, (2.15)

and that P(|Ti | ≥ t |Hi = 0) is close to P(|Z| ≥ t) when n is large, by (2.4). The next theorem,
proved in the Appendix, provides a consistent estimate of the critical value tn,m.

Theorem 2.2. Let

νm(t) = αp̂m(t) − 2(1 − π̂1)�̄(t) (2.16)

and

τ 2
m(t) = α2(p̂m(t) − 2(1 − π̂1)�̄(t)

)(
1 − 1

π̂1

(
p̂m(t) − 2(1 − π̂1)�̄(t)

))
(2.17)

+ 2(1 − α)2(1 − π̂1)�̄(t)
(
1 − 2�̄(t)

)
,

where π̂1 is a strongly consistent estimate of π1. Assume that the conditions of Theorem 2.1 are
satisfied.

(i) If t̂
fdtp
n,m is chosen such that

t̂
fdtp
n,m = inf

{
t :

√
mνm(t)

τm(t)
≥ zγ

}
, (2.18)

then

|t̂ fdtp
n,m − t

fdtp
n,m| = o(1) a.s. (2.19)
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(ii) If t̂
fdr
n,m is chosen such that

t̂
fdr
n,m = inf

{
t :

2(1 − π̂1)�̄(t)

p̂m(t)
≤ γ

}
, (2.20)

then

|t̂ fdr
n,m − t

fdr
n,m| = o(1) a.s. (2.21)

(iii) If t̂ k-FWER
n,m is chosen such that

t̂ k-FWER
n,m = inf

{
t :P

(
ζ(t) ≥ k

)} ≤ γ, (2.22)

where ζ(t) ∼ Poisson(θ̄(t)) and

θ̄ (t) = 2m(1 − π̂1)�̄(t),

then, as long as logm = o(n1/3), we have

|t̂ k-FWER
n,m − tk-FWER

n,m | = o(1) a.s. (2.23)

Remark 2.2. This theorem deals with the general dependence case, where (Hi)
m
1 is assumed to

follow a two-state hidden model and the data are generated independently conditional on (Hi)
m
1 .

The proof is mainly based on the independence case, which we present in Section 2.4 below, plus
a conditioning argument.

2.3. Estimating π1

In the previous section, we assumed that π̂1 was a consistent estimator of π1. We now develop
one such estimator. By the two-group nature of multiple testing, the test statistic is essentially
a mixture of null and alternative hypotheses with proportion as a parameter. By virtue of mod-
erate deviations, the distribution of t -statistics can be accurately approximated under both null
and alternative hypotheses. However, for the alternative approximation, an unknown mean and
variance are involved. So, we think of a functional transformation of the t -statistics which has a
ceiling at 1 to first get a conservative estimate of π which is consistent under certain conditions.
Let c > 0 and define gc(x) = min(|x|, c)/c. It is easy to see that gc is a decreasing function
of c, bounded by 1, and that the derivative dgc

dc
is bounded by 1/c. Hence, the function class {gc}

indexed by c is a Donsker class and thus also Glivenko–Cantelli. Let

ĝc = 1

m

m∑
i=1

gc(Ti). (2.24)

Theorem 2.3. We have

π1 ≥ lim
m→∞,n→∞ sup

c>0

ĝc − E(gc(Z))

1 − E(gc(Z))
a.s.
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If, in addition, we assume that
√

nμi/σi → ∞ for all i with Hi = 1, i = 1, . . . ,m, a.s. as n → ∞, (2.25)

then

π1 = lim
m→∞,n→∞ sup

c>0

ĝc − E(gc(Z))

1 − E(gc(Z))
a.s.,

where

E(gc(Z)) = 2

c
√

2π
(1 − e−c2/2) + 2�̄(c).

Proof. We can write

ĝc =
∑m

i=1 1{Hi=0}
m

∑m
i=1 gc(Ti)1{Hi=0}∑m

i=1 1{Hi=0}
+

∑m
i=1 1{Hi=1}

m

∑m
i=1 gc(Ti)1{Hi=1}∑m

i=1 1{Hi=1}

:= m0

m
I + m1

m
II.

Let H = {Hi,1 ≤ i ≤ m}. Conditional on H, Ti,1 ≤ i ≤ m, are independent random variables.
We consider I first. Let

Am(c) =
∑m

i=1 gc(Ti |H)1{Hi=0}∑m
i=1 1{Hi=0}

−
∑m

i=1 E(gc(Ti |H)1{Hi=0}∑m
i=1 1{Hi=0}

,

let E be the infinite sequence 1{H1=0},1{H2=0}, . . . and let F be the event that
∑m

i=1 1{Hi=0} → ∞
as m → ∞. By the assumption (2.2), we know that P(F) = 1. Thus,

P
(

lim
m→∞ sup

c>0
|Am(c)| = 0

)
= E

[
P

(
lim

m→∞ sup
c>0

|Am(c)| = 0
∣∣E)]

= 1,

where the second equality follows from the fact that, conditional on E, the terms in the sum
are i.i.d. and thus the standard Glivenko–Cantelli theorem applies. Arguing similarly, based on
conditioning on the sequence 1{H1=1},1{H2=1}, . . . , we can also establish that

sup
c>0

∣∣∣∣
∑m

i=1 gc(Ti |H)1{Hi=1}∑m
i=1 1{Hi=1}

−
∑m

i=1 E(gc(Ti |H)1{Hi=1}∑m
i=1 1{Hi=1}

∣∣∣∣ → 0 a.s.

Now, note that II ≤ 1. Thus, since m0/m → (1 − π1) a.s. and m1/m → π1 a.s., we have that
when m → ∞, n → ∞,

ĝc ≤ (1 − π1)E(gc(Z)) + π1 a.s.

= E(gc(Z)) + (
1 − E(gc(Z))

)
π1.

We now have the following lower bound for π1:

π1 ≥ lim
m→∞,n→∞ sup

c>0

ĝc − E(gc(Z))

1 − E(gc(Z))
a.s. (2.26)
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Define


1 := (1 − π1)E(gc(Z)) + π1
1

m1

m∑
i=1

E(gc(Ti)|H)1{Hi=1},


2 := (1 − π1)E(gc(Z)) + π1

∑m
i=1 E(gc(Z + √

nμi/σi))1{Hi=1}∑m
i=1 1{Hi=1}

.

Letting n → ∞, we have supc>0 |
1 − 
2| → 0 a.s. Also,


2 = (1 − π1)E(gc(Z))

+ π1
1∑m

i=1 1{Hi=1}

m∑
i=1

E

(
gc

(
Z +

√
nμi

σi

)(
I{|Z+√

nμi/σi |≥c} + I{|Z+√
nμi/σi |<c}

))
Hi

≥ (1 − π1)E(gc(Z)) + π1

∑m
i=1 P(|Z + √

nμi/σi | ≥ c)Hi∑m
i=1 1{Hi=1}

≥ (1 − π1)E(gc(Z)) + π1

= E(gc(Z)) + π1
(
1 − E(gc(Z))

)
.

Note that

sup
c

|ĝc − 
1| → 0 a.s. as m → ∞, n → ∞.

Therefore,

ĝc ≥ E(gc(Z)) + π1
(
1 − E(gc(Z))

)
a.s. as m → ∞, n → ∞.

Thus, we obtain

π1 ≤ lim
m→∞,n→∞ sup

c>0

ĝc − E(gc(Z))

1 − E(gc(Z))
a.s. (2.27)

�

As a consequence of this theorem, we propose the following estimate of π1:

π̂1 := sup
c>0

ĝc − E(gc(Z))

1 − E(gc(Z))
, (2.28)

where

E(gc(Z)) = 2

c
√

2π
(1 − e−c2/2) + 2�̄(c).

Remark 2.3. If we use π̂1, as given in (2.28), then Theorem 2.2 yields a fully automated proce-
dure to carry out multiple hypothesis testing in very high dimensions in practical data settings.



t -tests in very high dimensions 357

2.4. Consistency and rate of convergence under independence

In order to prove the main results in the general, possibly dependent, t -test setting, we need
results under the assumption of independence between t -tests. Specifically, we assume in this
section that (Ti,Hi), i = 1, . . . ,m are independent, identically distributed random variables with
π1 = P(Ti = 1). This independence assumption can also yield stronger results than the more
general setting and is of independent interest.

The next theorem, proved in the Appendix, provides a strong consistent estimate of the critical
value tn,m, as well as its rate of convergence.

Theorem 2.4. Let

νm(t) = αp̂m(t) − 2(1 − π1)�̄(t) (2.29)

and

τ 2
m(t) = α2p̂m(t)

(
1 − p̂m(t)

) + 4α(1 − π1)p̂m(t)�̄(t)

+ 2(1 − π1)�̄(t)
(
1 − 2α − 2(1 − π1)�̄(t)

)
.

Assume the conditions of Theorem 2.1 with (2.2) replaced by the assumption that (Ti,Hi), i =
1, . . . ,m, are i.i.d. and π1 = P(Ti = 1). Let J = {i :Hi = 1} be the set that contains the indices
of alternative hypotheses. Also, assume that μi,σi are i.i.d. for i ∈ J .

(i) If t̂
fdtp
n,m is chosen such that

t̂
fdtp
n,m = inf

{
t :

√
mνm(t)

τm(t)
≥ zγ

}
, (2.30)

then

|t̂ fdtp
n,m − t

fdtp
n,m| = O

(
n−1/2 + m−1/2(log logm)1/2) a.s. (2.31)

and

|t̂ fdtp
n,m − t

fdtp
n,m| = O(n−1/2 + m−1/2) in probability. (2.32)

Here, t
fdtp
n,m is the critical value defined in (A.26).

(ii) If t̂
fdr
n,m is chosen such that

t̂
fdr
n,m = inf

{
t :

2(1 − π1)�̄(t)

p̂m(t)
≤ γ

}
, (2.33)

then

|t̂ fdr
n,m − t

fdr
n,m| = O

(
n−1/2 + m−1/2(log logm)1/2) a.s. (2.34)

and

|t̂ fdr
n,m − t

fdr
n,m| = O(n−1/2 + m−1/2) in probability. (2.35)
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Here, t
fdr
n,m is the critical value defined in (A.28).

(iii) If t̂ k-FWER
n,m is chosen such that

t̂ k-FWER
n,m = inf

{
t :P

(
ζ(t) ≥ k

)} ≤ γ, (2.36)

where ζ(t) ∼ Poisson(θ̄(t)) and

θ̄ (t) = 2m(1 − π̂1)�̄(t),

then

|t̂ k-FWER
n,m − tk-FWER

n,m | = O((logm)−1/2) a.s. (2.37)

Here tk-FWER
n,m is the critical value defined in (A.30).

Remark 2.4. If α = γ in Theorem 2.4, then it is not difficult to see that t̂
fdtp
n,m − t̂

fdr
n,m =

O(m−1/2) a.s. Therefore, (2.31) and (2.32) remain valid with t̂
fdtp
n,m replaced by t̂

fdr
n,m. This shows

that controlling FDTP is asymptotically equivalent to controlling FDR. This is also true in the
more general dependence case. Thus, we will focus primarily on FDR in our numerical studies.

Remark 2.5. Note that π1 is assumed to be known in order to get a precise rate of convergence
for FDTP and FDR. If π̂1 is estimated with rate of convergence rn, then the correct convergence
rate for the “in probability” result for FDR and FDTP would involve an additional term O(rn)

added in (2.32) and (2.35). It is unclear what the correction would be for the almost sure rate in
(2.31) and (2.34). These corrections are beyond the scope of this paper and will not be pursued
further here. Note that the rate of π̂1 is not needed in the main results presented in Sections 2.1–
2.3.

3. Two-sample t-test

In this section, the results of the previous section are extended to the two-sample t -test setting.
The estimator of the unknown parameter π1 remains the same as in the one-sample case, but with
Ti in (2.24) being the two-sample, rather than one-sample, t -statistic. Theoretical results for the
rates of convergence under independence are also presented, as in the previous section.

3.1. Basic set-up and results

When two groups, such as a control and an experimental group, are independent, which we
assume here, a natural statistic to use is the two-sample t -statistic. As far as possible, we adopt
the same notation as used in the one-sample case, and we assume that (2.2) holds. We observe
the random variables

Xij = μi + εij , 1 ≤ j ≤ n1,1 ≤ i ≤ m, Yij = νi + ωij , 1 ≤ j ≤ n2,1 ≤ i ≤ m,
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with the index i denoting the ith gene, j indicating the j th array, μi representing the mean effect
for the ith gene from the first group and νi representing the mean effect for the ith gene from the
second group. The sampling processes for the two groups are assumed to be independent of each
other. The sample sizes n1 and n2 are assumed to be of the same order, that is, 0 < b1 ≤ n1/n2 ≤
b2 < ∞. We will also assume that for each i, εi1, εi2, . . . , εin1 are independent random variables
with mean zero and variance σ 2

i ; ωi1,ωi2, . . . ,ωin2 are independent random variables with mean
zero and variance τ 2

i . The null hypothesis is μi = νi , the alternative hypothesis is μi �= νi and the
dependence is assumed to be generated in the same manner as the dependence in the one-sample
setting. Consider the two-sample t -statistic

T ∗
i = X̄i − Ȳi√

S2
1i/n1 + S2

2i/n2

,

where

X̄i = 1

n1

n1∑
j=1

Xij , Ȳi = 1

n2

n2∑
j=1

Yij ,

S2
1i = 1

n1 − 1

n1∑
j=1

(Xij − X̄i)
2, S2

2i = 1

n2 − 1

n2∑
j=1

(Yij − Ȳi )
2.

Then

R =
m∑

i=1

1{|T ∗
i |≥t}, V =

m∑
i=1

(1 − Hi)1{|T ∗
i |≥t}. (3.1)

The two-sample t -statistic is one of the most commonly used statistics to construct confidence
intervals and carry out hypothesis testing for the difference between two means. There are several
premises underlying the use of two-sample t -tests. It is assumed that the data have been derived
from populations with normal distributions. Based on the fact that S1i → σi, S2i → τi a.s., with
moderate violation of the assumption, statisticians quite often recommend using the two-sample
t -test, provided the samples are not too small and the samples are of equal or nearly equal size.
When the populations are not normally distributed, it is a consequence of the central limit the-
orem that two-sample t -tests remain valid. A more refined confirmation of this validity under
non-normality based on moderate deviations is shown in [4]. Furthermore, under the alternative
hypothesis, the asymptotic results still hold, but with a shift in location similar to the one-sample
case under certain conditions, that is,

P(|T ∗
i | ≥ t |Hi = 0) = P(|Z| ≥ t)

(
1 + o(1)

)
,

P (|T ∗
i | ≥ t |Hi = 1) = P

(∣∣∣∣Z + μi − νi

Bn1,n2

∣∣∣∣ ≥ t

)(
1 + o(1)

)
,

uniformly in t = o(n1/6), where B2
n1,n2

= σ 2
i /n1 +τ 2

i /n2. Under the assumption of (2.2), asymp-
totic critical values to control FDTP, FDR and k-FWER are very similar to the one-sample t -test
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case with the one-sample t -statistic Ti replaced by the two-sample t -statistic T ∗
i . The following

theorem, proved in the Appendix, is analogous to Theorem 2.1 and is a necessary first step.

Theorem 3.1. Assume that E(εij |μi , σ 2
i ) = 0, E(ωij |νi , τ 2

i ) = 0, Var(εij |μi,σ
2
i ) = σ 2

i ,
Var(ωij |νi, τ

2
i ) = τ 2

i , lim supEε4
ij < ∞, lim supEτ 4

i,j < ∞, 0 < π1 < 1 − α and that (2.2) is
satisfied. Assume that there exist ε0 and c0 such that

P

(∣∣∣∣μi − νi

Bn1,n2

∣∣∣∣ ≥ ε0
∣∣Hi = 1

)
≥ c0 for all n1, n2. (3.2)

The conclusions of Theorem 2.1 then hold with the one-sample t -statistic Ti replaced by the
two-sample t -statistic T ∗

i .

3.2. Main results

The unknown parameter m1 and functions F0(t) and F1(t) in Theorem 3.1 are estimated similarly
as in the one-sample case with the one-sample t -statistic replaced by its two-sample counterpart.
The following theorem, the proof of which is given in the Appendix, gives our main results for
two-sample t -tests.

Theorem 3.2. Assume that the conditions in Theorem 3.1 are satisfied. Replace the one-sample
t -statistic Ti by the two-sample t -statistic T ∗

i in Theorem 2.2. Let π̂1 be a strong consistent
estimate of π1, as in (2.28), using the two-sample t -statistic T ∗

i .

(i) If t̂
fdtp
n,m is chosen such that

t̂
fdtp
n,m = inf

{
t :

√
mνm(t)

τm(t)
≥ zγ

}
, (3.3)

then

|t̂ fdtp
n,m − t

fdtp
n,m| = o(1) a.s. (3.4)

(ii) If t̂
fdr
n,m is chosen such that

t̂
fdr
n,m = inf

{
t :

2(1 − π̂1)�̄(t)

p̂m(t)
≤ γ

}
(3.5)

then

|t̂ fdr
n,m − t

fdr
n,m| = o(1) a.s. (3.6)

(iii) If t̂ k-FWER
n,m is chosen such that

t̂ k-FWER
n,m = inf

{
t :P

(
ζ(t) ≥ k

)} ≤ γ, (3.7)
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where ζ(t) ∼ Poisson(θ̄(t)) and

θ̄ (t) = 2m(1 − π̂1)�̄(t),

then, provided logm = o(n1/3), we have

|t̂ k-FWER
n,m − tk-FWER

n,m | = o(1) a.s. (3.8)

Remark 3.1. π̂1 can be estimated via (2.28) by using two-sample t -statistics. Theorem 2.3 is
applicable in the two-sample setting, as well as in the one-sample case, and consistency follows.
Thus, Theorem 3.2 gives a fully automated procedure to conduct multiple hypothesis testing
using two-sample t -statistics after we plug in the π̂1 given in (2.28).

3.3. Consistency and rate of convergence under independence

Results for the independence setting are needed for the proofs of the main results, as was the case
for one-sample t -tests. We can, once again, obtain more precise estimation compared with the
general dependence case. The following theorem, proved in the Appendix, gives us conditions
and conclusions using two-sample t -statistics for controlling FDTP and FDR asymptotically, as
well as rates of convergence under the assumption that (Ti,Hi) are independent of each other for
1 ≤ i ≤ m. Assume that π1 is the proportion of the alternative hypotheses among m hypothesis
tests, that is, π1 = P(Hi = 1). Let J = {i :Hi = 1}.

Theorem 3.3. Assume the conditions of Theorem 3.1 are satisfied. Rather than (2.2), we assume
that (Ti,Hi) are independent and identically distributed. In addition, π1 = P(T1 = 1) and μi,σi

are i.i.d. for i ∈ J . Let

p(t) = P(|T ∗
1 | ≥ t), (3.9)

a1(t) = αp(t) − (1 − π1)P (|T ∗
1 | ≥ t |H1 = 0), (3.10)

b2
1(t) = α2p(t)

(
1 − p(t)

) + 2α(1 − π1)p(t)P (|T ∗
1 | ≥ t |H1 = 0)

+ (1 − π1)P (|T ∗
1 | ≥ t |H1 = 0)

(
1 − 2α − (1 − π1)P (|T ∗

1 | ≥ t |H1 = 0)
)
,

p̂m(t) = 1

m

m∑
i=1

I{|T ∗
i |≥t}, (3.11)

νm(t) = αp̂m(t) − 2(1 − π1)�̄(t), (3.12)

and

τ 2
m(t) = α2p̂m(t)

(
1 − p̂m(t)

) + 4α(1 − π1)p̂m(t)�̄(t)

+ 2(1 − π1)�̄(t)
(
1 − 2α − 2(1 − π1)�̄(t)

)
.

The conclusions of Theorem 2.4 then hold with the one-sample t -statistics Ti replaced by the
two-sample t -statistics T ∗

i .



362 H. Cao and M.R. Kosorok

Remark 3.2. In the above sections, we developed our theorems based on two-sided tests. The
results for the case of one-sided tests are very similar, but with the rejection region {Ti ≥ t} for
each test. We omit the details.

4. Numerical studies

In this section, we present numerical studies based on simulated data and compare the power of
our approach with [1] (BH) and [23] (ST) approaches using one-sample t -statistics. The results
for using two-sample t -statistics are very similar and so we omit the details here.

4.1. Simulation study 1

We investigate the results for the i.i.d. case first. Recall the model

Xij = μi + εij , 1 ≤ i ≤ m,1 ≤ j ≤ n.

We set the signal using μi ∼ Unif (0.5,1) or μi ∼ Unif (−1,−0.5), which is of the correct order
for the standardized error term. Here, the number of hypothesis tests is m = 10 000, which is
the same for all following simulation studies, unless otherwise noted. The proportion of alterna-
tives π1 = 0.2 and the error term t (4) are used just to illustrate the asymptotic results. We vary
the number of arrays n from 20 to 50 to 300 to evaluate our asymptotic approximation. Empir-
ical distributions of FDTP, FDR and k-FWER based on 100 000 repetitions are treated as the
gold standard since they have almost negligible Monte Carlo error. The samples are generated
to evaluate our proposed method based on asymptotic theory. Specifically, for each sample, we
calculate the sample paths of the following quantities indexed by t :

√
mνm(t)/τm(t) for study-

ing FDTP, 2(1 − π̂1)�̄(t)/p̂m(t) for studying FDR and P(Poisson(2m(1 − π̂1)�̄(t)) ≥ 10) for
studying 10-FWER (here, we choose k = 10 just for the purposes of illustration). π̂1 is defined
as in (2.28).

Figure 2 shows the overlay of the true path and 100 random estimated paths for FDTP, FDR
and k-FWER, respectively. As n increases, we see that the true path and estimated paths are fairly
close to each other, which, in turn, validates our asymptotic theory. We can see that the slopes of
FDTP and 10-FWER are very steep, which means a small change in the critical value results in
a large change in the level of control, while the FDR has a flatter trend.

4.2. Simulation study 2

Under the same set-up as in the previous section, we simulate data with different error terms:
standard normal (N(0,1)), Student t with one degree of freedom (Cauchy), Student t with four
degrees of freedom (t (4)), Student t with ten degrees of freedom (t (10)), Laplace and expo-
nential. Note that, except for the Cauchy error term, all of the error terms satisfy the condition
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Figure 2. Overlay of true and 100 random estimated sample paths with respect to cut-off t for the three
procedures under differing sample sizes.

of finite fourth moment. Empirical distributions of FDTP, FDR and k-FWER based on 100 000
repetitions are treated as the gold standard for obtaining true critical values. Each scenario is
repeated 1000 times to evaluate our proposed method for estimating the critical value based on
asymptotic theory. We control FDR at different levels (from 0.01 to 0.2) to get true and estimated
critical values. Asymptotically, the estimated critical value t̂ based on our theory should be very
close to the true critical value t and lie on a diagonal line of the square. From Figure 3, the es-
timated critical values t̂ do not match the true critical value t under the Cauchy error since the
Cauchy distribution does not have finite fourth moment. For the Cauchy distribution, even the
central limit theorem does not hold since it does not have finite mean. As the number of arrays
n increases, the estimated critical values t̂ match the true critical values t better under symmet-
ric error terms (N(0,1), t (4), t (10) and Laplace), but not quite so well under asymmetric errors
(e.g., exponential errors). The difficulty with the exponential error terms suggests the value of
conducting research to derive higher order approximations. We plan to undertake this in the near
future.
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Figure 3. Comparison of true and estimated critical values using FDR for different error terms and numbers
of arrays n.

4.3. Simulation study 3

The above results are from the independent test setting. We carried out similar simulation studies
for the dependent setting and found that the corresponding plots are quite similar to the above
results and the same conclusions can be drawn. To see whether our proposed method obtains the
claimed level of control, we use a hidden Markov chain to generate dependent indicators Hi, i =
1, . . . ,m. Conditional on Hi, i = 1, . . . ,m, the data is generated independently. The transition
probability of the hidden Markov chain is set to

(
1 − p1p1
p01 − p0

)
,

where p1 is the transition probability from 0 to 1 and p0 is the transition probability from 1 to 0.
In the simulation, p0 = 0.8 and p1 = 0.2. Based on the limiting stationary distribution, the alter-
native proportion should be π1 = p1/(p0 +p1). Under the null hypothesis, we simulate data from
four error terms (N(0,1), t (4), Laplace and exponential) and, under the alternative hypothesis,
we simulate data with mean effects half from Unif (0.1,0,5) and half from Unif (−0.5,−0.1),

plus the same four error terms. Figure 4 uses FDR as the control criterion. For different con-
trol levels γ , we compare the claimed level of control and the actually obtained level of control
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Figure 4. Comparison of nominal and obtained control level for different error terms and numbers of
arrays n.

based on our method for different numbers of arrays: small (n = 20), medium (n = 50) and large
(n = 300).

From Figure 4, we can see that when the number of arrays n is small (n = 20), we do not,
in general, achieve the claimed level of control. If we have a medium sample size (n = 50), the
obtained level of control is very close to the nominal level of control and the results are almost
perfect if we have a large number of arrays (n = 300), even for the asymmetric exponential error
term. This strongly supports our theoretical predictions but suggests that higher order approxi-
mations would be useful in some settings.

To see the performance of our method using 10-FWER, Table 2 summarizes the control level
actually obtained for different error terms and numbers of arrays n when the nominal control

Table 2. Obtained control level using 10-FWER with nominal control level 0.05

n N(0,1) t (4) Laplace Exponential

20 0.998 (9.0e−05) 0.90 (7.0e−03) 0.81 (1.1e−02) 1 (0)
50 0.52 (1.2e−02) 0.14 (9.1e−03) 0.17 (1.2e−02) 1 (0)

300 0.076 (3.8e−03) 0.031 (2.8e−03) 0.05 (2.7e−03) 0.82 (4.6e−03)
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level is 0.05. The obtained control level is incorrect when the number of arrays n is small, which
can be deduced from the samples paths of 10-FWER given in Figure 1. It has a very steep slope,
so when n is small, the approximation is crude and there is a noticeable difference between the
estimated critical value and the true critical value, yielding a big difference in the control level.
For large sample sizes, the obtained control level is reasonably good because our asymptotic
theory begins to take effect. The exponential error setting appears not to perform as well as the
other error settings.

4.4. Simulation study 4

All previous numerical studies involve the alternative proportion estimate π̂1 defined in (2.28).
In this section, we investigate numerically how this estimate is affected by number of arrays n

and compare with the alternative estimate proposed by [23]. The first simulation set-up is similar
to the one in the previous section. We drew N = 1000 sets of data as follows. Dependent indi-
cators Hi, i = 1, . . . ,m, are generated from a hidden Markov chain with the limiting alternative
proportion π1 = 0.2. Conditional on these, a vector of expected values, μ = (μ1, . . . ,μm), was
constructed. The expected values for the true null hypotheses were set to 0 with standard normal
noise, whereas the expected values for the alternative hypotheses were drawn from Unif (0.1,0.5)

plus standard normal noise. Correspondingly, 1000 replications of the proportion estimate π̂1
were calculated using (2.28). The root means square error (RMSE) is given as

RMSE =
√√√√ 1

N

N∑
n=1

(
π̂

(n)
1 − π

(n)
1

)2
,

where π̂
(n)
1 is the estimate of π1 for the nth simulated data set and π

(n)
1 is the truth. Table 3

summarizes the effect of n. As the number of arrays n increases, the RMSE gets smaller, which
validates our asymptotic prediction.

In the second simulation, we compare our proportion estimate with the one using spline
smoothing proposed by [23]. Recall the proportion estimate π0(λ) = #{pi > λ; i = 1, . . . ,m}/
(m(1−λ)). The smoothing approach proceeds as follows: first, π0(λ) are calculated over a (fine)
grid of λ; then, a natural cubic spline y with three degrees of freedom is fitted to (λ, π̂0(λ));
finally, π0 is estimated by π̂0 = y(1). The simulation set-up is similar to the previous one, except
that we have two groups here with n1 = 70 and n2 = 80. We change the alternative proportion to
compare the performances of our approach (πck

1 ) with the spline smoothing approach (π st
1 ) in Ta-

ble 4. They produce very similar results; both are conservative, with less bias using our approach
and less variance using the spline smoothing approach. The advantage of our approach is that it

Table 3. RMSE for N = 1000 estimated values of π1

n 20 50 300

RMSE 0.0156 0.0136 0.0104
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Table 4. Proportion estimate comparison

π1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

π̂ck
1 0.044 0.091 0.141 0.182 0.217 0.255 0.289 0.335 0.365

π̂ st
1 0.041 0.081 0.125 0.161 0.195 0.236 0.276 0.323 0.355

sd(π̂ck
1 ) 0.042 0.043 0.041 0.040 0.046 0.041 0.047 0.042 0.038

sd(π̂ st
1 ) 0.039 0.041 0.036 0.040 0.041 0.038 0.034 0.036 0.031

is computationally very fast, while the spline smoothing approach requires that p-values are first
obtained using permutation, which is computationally much more intensive than our approach
(which can be computed directly from the t -statistics).

4.5. Comparison with BH and ST procedures

In this section, we compare our approach with the BH and ST procedures under the dependence
structure described in [29]. We also use a hidden Markov model to simulate the indicator func-
tion Hi, i = 1, . . . ,m. Conditional on Hi, i = 1, . . . ,m, the data is generated independently. The
number of hypotheses tested m = 5000 and the number of arrays n = 80. The data generating
mechanism is otherwise the same as in the independence case. First, we construct a one-sample
t -statistic and apply our procedure to obtain the critical value for the rejection region. We then
obtain p-values and q-values, and apply the BH and ST procedures to decide which genes are sig-
nificantly expressed. We now briefly describe the BH procedure. Let pi be the marginal p-value
of the ith test, 1 ≤ i ≤ m, and let p(1) ≤ · · · ≤ p(m) be the order statistics of p1, . . . , pm. Given a
control level γ ∈ (0,1), let

r = max
{
i ∈ {0,1, . . . ,m + 1} :p(i) ≤ γ i/m

}
,

where p0 = 0 and p(m+1) = 1. The BH procedure rejects all hypotheses for which p(i) ≤ p(r).
If r = 0, then all hypotheses are accepted. The q-value in [23] is similar to the well-known
p-value, except that it is a measure of significance in terms of FDR, rather than type I error,
and an estimate of alternative proportion is plugged in, based on available p-values, as described
in the previous section. We revisit the motivating example and give a plot of the claimed FDR
and actually obtained FDR by using the proposed critical value method. From Figure 5, we can
see that our procedure controls the FDR at the claimed level asymptotically, although somewhat
liberally for finite samples, and has better power at the same target FDR level compared with the
BH and ST procedures.

5. Applications to microarray analysis

We now apply the proposed procedure to the analysis of a leukemia cancer data set [14] in or-
der to identify differentially expressed genes between AML and ALL. For the original data, see
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Figure 5. FDR control and power comparison.
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http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. In this analysis, we use the methodology
developed for the dependence case. The raw data consist of m = 7129 genes and 72 samples
coming from two classes: 47 in class ALL (acute lymphoblastic leukemia) and 25 in class AML
(acute myeloid leukemia). Our simulation results showed reasonable performance of the proce-
dure for a moderate sample size in this range. For each gene location, the two-sample t -statistic
comparing the 47 ALL responses with the 25 AML responses was computed. Using our proposed
approach for the dependent case, we find the critical value for controlling FDR at level γ ,

t̂
fdr
n,m = inf

{
t :

2(1 − π̂1)�̄(t)

p̂m(t)
≤ γ

}
,

where p̂m = ∑m
i=1 1{|Ti |≥t}/m and π̂1 is estimated by (2.28).

In Figure 6, we plot the FDR level and the number of significantly expressed genes by our
(CK) procedure, BH procedure and the q-value based Storey–Tibshirani (ST) procedure. From
the plot, we can see that our procedure detects the largest number of significant genes, followed
by the ST procedure and then the BH procedure, which is the most conservative one. At FDR
level 0.01, we detected 870 genes, the ST procedure detected 778 genes and the BH procedure
detected 614 genes. Using the two-sample t -test, similarly to the higher power of our approach
in simulation studies, we detected all of the genes that the other two approaches detected. The

Figure 6. Comparison between our (CK) procedure, the ST procedure and the BH procedure using real
data.

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
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BH procedure is very conservative at the expense of power loss. The ST procedure requires
permutation to obtain p-values, while our procedure gets the critical value directly and is thus
faster in terms of computation. The estimation of π1 is 0.467 by our procedure and 0.477 by
the ST procedure. These results can serve as a first exploratory step for more refined analyses
concerning these significant genes. Another issue may be that the critical value approach based
on asymptotic FDR control may not be conservative enough in some settings.

6. Concluding remarks and discussion

We have presented a new approach for the significance analysis of thousands of features in high-
dimensional biological studies. The approach is based on estimating the critical values of the
rejection regions for high-dimensional multiple hypothesis testing, rather than the conventional
p-value approaches in the literature. We developed a detailed method that can be used to iden-
tify differentially expressed genes in microarray experiments. The proposed procedure performs
well for large samples, reasonably well for intermediate samples and not quite as well for small
samples, and appears to perform better than existing alternatives under realistic sample sizes.
Our method is also computationally faster than the competing approaches. The potential for im-
provement in small-sample performance motivates the need for a second-order expansion of our
theoretical work. In addition, we have proposed a new consistent estimate of the proportion of
alternative hypotheses under certain conditions. Numerical studies demonstrate that our method-
ology fits the truth well and improves the statistical power in multiple testing. Extensions of the
current work can be pursued in several directions.

First, as stated above, the precision of the asymptotic approximations has room for improve-
ment in small-to-moderately-small sample sizes, suggesting that a second-order expansion would
be valuable. Second, in the dependence case, it would be of interest to see how the rate of con-
vergence could be derived under various assumptions on the form of the dependence. Thirdly,
the plug-in estimator π1 is consistent, but somewhat ad hoc. Complete, theoretical properties of
this estimator remain to be explored. Last, but not least, we only considered a fixed proportion
π1 of alternative hypotheses. It is of great interest also to consider the sparsity setting, in which
π1 → 0 as m → ∞, and to see what patterns emerge.

Appendix: Proofs of main results

Our main tools are limit theorems of empirical processes, Berry–Esseen bounds and self-
normalized moderate deviations for one- and two-sample t -statistics.

A.1. Preliminary lemmas

We first state a non-uniform Berry–Esseen inequality for nonlinear statistics.

Lemma A.1 ([5]). Let ξ1, ξ2, . . . , ξn be independent random variables with Eξi = 0,∑n
i=1 Eξ2

i = 1 and E|ξi |3 < ∞. Let Wn = ∑n
i=1 ξi and 
 = 
(ξ1, . . . , ξn) be a measurable
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function of {ξi}. Then

|P(Wn + 
 ≤ z) − �(z)|
≤ P

(|
| > (|z| + 1)/3
)

(A.1)

+ C(|z| + 1)−3

(
‖
‖2 +

n∑
i=1

(
Eξ2

i

)1/2(
E(
 − 
i)

2)1/2 +
n∑

i=1

E|ξi |3
)

.

This is [5], Theorem 2.2, and the proof can be found there. The next lemma provides a Berry–
Esseen bound for non-central t -statistics.

Lemma A.2. Let X,X1, . . . ,Xn be i.i.d. random variables with E(X) = 0, σ 2 = EX2 and
EX4 < ∞. Let

X̄ = 1

n

n∑
i=1

Xi, s2
n = 1

n − 1

n∑
i=1

(Xi − X̄)2.

Then ∣∣∣∣P
(√

n(X̄ + c)

sn
≤ x

)
− �

(
x − √

nc/σ
)∣∣∣∣ ≤ K

(1 + |x|)
(1 + |x − √

nc/σ |)√n
(A.2)

for any c and x, where K is a finite constant that may depend on σ and EX4.

Proof. Without loss of generality, assume that x ≥ 0 and σ = 1. Using the fact that

1 − |t | ≤ (1 + t)1/2 ≤ 1 + |t | for t ≥ −1, (A.3)

we have

xsn = x(1 + s2
n − 1)1/2 ≤ x(1 + |s2

n − 1|) (A.4)

and

xsn ≥ x(1 − |s2
n − 1|). (A.5)

Therefore,

P

(√
n(X̄ + c)

sn
≤ x

)
= P

(√
n(X̄ + c) ≤ xsn

)
(A.6)

≤ P
(√

nX̄ ≤ x − √
nc + x|s2

n − 1|).
We now apply (A.1) with ξi = Xi/

√
n, Wn = √

nX̄ and

z = x − √
nc, 
 = −x|s2

n − 1|, 
i = −x|s2
n,i − 1|,

where s2
n,i is defined as s2

n with 0 replacing Xi .
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Noting that

s2
n − 1 = 1

n − 1

(
n∑

j=1

(X2
j − 1) − nX̄2

)
+ 1

n − 1
,

s2
n,i − 1 = 1

n − 1

(∑
j �=i

(X2
j − 1) − n(X̄ − Xi/n)2

)
,

we have

E|s2
n − 1|2 ≤ KEX4/n (A.7)

and

E(s2
n − s2

n,i )
2 = 1

(n − 1)2
E

(
(X2

i − 1) − nX̄2 + n(X̄ − Xi/n)2 + 1
)2

= 1

(n − 1)2
E

(
(X2

i − 1) − Xi

(
2(X̄ − Xi/n) + Xi/n

) + 1
)2

≤ 2

(n − 1)2
E

(
2(X2

i − 1)2 + 2 + X2
i

(
2(X̄ − Xi/n) + Xi/n

)2) (A.8)

≤ 2

(n − 2)2

(
4EX4 + 6 + EX2

i

(
8(X̄ − Xi/n)2 + 2EX2

i /n
))

≤ KEX4/n2.

It follows from (A.7) and (A.8) that

‖
‖2 ≤ K
|x|√EX4

√
n

,

P

(
|
| > |z| + 1

3

)
≤ K

|x|√EX4
√

n(1 + |z|) ,
n∑

i=1

(Eξ2
i )1/2(E(
 − 
i)

2)1/2 ≤ K
|x|√EX4

√
n

and

n∑
i=1

E|ξi |3 ≤ EX3

√
n

.

Therefore, by (A.1),

∣∣P (√
nX̄ ≤ x − √

nc + x|s2
n − 1|) − �

(
x − √

nc
)∣∣ ≤ K(1 + |x|)

(1 + |x − √
nc|)√n

. (A.9)
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Similarly,

P

(√
n(X̄ + c)

sn
≤ x

)
≥ P

(√
nX̄ ≤ x − √

nc − x|s2
n − 1|)

and

∣∣P (√
nX̄ ≤ x − √

nc − x|s2
n − 1|) − �

(
x − √

nc
)∣∣ ≤ K(1 + |x|)

(1 + |x − √
nc|)√n

. (A.10)

This proves (A.2). �

We also need a moderate deviation for the non-central t -statistics, as given in the following
lemma.

Lemma A.3. Suppose that X,Xi, i = 1, . . . , n, are independent identically distributed random
variables. Let

X̄ =
∑n

i=1 Xi

n
, s2

n = 1

n − 1

n∑
i=1

(Xi − X̄)2.

If X satisfies E|X|4 < ∞, E(X2) = σ 2 > 0 and E(X) = 0, then

P

(∣∣∣∣
√

n(X̄ + c)

sn

∣∣∣∣ ≥ t

)
= P

(∣∣Z + c
√

n/σ
∣∣ ≥ t

)(
1 + o(1)

)
(A.11)

uniformly in c and t = o(n1/6). Here, and in the sequel, Z denotes a standard normal random
variable.

Proof. When t is bounded, (A.11) follows from Lemma A.2. Consider large t with t = o(n1/6).
We need the following result of [27,28]:

P

(√
n(X̄ + c)

sn
≥ t

)
= (

1 − �
(
t − c

√
n/σ

))(
1 + o(1)

)
(A.12)

uniformly in |c√n/σ | ≤ t/5 and t = o(n1/6). We note that following the same lines as their
proof, we can see that (A.12) remains valid for −t/5 ≤ c

√
n/σ ≤ t . We write

P

(∣∣∣∣
√

n(X̄ + c)

sn

∣∣∣∣ ≥ t

)
= P

(√
n(X̄ + c)

sn
≥ t

)
+ P

(√
n(−X̄ − c)

sn
≥ t

)
.

By (A.12), the remark above and the fact that

1 − �(t + x) = o
(
1 − �(t − x)

)
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for x ≥ 1 (recall here that we assume t is large), (A.11) holds for −t ≤ c
√

n/σ ≤ t . Now, assume
|c|√n/σ > t . Then, by (A.2),∣∣∣∣P

(∣∣∣∣
√

n(X̄ + c)

sn

∣∣∣∣ ≥ t

)
− P

(∣∣Z + c
√

n/σ
∣∣ ≥ t

)∣∣∣∣ = o(1).

Since |c|√n/σ > t , we have P(|Z + c
√

n/σ | ≥ t) ≥ 1/2 and hence

P

(∣∣∣∣
√

n(X̄ + c)

sn

∣∣∣∣ ≥ t

)
= P

(∣∣Z + c
√

n/σ
∣∣ ≥ t

)(
1 + o(1)

)
.

This completes the proof of (A.11). �

The lemma below shows that tn,m defined in (A.26) under independence is bounded.

Lemma A.4. Assume that there exist ε0 > 0 and c0 > 0 such that

P
(∣∣√nμ1/σ1

∣∣ ≥ ε0
) ≥ c0. (A.13)

Let tn,m satisfy (A.37). Then

tn,m ≤ t0, (A.14)

where t0 is the solution of

απ1c0 exp
(
(t0 − ε0)ε0

) = 12(1 + t0 − ε0). (A.15)

Proof. It suffices to show that

√
mEξ1(t0) ≥ (var(ξ1(t0)))

1/2zγ . (A.16)

It is easy to see that P(|Z + a| ≥ t0) is a monotone increasing function of a > 0. Hence,

P
(∣∣Z + √

nμ1/σ1
∣∣ ≥ t0

) ≥ P
(∣∣Z + √

nμ1/σ1
∣∣ ≥ t0,

∣∣√nμ1/σ1
∣∣ ≥ ε0

)
≥ P(|Z + ε0| ≥ t0)P

(∣∣√nμ1/σ1
∣∣ ≥ ε0

)
≥ c0P(|Z + ε0| ≥ t0) ≥ c0

(
1 − �(t0 − ε0)

)
(A.17)

≥ c0

3(1 + t0 − ε0)
exp

(−(t0 − ε0)
2/2

)
≥ c0

3(1 + t0 − ε0)
exp

(−t2
0 /2 + (t0 − ε0)ε0

)
.

Here, we use the fact that

1

2
e−x2/2 ≥ 1 − �(x) ≥ 1√

2π(1 + x)
e−x2/2 for x ≥ 0.
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Under the null hypothesis H1 = 0, which corresponds to μi = 0, we apply Lemma A.3 and obtain

P(|T1| ≥ t |H1 = 0) = P(|Z| ≥ t)
(
1 + o(1)

)
(A.18)

uniformly in t = o(n1/6).
Under the alternative hypothesis H1 = 1, we apply Lemma A.3 to Xij − μi and obtain

P(|T1| ≥ t |H1 = 1) = P
(∣∣√n(X̄1 − μ1 + μ1)/s1

∣∣ ≥ t |H1 = 1
)

= E[P(|Z + √
nμ1/σ1)| ≥ t |μ1, σ1)]

(
1 + o(1)

)
(A.19)

= P
(∣∣Z + √

nμ1/σ1
∣∣ ≥ t

)(
1 + o(1)

)
uniformly in t = o(n1/6).

Also, note that

P(|T1| ≥ t) = P(|T1| ≥ t,H1 = 0) + P(|T1| ≥ t,H1 = 1)

= (1 − π1)P (|T1| ≥ t |H1 = 0) + π1P(|T1| ≥ t |H1 = 1)
(A.20)

= (1 − π1)P (|Z| ≥ t)
(
1 + o(1)

)
+ π1P

(∣∣Z + √
nμ1/σ1

∣∣ ≥ t
)(

1 + o(1)
)
.

By (A.34), (A.18), (A.20) and (A.17),

Eξ1(t0) = α(1 − π1)P (|Z| ≥ t0)
(
1 + o(1)

) + απ1P
(∣∣Z + √

nμ1/σ1
∣∣ ≥ t0

)(
1 + o(1)

)
− (1 − π1)P (|Z| ≥ t0)

(
1 + o(1)

)
≥ απ1

c0

6(1 + t0 − ε0)
exp

(−t2
0 /2 + (t0 − ε0)ε0

) − 2P(Z ≥ t0)

(A.21)
≥ απ1c0

6(1 + t0 − ε0)
exp

(−t2
0 /2 + (t0 − ε0)ε0

) − e−t2
0 /2

= e−t2
0 /2

(
απ1c0

6(1 + t0 − ε0)
exp

(
(t0 − ε0)ε0

) − 1

)

= e−t2
0 /2,

by (A.15) and the definition of t0. It is easy to see that Eξ2
1 ≤ 1 and var(ξ1(t0)) ≤ 1 in particular.

Thus, by (A.21),
√

mEξ1(t0)

(var(ξ1(t)))1/2
≥ √

me−t2
0 /2 ≥ zγ , (A.22)

provided that m is large enough. This proves (A.16). �

The following i.i.d. results are essential for the general results.
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Lemma A.5. Assume the conditions of Theorem 2.1 with (2.2) replaced by the assumption that
(Ti,Hi), i = 1, . . . ,m are i.i.d. and π1 = P(Ti = 1). Let J = {i :Hi = 1} be the set that contains
the indices of alternative hypotheses. Also, assume that μi,σi are i.i.d. for i ∈ J . Let

p(t) = P(|T1| ≥ t), (A.23)

a1(t) = αp(t) − (1 − π1)F0(t) (A.24)

and

b2
1(t) = α2p(t)

(
1 − p(t)

) + 2α(1 − π1)p(t)F0(t)
(A.25)

+ (1 − π1)F0(t)
(
1 − 2α − (1 − π1)F0(t)

)
.

(i) If t
fdtp
n,m is chosen such that

t
fdtp
n,m = inf

{
t :

√
ma1(t)/b1(t) ≥ zγ

}
, (A.26)

then

lim
m→∞P(FDP ≥ α) = lim

m→∞P(V ≥ αR) ≤ γ (A.27)

holds.
(ii) If t

fdr
n,m is chosen such that

t
fdr
n,m = inf

{
t :

(1 − π1)F0(t)

p(t)
≤ γ

}
, (A.28)

then

lim
m→∞ FDR = lim

m→∞E(V/R) ≤ γ (A.29)

holds.
(iii) If tk-FWER

n,m is chosen such that

tk-FWER
n,m = inf

{
t :P

(
η(t) ≥ k

) ≤ γ
}
, (A.30)

where η(t) ∼ Poisson(θ(t)) and

θ(t) = m(1 − π1)F0(t),

then

lim
m→∞ k-FWER = lim

m→∞P(V ≥ k) ≤ γ (A.31)

holds.
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Proof. We first prove the i.i.d. case for one-sample t -statistics. By (2.3),

αR − V = α

m∑
i=1

I{|Ti |≥t} −
m∑

i=1

(1 − Hi)I{|Ti |≥t}

=
m∑

i=1

(Hi + α − 1)I{|Ti |≥t}

=
m∑

i=1

αI{|Ti |≥t}I{Hi=1} +
m∑

i=1

(α − 1)I{|Ti |≥t}I{Hi=0}

=
m∑

i=1

αI{|Ti |≥t}
(
1 − I{Hi=0}

) +
m∑

i=1

(α − 1)I{|Ti |≥t}I{Hi=0}

=
m∑

i=1

(
αI{|Ti |≥t} − I{|Ti |≥t}I{Hi=0}

)

=
m∑

i=1

ξi,

where

ξi := ξi(t) = αI{|Ti |≥t} − I{|Ti |≥t}I{Hi=0}

is obviously a Donsker class indexed by t [15]. Hence,

P(V ≥ αR) = P

(
m∑

i=1

ξi(t) ≤ 0

)
. (A.32)

Note that since ξi are independent random variables, we can apply the uniform central limit
theorem to choose t so that

P

(
m∑

i=1

ξi(t) ≤ 0

)
≤ γ. (A.33)

To this end, we need the mean and variance of ξi . Without loss of generality, we use ξ1 as an
example, since ξi are i.i.d. random variables. Thus,

Eξ1 = αP (|T1| ≥ t) − P(|T1| ≥ t,H1 = 0)

= αP (|T1| ≥ t) − P(H1 = 0)P (|T1| ≥ t |H1 = 0) (A.34)

= αP (|T1| ≥ t) − (1 − π1)P (|T1| ≥ t |H1 = 0).
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Similarly,

Eξ2
1 = E

(
α2I{|T1|≥t} + (1 − 2α)I{|T1|≥t}I{H1=0}

)
(A.35)= α2P(|T1| ≥ t) + (1 − 2α)(1 − π1)P (|T1| ≥ t |H1 = 0)

and

var(ξ1) = Eξ2
1 − (Eξ1)

2

= α2P(|T1| ≥ t) + (1 − 2α)(1 − π1)P (|T1| ≥ t |H1 = 0)

− {αP (|T1| ≥ t) − (1 − π1)P (|T1| ≥ t |H1 = 0)}2

(A.36)
= α2P(|T1| ≥ t)

(
1 − P(|T1| ≥ t)

)
+ (1 − π1)P (|T1| ≥ t |H1 = 0)

(
1 − 2α − (1 − π1)P (|T1| ≥ t |H1 = 0)

)
+ 2α(1 − π1)P (|T1| ≥ t)P (|T1| ≥ t |H1 = 0).

Now, define

tn,m = inf

{
t :

√
mEξ1(t)

(var(ξ1(t)))1/2
≥ zγ

}
. (A.37)

By Lemma A.4, tn,m is bounded and hence the uniform central limit theorem yields

P

(
m∑

i=1

ξi(tn,m) ≤ 0

)
= P

(∑m
i=1(ξi(tn,m) − Eξi(tn,m))

(
∑m

i=1 var(ξi(tn,m)))1/2

≤ −
∑m

i=1 Eξi(tn,m)

(
∑m

i=1 var(ξi(tn,m)))1/2

)
(A.38)

≤ P

(∑m
i=1(ξi(tn,m) − Eξi(tn,m))

(
∑m

i=1 var(ξi(tn,m)))1/2
≤ −zγ

)
→ �(−zγ ) = γ.

This proves (A.27).
Note that

FDR =
∫ 1

0
P(FDTP ≥ x)dx

=
∫ 1

0
P(V ≥ xR)dx

=
∫ 1

0
P

(
m∑
1

ξi ≤ 0

)
dx

=
∫ 1

0
P

(
N(0,1) ≤ −√

mEξ1√
Var ξ1

)
dx.
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Letting m → +∞, P (N(0,1) ≤ −√
mEξ1/

√
Var ξ1) is either 0 or 1, depending on the sign of

Eξ1. Thus, the range of x that makes this probability 1 satisfies

Eξ1 = xP (|T1| ≥ t) − (1 − π1)P (|T1| ≥ t |H1 = 0) < 0

and the corresponding x < (1 − π1)P (|T1| ≥ t |H1 = 0)/P (|T1| ≥ t). In order to control FDR at
level γ , we require

(1 − π1)P (|T1| ≥ t |H1 = 0)

P (|T1| ≥ t)
≤ γ.

This proves (A.28).
For the k-FWER, we use the characteristic function method. Let ηi = (1 − Hi)I{|Ti |≥t},

Eeis
∑m

i=1 ηi =
m∏

i=1

Eeisηi

=
m∏

i=1

[eis(1 − π1)F0 + 1 − (1 − π1)F0]

=
[

1 + 1

m
m(1 − π1)F0(e

is − 1)

]m

→ eλ(eis−1),

where m0F0 → λ as m → ∞ and λ is the parameter for the Poisson distribution such that

P
(
Poiss(λ) ≥ k

) ≤ γ. �

The following functional central limit theorem is needed in the proof of Theorem 2.1:

Lemma A.6. Suppose the triangular array {fni(ω, t), i = 1, . . . ,mn, t ∈ T } consists of indepen-
dent processes within rows and is almost measurable Suslin analytic set (AMS)(see page 25 in
[15]). Let

Xn(ω, t) ≡
mn∑
i=1

[fni(ω, t) − Efni(·, t)]. (A.39)

Assume:

(A) the {fni} are manageable, with envelopes {Fni} which are also independent within rows;
(B) H(s, t) = limn→∞ EXn(s)Xn(t) exists for every s, t ∈ T ;
(C) lim supn→∞

∑mn

i=1 E∗F 2
ni < ∞;

(D) limn→∞
∑mn

i=1 E∗F 2
ni1{Fni > ε} = 0 for each ε > 0;

(E) ρ(s, t) = limn→∞ ρn(s, t), where

ρn(s, t) ≡
(

mn∑
i=1

E|fni(·, s) − fni(·, t)|2
)1/2
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exists for every s, t ∈ T and, for all deterministic sequences {sn} and {tn} in T , if
ρ(sn, tn) → 0, then ρn(sn, tn) → 0.

Then Xn converges weakly on l∞(T ) to a tight mean-zero Gaussian process X concentrated on
UC(T ,ρ), with covariance H(s, t).

Proof. The definitions involved in this lemma and the proof can be found in [15], Theo-
rem 11.16. Below, we verify that, conditional on H, fni(ω, t) = ξi(ω, t)/

√
m satisfy the condi-

tions in Lemma A.6. Since ξi(ω, t) is the difference between two monotone bounded functions,
it is clear that, conditional on H, ξi(ω, t)/

√
m is AMS, manageable and has envelopes α/

√
m.

Also,

EXn(s)Xn(t) = EE[Xn(s)Xn(t)|H]

= EE

[∑m
i=1(ξi(s)|H − Eξi(s)|H)√

m

∑m
j=1(ξj (t)|H − Eξj (t)|H)√

m

]

= EE

∑m
i=1(ξi(s)|H − Eξi(s)H)(ξi(t)|H − Eξi(t)H)

m

= 1

m
E

m∑
i=1

E(ξi(s)|H)(ξi(t)|H) −
m∑

i=1

E(ξi(s)|H)E(ξi(t)|H)

= 1

m
E

m∑
i=1

(
α2Hi + (1 − α)2(1 − Hi)

)
EI{|Ti |≥t∪s|H}

−
m∑

i=1

[αHi + (1 − α)(1 − Hi)]2EI{|Ti |≥sH}EI{|Ti |≥t |H}

= 1

m
E

m∑
i=1

(
α2HiF1(t ∪ s) + (1 − α)2(1 − Hi)F0(t ∪ s)

)

−
m∑

i=1

[α2Hi + (1 − α)2(1 − Hi)][HiF1(s) + (1 − Hi)F0(s)]

× [HiF1(t) + (1 − Hi)F0(t)]

= 1

m
E

m∑
i=1

[
α2Hi

(
F1(t ∪ s) − F1(t)F1(s)

)

+ (1 − α)2(1 − Hi)
(
F0(t ∪ s) − F0(t)F0(s)

)]
→ π1α

2(F1(t ∪ s) − F1(t)F1(s)
) + (1 − π1)(1 − α)2(F0(t ∪ s) − F0(t)F0(s)

)
≡ H(s, t),
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which is the same as q2(t) when s = t . (C) is easily satisfied. For all ε > 0, there exists an
N0 such that α/N0 < ε, so limm→∞

∑m
i=1 Eα2/m1{α/

√
m > ε} = limm→∞

∑N0−1
i=1 α2/m = 0,

which verifies (D). Similarly, we can show that (E) is satisfied and thus the functional central
limit theorem holds. �

Let

G(t) = απ1EP
(∣∣Z + √

nμ1/σ1
∣∣ ≥ t

) − (1 − α)(1 − π1)P (|Z| ≥ t)

= απ1EP
(∣∣Z + √

n|μ1|/σ1
∣∣ ≥ t

) − (1 − α)(1 − π1)P (|Z| ≥ t)

and

t1 = inf{t :G(t) = 0}. (A.40)

The following lemma is needed in the proof of consistency.

Lemma A.7. Assume that 0 < π1 < 1 − α and (A.13) is satisfied. Then

G(t)

{
< 0 for t < t1,
= 0 for t = t1,
> 0 for t > t1.

(A.41)

Moreover, G′(t1) ≥ e−t2
0 /2/

√
2π.

Proof. We first observe that 0 < t1 ≤ t0 by the fact that G(0) < 0, G(t0) > e−t2
0 /2 > 0 in (A.21)

and G(t) is a continuous function.
To prove (A.41), it suffices to show that there exists a t2 > t1 such that G(t) is increasing in

[0, t2] and decreasing in [t2,∞). To this end, consider the derivative of G:

G′(t) = −απ1E
(
φ
(
t − √

n|μ1|/σ1
) + φ

(
t + √

n|μ1|/σ1
)) + 2(1 − α)(1 − π1)φ(t)

= e−t2/2

√
2π

{
−απ1E

(
exp

(
−nμ2

1

2σ 2
1

+
√

n|μ1|t
σ1

)
+ exp

(
−nμ2

1

2σ 2
1

−
√

n|μ1|t
σ1

))
(A.42)

+ 2(1 − α)(1 − π1)

}
.

Let

H(t) = −απ1E

(
exp

(
−nμ2

1

2σ 2
1

+
√

n|μ1|t
σ1

)

+ exp

(
−nμ2

1

2σ 2
1

−
√

n|μ1|t
σ1

))
+ 2(1 − α)(1 − π1).
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Then

H ′(t) = −απ1E

{√
n|μ1|
σ1

exp

(√
n|μ1|t
σ1

− nμ2
1

2σ 2
1

)
−

√
n|μ1|
σ1

exp

(
−

√
n|μ1|t
σ1

− nμ2
1

2σ 2
1

)}
(A.43)

= −απ1E

{√
n|μ1|
σ1

e−nμ2
1/(2σ 2

1 )

(
exp

(√
n|μ1|t
σ1

)
− exp

(
−

√
n|μ1|t
σ1

))}
< 0

for all t > 0. Therefore, H(t) is monotone decreasing. Taking into account the facts that H(0) >

0 by assumption, π1 < 1 − α and H(+∞) < 0, we conclude that H(t) has only one zero point,
say, t2. Moreover, H(t) > 0 for t < t2 and H(t) < 0 for t > t2. This is also true for G′(t), by
(A.42). Hence, G(t) is increasing for t < t2 and decreasing for t > t2. Note that since G(0) <

0,G(t0) > 0 and G(+∞) = 0, we can see that G(t) has a unique zero point t1 and t2 > t1. Since
G(t) is increasing for 0 < t < t2, we have G′(t1) > 0. We now prove that G′(t1) ≥ e−t2

0 /2/
√

2π.
It follows from the proof of (A.21) that

G(t0) ≥ e−t2
0 /2. (A.44)

Recalling that G′(t) = e−t2/2√
2π

H(t) and H is decreasing, we have

G(t0) = G(t0) − G(t1) =
∫ t0

t1

G′(s)ds ≤
∫ t0

t1

e−s2/2

√
2π

H(t1)ds

(A.45)
≤ H(t1)

(
1 − �(t1)

) ≤ H(t1)e
−t2

1 /2 = G′(t1)
√

2π.

This proves G′(t1) ≥ e−t2
0 /2/

√
2π. �

A.2. Proof of Theorem 2.1

We now return to show our main theorem under dependence. Let H = {Hi,1 ≤ i ≤ m}. To prove
(i), following along the same lines as the proof of Lemma A.5, we need to obtain the asymptotic
distribution of

P(V ≥ αR) = P

(
m∑

i=1

ξi(t) ≤ 0

)
, (A.46)

where

ξi(t) = αI{|Ti |≥t} − I{|Ti |≥t}I{Hi=0} = (α + Hi − 1)I{|Ti |≥t} = [αHi − (1 − α)(1 − Hi)]I{|Ti |≥t}.

Note that

P(|Ti | ≥ t |H) = (1 − Hi)P (|Ti | ≥ t |Hi = 0) + HiP (|Ti | ≥ t |Hi = 1).
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Given H, ξi(t),1 ≤ i ≤ m, are independent random variables. The conditional mean equals

E

(
m∑

i=1

ξi |H
)

=
m∑

i=1

{
αE

(
I{Hi=0}|H

)
P(|Ti | ≥ t |Hi = 0) + αE

(
I{Hi=1}|H

)
P(|Ti | ≥ t |Hi = 1)

− E
(
I{Hi=0}|H

)
P(|Ti | ≥ t |Hi = 0)

}
=

m∑
i=1

{α(1 − Hi)P (|Ti | ≥ t |Hi = 0) + αHiP (|Ti | ≥ t |Hi = 1)

− (1 − Hi)P (|Ti | ≥ t |Hi = 0)}

= α

m∑
i=1

{HiP (|Ti | ≥ t |Hi = 1)} − (1 − α)

m∑
i=1

{(1 − Hi)P (|Ti | ≥ t |H1 = 0)}

= αm1F1(t) − (1 − α)m0F0(t).

Next, we calculate the conditional variance of
∑m

i=1 ξi(t), given H:

var

(
m∑

i=1

ξi(t)|H
)

= var

(
m∑

i=1

[αHi − (1 − α)(1 − Hi)]I{|Ti |≥t |H}

)

=
m∑

i=1

(
α2Hi + (1 − α)2(1 − Hi)

)
var

(
I{|Ti |≥t |H}

)

= α2m1F1(t)
(
1 − F1(t)

) + (1 − α)2m0F0(t)
(
1 − F0(t)

)
.

From (2.7) and (2.8),

μm(t)

σm(t)
= √

m
μm(t)/m√
σ 2

m(t)/m
.

By the fact that m1/m → π1 a.s., we have

μm(t)/m → απ1F1(t) − (1 − α)(1 − π1)F0(t) a.s. (A.47)

and

σ 2
m(t)/m → α2π1F1(t)

(
1 − F1(t)

)
(A.48)

+ (1 − α)2(1 − π1)F0(t)
(
1 − F0(t)

) = q2(t) a.s.,

which is smaller than var(ξ1(t)), due to the fact that

varX = E(var(X|Y)) + var(E(X|Y))

for any two random variables X and Y . By (A.16), we can see that the critical value defined
at (2.9) is bounded. Thus, conditional on H, we can use the functional central limit theorem
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on
∑m

i=1 ξi(t)/
√

m, by virtue of Lemma A.6. The limit is a Gaussian process with continuous
sample paths. Hence,

P

(
m∑

i=1

ξi(t) ≤ 0

)
= E

(
E1{∑m

i=1 ξi (t)/
√

m≤0}
∣∣H

)

= E

{
P

(
m∑

i=1

ξi/
√

m −
m∑

i=1

E(ξi |H)/
√

m ≤ −∑m
i=1 E(ξi |H)σm(t)√

mσm(t)

∣∣∣∣H
)}

≤ E

{
P

(
m∑

i=1

ξi/
√

m −
m∑

i=1

E(ξi |H)/
√

m ≤ −∑m
i=1 E(ξi |H)

σm(t)

σm(t)√
m

∣∣∣∣H
)}

≤ E
{
P

(
N(0,1)q(t) ≤ −zγ q(t)

)}
→ P

(
N(0,1) ≤ −zγ

) = γ as m → ∞.

This proves (2.9).
(ii) can be proven similarly. The characteristic function method can be used to prove (iii).

A.3. Proof of Theorem 2.2

We first prove (i), and (ii) follows along the same lines as the independent case, plus a condi-
tional argument. Without loss of generality, we use T1 as a representative that comes from the
alternative. We have to show that

|t̂n,m − tn,m| = o(1) a.s. (A.49)

We first prove that

|t̂n,m − t1| = o(1) a.s., (A.50)

where t1 is defined as in (A.40). It suffices to show that for any ε > 0,

√
mνm(t1 + ε)

τm(t1 + ε)
≥ zγ (A.51)

and √
mνm(s)

τm(s)
< zγ for all s ≤ t1 − ε. (A.52)

Recall that p̂m(t) = 1
m

∑m
i= I{|Ti |≥t}. Given H, by the uniform law of the iterated logarithm

(see, e.g., [10]),

p̂m(t) − 1

m

m∑
i=1

{(1 − Hi)F0(t) + HiF1(t)} = o(m−1/2(log logm)1/2) a.s.
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By the strong law of large number,

1

m

m∑
i=1

{(1 − Hi)F0(t) + HiF1(t)} → (1 − π1)F0(t) + π1F1(t) a.s. (A.53)

So

p̂m(t) → (1 − π1)F0(t) + π1F1(t) a.s.

Recall that

νm(t) = αp̂m(t) − 2(1 − π̂1)�̄(t).

By (A.2), our strong consistent estimate π̂1 described in Section 2.3 and the continuous mapping
theorem, we have

sup
t

∣∣νm(t) − {
α
(
(1 − π1)F0(t) + απ1F1(t)

) − (1 − π1)P (|Z| ≥ t)
}∣∣ → 0 a.s., (A.54)

which, together with (A.20) and the definition of G, implies that

sup
0≤t≤1+t0

|νm(t) − G(t)| → 0 a.s. (A.55)

In particular, since G(t1 + ε) > 0 for 0 < ε < t2 − t1, we have

νm(t1 + ε) ≥ G(t1 + ε)/2 a.s. (A.56)

for sufficiently large m and, therefore,
√

mνm(t1 + ε) ≥ zγ τm(t1 + ε). This proves (A.51).
Similarly, since G(t) is increasing and G(t1 − ε) < 0, we have

max
s≤t1−ε

νm(s) ≤ G(t1 − ε)/2 a.s. (A.57)

for sufficiently large m. Hence, (A.52) holds. This proves (A.50).
Following the same lines as the proof of (A.50), we have

|tn,m − t1| = o(1). (A.58)

This completes the proof of (A.49).
For k-FWER, let η0 be the number that satisfies P(Poiss(η0) ≥ k) ≤ γ . Let t0,m = tk-FWER

n,m

and tm = t̂ k-FWER
m,n . Thus, by definition, t0,m is the t that satisfies (1 − π1)mFo(t) = η0 and tm is

the t that satisfies 2(1 − π̂1)m�̄(t) = η0. We then have (1−π1)F0(t0,m)

(1−π̂1)2�̄(tm)
= 1, which implies that

F0(t0,m)

2�̄(tm)
= 1 − π̂1

1 − π1
= 1 + oP (1)

�⇒ �̄(t0,m)

�̄(tm)

(
1 + O(n−1/2)

) = 1 + oP (1)
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�⇒ �̄(t0,m)

�̄(tm)
= 1 + oP (1)

�⇒ tm

t0,m

e−t2
0,m/2+t2

m/2 = 1 + oP (1)

�⇒ Re−t2
0,m/2+R2t2

0,m/2 = Re−(1−R2)t2
0,m/2 = 1 + oP (1).

Hence, R = tm/t0,m → 1 in probability. Thus,

t2
0,m − t2

m = oP (1) �⇒ |t0,m − tm| = oP (1)

1 + |t0,m + tm| = Op((logm)−1/2)

since tm = oP (n1/6) and logm = o(n1/3).

A.4. Proof of Theorem 2.4

In this section, we give the proof of the rate of convergence for the i.i.d. case by using the one-
sample t -statistic. Let p(t) = P(|T1| ≥ t) and let

p̂m(t) = 1

m

m∑
i=1

I{|Ti |≥t}.

By the Glivenko–Cantelli theorem,

sup
t

|p̂m(t) − p(t)| → 0 a.s. (A.59)

and, by the Donsker theorem,

sup
t

|p̂m(t) − p(t)| = O(m−1/2) in probability. (A.60)

By the uniform law of the iterated logarithm,

sup
t

|p̂m(t) − p(t)| = O(m−1/2(log logm)1/2) a.s. (A.61)

We define strong consistent estimators of Eξ1(t) and var(ξ1(t)) by νm(t) and τ 2
m(t), respectively,

where

νm(t) = αp̂m(t) − (1 − π1)P (|Z| ≥ t) (A.62)

and

τ 2
m(t) = α2p̂m(t)

(
1 − p̂m(t)

) + 2α(1 − π1)p̂m(t)P (|Z| ≥ t)
(A.63)

+ (1 − π1)P (|Z| ≥ t)
(
1 − 2α − (1 − π1)P (|Z| ≥ t)

)
.
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We now define an estimator of tn,m by

t̂n,m = inf

{
t :

√
mνm(t)

τm(t)
≥ zγ

}
. (A.64)

For FDTP, we have to show that

|t̂n,m − tn,m| = O

(
1√
n

+
(

log logm

m

)1/2)
a.s. (A.65)

and

|t̂n,m − tn,m| = O(n−1/2 + m−1/2) in probability. (A.66)

Below, we prove (A.65) and (A.66). We will show that

|t̂n,m − t1| = O

((
1

n

)1/2

+
(

log logm

m

)1/2)
a.s., (A.67)

|tn,m − t1| = O

((
1

n

)1/2

+
(

log logm

m

)1/2)
a.s. (A.68)

By the uniform law of the iterated logarithm,

sup
t

|p̂m(t) − p(t)| = O

((
log logm

m

)1/2)
a.s. (A.69)

Therefore, we have

sup
t

∣∣vm(t) − [αp(t) − (1 − π1)P (|Z| ≥ t)]∣∣ = O

((
log logm

m

)1/2)
a.s. (A.70)

Note that

αp(t) − (1 − π1)P (|Z| ≥ t) − G(t)

= α(1 − π1)
(
P(|T1| ≥ t |H1 = 0) − P(|Z| ≥ t)

)
+ απ1

(
P(|T1| ≥ t |H1 = 1) − EP

(∣∣Z + √
nμ1/σ1

∣∣ ≥ t
))

.

From (A.2), we obtain

P(|T1| ≥ t |H1 = 0) − P(|Z| ≥ t) = O

(
1√
n

)
a.s. (A.71)

and

P(|T1| ≥ t |H1 = 1) − EP
(∣∣Z + √

nμ1/σ1
∣∣ ≥ t

) = O

(
1√
n

)
a.s. (A.72)
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Thus, we have

sup
t

∣∣αp(t) − (1 − π1)P (|Z| ≥ t) − G(t)
∣∣ = O

(
1√
n

)
a.s. (A.73)

Taking into account (A.70), we have

sup
t

|vm(t) − G(t)| ≤ c2

(
1√
n

+
(

log logm

m

)1/2)
a.s. (A.74)

for some constant 0 < c2 < ∞. Below, we show that there exists a finite constant c3 > 0 such
that

t1 − c3

(
1√
n

+
(

log logm

m

)1/2)
< t̂n,m < t1 + c3

(
1√
n

+
(

log logm

m

)1/2)
. (A.75)

Recalling (A.74), we have, for ε = c3(
1√
n

+ (
log logm

m
)1/2), that

vm(t1 + ε) ≥ G(t1 + ε) − c2

(
1√
n

+
(

log logm

m

)1/2)

= G(t1) + εG′(t1 + θ1) − c2

(
1√
n

+
(

log logm

m

)1/2)

≥ c1ε − c2

(
1√
n

+
(

log logm

m

)1/2)
> 2

(
log logm

m

)1/2

,

provided that c3 is chosen large enough: here, 0 ≤ θ1 ≤ ε and we have used Lemma A.7. For
sufficiently large m, we have

√
mvm(t1 + ε) > τm(t1 + ε)zγ .

This proves that

t̂n,m − t1 ≤ c3

((
1

n

)1/2

+
(

log logm

m

)1/2)
a.s.

Similarly, we have

t̂n,m − t1 ≥ −c3

((
1

n

)1/2

+
(

log logm

m

)1/2)
a.s.

This proves (A.67).
Following the same line of proof, we have

|tn,m − t1| = O

(
1√
n

+
(

log logm

m

)1/2)
a.s.
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If we use

sup
t

|p̂m(t) − p(t)| = O(m−1/2) in probability, (A.76)

based on the Donsker theorem instead of (A.69), using the same line of the proof of the a.s. con-
vergence rate, we can obtain the rate of convergence in probability, which is

|t̂n,m − tn,m| = O(n−1/2 + m−1/2) in probability.

This completes the proof of (A.65).
Similarly, the critical value for FDR control is bounded, due to the fact that

EP

(∣∣∣∣Z +
√

nμ1

σ1

∣∣∣∣ ≥ t

)
≤ 1.

By (A.60), (A.61), (A.71) and (A.72), we have

sup
t

∣∣∣∣ m0F0(t)

m0F0(t) + m1F − 1(t)
− 2(1 − π1)�̄(t)

p̂m(t)

∣∣∣∣ = O

(
n−1/2 +

(
log logm

m

)1/2)
a.s.,

sup
t

∣∣∣∣ m0F0(t)

m0F0(t) + m1F − 1(t)
− 2(1 − π1)�̄(t)

p̂m(t)

∣∣∣∣ = O
(
n−1/2 + (m)−1/2) in probability.

Noting that 2(1−π1)�̄(t)/[2(1−π1)�̄(t)+EP(|Z+√
nμ1/σ1| ≥ t)] is a monotone decreasing

continuous function with respect to t , combined with the definitions of (t fdr
n,m) and (t̂ fdr

n,m), (2.34)
and (2.35) hold.

The proof of k-FWER is the same as that given in Theorem 2.2.

A.5. Proof of Theorem 3.1

For the two-sample t -statistic, the only part we need to show is the boundedness of tn,m under
independence, which will imply the boundedness in the general dependence case, as happens
with the one-sample t -statistic. The remaining results follows along the same lines as the proof
in the one sample t -statistic setting. Based on Lemma A.8 below, plus (3.1), and using the same
line of proof as in the one-sample t -statistic case, the boundedness of tn,m holds for two-sample
t -statistics.

The proof of the boundedness of tn,m is based on the following asymptotic distribution of T ∗
i

under the alternative hypothesis.

Lemma A.8. Suppose that X,X1, . . . ,Xn1 are independent and identically distributed random
variables from a population with mean μ1 and variance σ 2

1 , and Y,Y1, . . . , Yn2 are independent
and identically distributed random variables from another population with mean μ2 and variance
σ 2

2 . Assume the sampling processes are independent of each other. Also, assume that there are
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0 < c1 ≤ c2 < ∞ such that c1 ≤ n1/n2 ≤ c2. Let

T ∗ = X̄ − Ȳ√
s2

1/n1 + s2
2/n2

, (A.77)

where

X̄ = 1

n1

n1∑
i=1

Xi, Ȳ = 1

n2

n2∑
i=1

Yi, (A.78)

s2
1 = 1

n1 − 1

n1∑
i=1

(Xi − X̄)2 and s2
2 = 1

n2 − 1

n2∑
i=1

(Yi − Ȳ )2. (A.79)

If EX4 < ∞ and EY 4 < ∞, then

P(|T ∗| ≥ t) = P

(∣∣∣∣Z + μ1 − μ2√
σ 2

1 /n1 + σ 2
2 /n2

∣∣∣∣ ≥ t

)(
1 + o(1)

)
, (A.80)

uniformly in t = o(n1/6), where n = max {n1, n2}.

Proof. The proof of this lemma is very similar to the proof of Lemma A.3 and so we omit the
details. �

A.6. Proof of Theorem 3.2

This follows the same arguments as in the one-sample t -statistic case, by virtue of Lemma A.8.

A.7. Proof of Theorem 3.3

When we plug in an estimator of P(|T ∗
i | ≥ t),

p̂m(t) = 1

m

m∑
i=1

I{|T ∗
i |≥t},

the proof of the two-sample t -statistic case follows along the same lines as its one-sample coun-
terpart, except that we have to show the rate of convergence under the alternative hypothesis for
the two-sample t -statistic. This follows from the following lemma, which completes the proof of
Theorem 3.3.

Lemma A.9. Let X,X1, . . . ,Xn1 be i.i.d. random variables from a population with mean μ1 and
variance σ 2

1 , and Y,Y1, . . . , Yn2 be i.i.d. random variables from another population with mean μ2
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and variance σ 2
2 . The sampling processes are assumed to be independent of each other. Assume

that there are 0 < c1 ≤ c2 < ∞ such that c1 ≤ n1/n2 ≤ c2. Let T ∗ be defined as in Lemma A.8.
If E|X|4 < ∞ and E|Y |4 < ∞, then∣∣∣∣P(T ∗ ≤ x) − �

(
x − μ1 − μ2√

σ 2
1 /n1 + σ 2

2 /n2

)∣∣∣∣
(A.81)

≤ K(1 + |x|)
(1 + |x − (μ1 − μ2)/

√
σ 2

1 /n1 + σ 2
2 /n2|)√min{n1, n2}

,

where K is a finite constant that may depend on σ 2
1 , σ 2

2 ,E|X|3,E|Y |3,EX4 and EY 4.

Proof. Without loss of generality, we assume that n1 = b1n, n2 = b2n, b1 + b2 = 1 with b1 > 0
and b2 > 0. Note that

P(T ∗ ≤ x) = P

(
X̄ − μ1 − (Ȳ − μ2)√

s2
1/n1 + s2

2/n2

+ μ1 − μ2√
s2

1/n1 + s2
2/n2

≤ x

)

= P

(
X̄ − μ1 − (Ȳ − μ2)√

σ 2
1 /n1 + σ 2

2 /n2

+ μ1 − μ2√
σ 2

1 /n1 + σ 2
2 /n2

≤ x

√
s2

1/n1 + s2
2/n2√

σ 2
1 /n1 + σ 2

2 /n2

)

≤ P

(
X̄ − μ1 − (Ȳ − μ2)√

σ 2
1 /n1 + σ 2

2 /n2

≤ x − μ1 − μ2√
σ 2

1 /n1 + σ 2
2 /n2

+ x

∣∣∣∣ s2
1/n1 + s2

2/n2

σ 2
1 /n1 + σ 2

2 /n2
− 1

∣∣∣∣
)

,

where we make use of (A.3). We now apply (A.1) with ξi = (Xi−μ1)/n1√
σ 2

1 /n1+σ 2
2 /n2

for 1 ≤ i ≤ n1 and

ξi = − (Yi−μ2)/n2√
σ 2

1 /n1+σ 2
2 /n2

for n1 + 1 ≤ i ≤ n1 + n2. Let

z = x − μ1 − μ2√
σ 2

1 /n1 + σ 2
2 /n2

,


 = −x

∣∣∣∣ s2
1/n1 + s2

2/n2

σ 2
1 /n1 + σ 2

2 /n2
− 1

∣∣∣∣,

i = −x

∣∣∣∣ s
2
1,i/n1 + s2

2/n2

σ 2
1 /n1 + σ 2

2 /n2
− 1

∣∣∣∣
for 1 ≤ i ≤ n1, and


i = −x

∣∣∣∣ s
2
1/n1 + s2

2,i/n2

σ 2
1 /n1 + σ 2

2 /n2
− 1

∣∣∣∣
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for n1 + 1 ≤ i ≤ n1 + n2, where s2
1,i is defined as s2

1 with 0 replacing Xi and s2
2,i is defined as s2

2
with 0 replacing Yi . Noting that

s2
1/n1 + s2

2/n2

σ 2
1 /n1 + σ 2

2 /n2
− 1 = 1

σ 2
1 /n1 + σ 2

2 /n2
[(s2

1 − σ 2
1 )/n1 + (s2

2 − σ 2
2 )/n2],

we have, by (A.7), that

E

∣∣∣∣ s2
1/n1 + s2

2/n2

σ 2
1 /n1 + σ 2

2 /n2
− 1

∣∣∣∣
2

≤ K
EX4 + EY 4

n
.

For 1 ≤ i ≤ n1,

E

(
s2

1/n1 + s2
2/n2

σ 2
1 /n1 + σ 2

2 /n2
− s2

1i/n1 + s2
2/n2

σ 2
1 /n1 + σ 2

2 /n2

)2

= 1

n2
1(σ

2
1 /n1 + σ 2

2 /n2)2
E(s2

1 − s2
1i )

2 ≤ KEX4

n2
,

by (A.8). Similarly, for n1 + 1 ≤ i ≤ n1 + n2, we have

E

(
s2

1/n1 + s2
2/n2

σ 2
1 /n1 + σ 2

2 /n2
− s2

1/n1 + s2
2i/n2

σ 2
1 /n1 + σ 2

2 /n2

)2

= 1

n2
2(σ

2
1 /n1 + σ 2

2 /n2)2
E(s2

2 − s2
2i ) ≤ KEY 4

n2
.

It follows that

‖
‖2 ≤ K
|x|√EX4 + EY 4

√
n

,

P

(
|
| > |z| + 1

3

)
≤ K

E|
|
|z| + 1

≤ K
‖
‖2

|z| + 1
≤ K

|x|√EX4 + EY 4
√

n(|z| + 1)
,

n∑
i=1

(Eξ2
i )1/2(E(
 − 
i)

2)1/2 ≤ K

√
(σ 2

1 + σ2)(EX4 + EY 4)
√

n
,

n∑
i=1

E|ξi |3 ≤ K
E|X|3 + E|Y |3√

n
.

Therefore, by (A.1),∣∣∣∣P
(

X̄ − μ1 − (Ȳ − μ2)√
σ 2

1 /n1 + σ 2
2 /n2

≤ x − μ1 − μ2√
σ 2

1 /n1 + σ 2
2 /n2

+ x

∣∣∣∣ s2
1/n1 + s2

2/n2

σ 2
1 /n1 + σ 2

2 /n2
− 1

∣∣∣∣
)

− �

(
x − μ1 − μ2√

σ 2
1 /n1 + σ 2

2 /n2

)∣∣∣∣ ≤ K
1 + |x|

(1 + |x − (μ1 − μ2)/

√
σ 2

1 /n1 + σ 2
2 /n2|)√n

.
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Similarly,

P(T ∗ ≤ x) = P

(
X̄ − μ1 − (Ȳ − μ2)√

s2
1/n1 + s2

2/n2

+ μ1 − μ2√
s2

1/n1 + s2
2/n2

≤ x

)

≥ P

(
X̄ − μ1 − (Ȳ − μ2)√

σ 2
1 /n1 + σ 2

2 /n2

≤ x − μ1 − μ2√
σ 2

1 /n1 + σ 2
2 /n2

− x

∣∣∣∣ s2
1/n1 + s2

2/n2

σ 2
1 /n1 + σ 2

2 /n2
− 1

∣∣∣∣
)

and∣∣∣∣P
(

X̄ − μ1 − (Ȳ − μ2)√
σ 2

1 /n1 + σ 2
2 /n2

≤ x − μ1 − μ2√
σ 2

1 /n1 + σ 2
2 /n2

− x

∣∣∣∣ s2
1/n1 + s2

2/n2

σ 2
1 /n1 + σ 2

2 /n2
− 1

∣∣∣∣
)

− �

(
x − μ1 − μ2√

σ 2
1 /n1 + σ 2

2 /n2

)∣∣∣∣ ≤ K
1 + |x|

(1 + |x − (μ1 − μ2)/

√
σ 2

1 /n1 + σ 2
2 /n2|)√n

.

This proves (A.81). �
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