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Let {X;};>1 be an i.i.d. sequence of random variables and define, for n > 2,
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We investigate the connection between the distribution of an observation X; and finiteness of E|T},|" for
. d .
(n,r) e N>y x RT. Moreover, assuming T;, —> T, we prove that for any > 0, lim,,—, o0 E|T;;|" = E|T|" <

00, provided there is an integer ng such that E|7,,,|" is finite.
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1. Introduction

Assume, in the following, that {X;};> is a sequence of independent random variables, each with
distribution F'. Then, for n > 2, define the ¢-statistic random variables

—1/25-1g 5 =0 " 1 <
_Jn o , o, >0, . _ A2 | 2
T, = {O, n On &Z Zo. with S,, = i_EIX,, 6, = o= ,E_l(Xl n= 8.

In the case where F is a normal distribution with mean zero, the distribution of 7}, is the well-
known ¢-distribution with n — 1 degrees of freedom. The effect of non-normality of F on the
distribution of 7, has received considerable attention in the statistical literature. For a review, see
[7]. t-distributions do not only occur in the inference of means, but also sometimes in models of
data in the economic sciences; see [6]. There seem to be two characteristic properties which, in
comparison with the normal distribution, make these distributions convenient in certain modeling
situations: a higher degree of heavy-tailedness (moments are finite only below the degree of
freedom) and a higher degree of so-called kurtosis.

This paper investigates the tail behaviour of 7, and the related issue of the existence of mo-
ments E|T,|", for a parameter r > 0, under more general conditions than the normal assumption.
Motivating questions were the following: Is it generally true that E|7,,|" can only be finite for
r < n — 1? For which kinds of distributions is the converse implication false? Assuming the
often encountered 7}, i> T, is it then generally true that E|7,,|” — E|T|"?
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2. Summary

The fundamental result is Theorem 3.1, which presents two conditions, each equivalent to finite-
ness of E|T},|". The result is based on a connection between the tail behaviour of 7;, and proba-
bilities of having almost identical observations Xy, ..., X,,. Theorem 4.1 states that finiteness
of E|T,|” implies finiteness of E|7,4+|", and is followed by Theorem 4.2 which states that
t-statistic random variables never possess moments above the degree of freedom unless F is
discrete. It is established in Section 5, under the assumption that F is continuous, that regu-
larity, referring to the degree of heavy-tailedness of ¢-statistic random variables, is measurable
in terms of the behaviour of certain concentration functions related to F. Theorem 6.2 states
that lim,, .o E|7;,|" = E|T|" whenever there is an integer ng such that E|T,,,|" is finite and {7}
converges in distribution.

Remark. This paper is an abridged version of [5]. The results found in Section 5 here are there
generalized beyond the continuity assumption. We also refer to [5] for a discussion of related
results previously obtained by H. Hotelling.

3. Characterizing E|T,|" < oo through bounds on P(|7},| > x)

A close connection exists between T}, and the self-normalized sum S, / V,; see Lemma 3.1 (whose
elementary proof we omit). The connection allows E|T,|" to be expressed with probabilities re-
lating to S,/ V,,, as in Lemma 3.2, revealing that finiteness of E|7},|" depends on the magnitude of
the probabilities of having S,/ V, close to &./n. Some geometric relations between S,/ V,, close

to 44/n and almost identical observations X1, ..., X, are then given in Lemmas 3.3 and 3.4.

Lemma 3.1. Define

n 1/2
_ 2 «_ )0, Su/Ve=norV,=0,
Vn= (Xl: Xi) ’ Un = { (Sn/ V)2, otherwise.
=
It then holds, for any x > 0, that Tn2 > x ifand only if U > nx/(n+x —1).

Lemma 3.2. Forr > 0 and U, as in Lemma 3.1,
n
E|T,|" = %n(n -1 / PP > ) —2)" P e
0

Lemma 3.3. Let X = (x1,...,x,) € R" and h € (0, 1) be given such that x| #0 andn —u, < h?
with u, = (31— x)2/ S1_, x2. Then, with Cy = /5,
[xi —x1] < hCylx1] foralli #1.

Moreover, C1 = C1(n, h) = ~/2 + 2h + h? is optimal for the conclusion to be valid for all x.
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Lemma 3.4. Let x=(x1,...,x,) € R" and h € (0, 1) be given such that, with C, = 1,
|x;i —x1| < Cah|x1]/~/n—1 foralli #1.

Then n — u,, < h? with u,, = (Z?Zl x,~)2/ Zfl:l xl.z. Moreover, in the case where n is odd, Cy =
Co(n, h) must satisfy C» < \/n/(n — h?) for the conclusion to be valid for all x.

Theorem 3.1. The following three quantities are either all finite or all infinite:

(i) EIT.l";

n
(ii) E(|X1|r /\|Xi = X7 HIXi — X1| > 0, some i En}>;
i=2

1
(iii) / / =D ((P(X — x| < h|x|))"_1 —pP 1) dhdF(x)  with py =P(X =x).
x#£0 Jo

Proof of Lemma 3.2. By [4], Theorem 12.1, Chapter 2, together with Lemma 3.1 and a change
of variables, we have

r [ _
E|T,|" = Ef YPIP(TE > y)dy
0

r [ _
:5/0 Y2 1P(U,f>ny/(n—+—y—l))dy

r

n
_1\7/2 r/2—1 * o A—@/2+41)
= 2n(n D /0 Z P(U; > z)(n —2) dz. 0

Proof of Lemma 3.3. We argue by contraposition. Due to the invariance with respect to scaling
of x and permutation of the coordinates x», ..., X, it suffices to prove that

lx2 —x1| > hlx;| = n—u,>h?/C}

with C; = +/2+ 2h + h? and that equalities are simultaneously attained. Set x; = x; + ¢ and

x = (x3,...,Xx,). We then minimize n — u, with respect to x and ¢. Note that
n n 2 n
dn—up) =2 iy X =X i Xi) )
T 2 :
dx; Qi1 )
First, set (1) to zero for j =3,...,n. Since >_x; = 0 corresponds to u, = 0, which is non-
interesting with respect to the minimization of n — u,,, these equations reduce to
n n
inz—ijxi=xj(x1+x2)—(x12+x§) for j =3,...,n. 2)

i=3 i=3
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We claim that (2) has the unique solution
xj=F+x3)/ (1 4+ x2) = Qx} +2x16 +6%)/(2x1 +&)  forj=3,...,n. (3)
To verify this, assume that x is a solution of (2). Since Y 7_, xi2 and )7 5 x; do not vary with j,

x must be of the form x; = const., j =3, ..., n. However, the left-hand side of (2) then vanishes
for all j, which gives (3) as the unique solution. Inserting the solution into n — u,, gives

(n — u)min(e) = £°/(x] +x3) =&/ 2x] + 2x16 + &°). )

It remains to minimize with respect to ¢ with € ¢ (—h|x1|, 2|x1]). The equation

0 g2
N =0
de \ 2x] + 2x1& + €2

has the unique solution ¢ = —2x; which cannot be a minimum since a minimum must sat-
isfy sign(e) = sign(xy), by the representation (4). The solution is hence obtained for ¢ =
sign(x1)hlxi],

(n = t)min = (hxD)*/(x{ 2+ 20 +h*) = h* /2 + 2h + 1?).
It follows that C1 = C(h) = V2+42h+h? <4/5isan optimal constant, as claimed. O
Proof of Lemma 3.4. Assume that
Ixi —x1| < Coh|xi|/¥/n—1  foralli=2,...,n. 5)
The aim is to verify that n —u,, < h?> with C; = C»(n, h) optimally large. We therefore maximize

n — u, over the rectangular region (5) with x| # 0, C» and & fixed. It suffices to consider the
restriction of n — u, to the corners of the region (5) since the maximum attained at a point

y = (y1, ..., yn) in the interior of the region, or in the interior of an edge, would mean that, for
some j =2,...,n and some n > 0,
o(n —uy)
——=(») =0, (6)
ax]'
9(n = Un) h >0 forall0<h 7
Tj(yl,---,yj—l,yj— s Vitlseees V) = orall0 <h <n, @)
a(n —uy)
#(yl,...,yj_l,yj+h,yj+1,...,y,,)50 forall0 < h < n. ®)
J

Recall, from the proof of Lemma 3.3, that

d(n —up) -2 Z?:lxi(Zi;éj xi2 - Zi;f'f./ Xi)
ij (Z;l:] xi2)2 .




280

We may assume that Coh < +/n — 1 since the point x; = 0 would otherwise belong to the region
yielding u, = 1, in which case n — u,, < h? cannot hold. This implies that sign(x;) = sign(x)
foralli =2,...,n so that neither ) x; nor Z# i change sign within the region. Assume, due
to invariance with respect to scaling, that x; > 0. Conditions (6)—(8) may then be reformulated
as

Zy,-z—ijy,:O, Zy?—(yj—h)ZyKO, Zy,?—(yj+h)2yi>0,
i#] i#] i#] i#] i#] i#]
which is contradictory since 4 > 0 and ) ; 2;Yi>0.
Now, consider the restriction of n — u, to the corners of the region (5). Set k := |{i : x; =
x1 + e} — |{i : x; = x1 — €}| so that
n(nxf + (n — De? + 2kex)) — (nx; + ke)?
nx? + (n — 1)e2 + 2kex,
_ E2a—D—k)  RPCn—k*/(n—1)
N nx} + (n — e + 2kex; o+ C3h2 +2kCoh//n—1

n—u, =

€))

Take C; =1 in (9) and z = k(n — 1)~ /2 Algebraic manipulations yield

n—k*/(n—1)
n+h%4+2kh//n—1

— (h+2°>0

so that C; = 1 is sufficiently small for the desired bound n — u,, < h*. We find, by taking k =0
in (9) (which is possible when # is odd) that

Cin/(n+C3n*) <1 = CI<n/(n—h>
so that C; < \/n/(n — h?) is then necessary for n — u,, < h? to hold. O

Proof of Theorem 3.1. We first deduce the equivalence between (i) and (iii). By Lemma 3.2, we
find that E|T,|" < oo is equivalent to, for some § < 1,

n §
/ P> -2 P Az <00 = / h=C*DP( — Uy < h?) dh < o0,
n—34 0
which, in turn, is equivalent to
)
ff R UtOPO <n—U, <h®| X1 =x)dhdF(x) < 0. (10
0
The event X1 = 0 implies U, <n — 1 by the Cauchy—Schwarz inequality so that (10) reduces to

)
/ / h=+DPO < n — Uy < h? | Xy = x)dhdF (x) < 00,
x#0J0
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which is equivalent to
)
/ / TP — U, <h? | X1 =x) — p" 1dhdF (x) < 00
x#£0 JO

since U, = n corresponds to X; = X with p, = P(X = x). Finally, apply Lemmas 3.3 and 3.4,
and set § = 1 to arrive at condition (iii).

For the equivalence between (ii) and (iii), define A, = {|X; — X1| > 0, some i < n}. Condi-
tion on X and convert expectation into integration of tail probabilities (cf. [4], Theorem 12.1,
Chapter 2):

n
E<|X1|’/\|X,- —X1|’1An>

i=2

/#)E(/\uxi —x||x|1)r1A,l) dF (x)

i=2

o0
r/ f h= (P X — x| < h|x|)”*] — p"tdndF(x).
x#0 J0
The equivalence between (ii) and (iii) then follows from the fact that

o0
/ / h_(r+1)(P(|X—x|<h|x|))"_1dhdF(x)
x#0J1
o0
5/ / R UtDdpdF(x) < .
x#£0 J1 O

4. Two general facts regarding finiteness of E|T},|"
Theorem 4.1. For any couple (n,r) € N>y x R*,ifE|T,|" is finite, then so is E|T,41".

Proof. Due to Theorem 3.1, it suffices to show that

n n+1
E[|X1|’/\|Xi—xl|—’u,,}<oo = E[|X1|’/\|xi—x1|—’um}<oo, (1)
i=2 =2

where Ax :={|X; — Xi| > 0, some i <k}. Define A, ={|X; — Xi|>0,some3 <i<n-+1}.1t
follows that A,+; = A, UA), sothat I4,,, <1Ia, + Lay, which gives

n+1

n+1
E[|X1|’ JANRS —X1|’1AM}

i=2

n+1 n+1
SE|:|X1|r N 1Xi — X1|rIA,,i| +E|:|X1|r N 1Xi — X1|rIA§1:|

i=2 i=2
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n n+1
< E[IXH’ N 1Xi - X1|rIA,,:| +E[|X1|r N I1Xi — X1|rIA;1i|

i=2 i=3

n
=2E[|X1|’ N\ 1Xi — xlr’lA,,}.

i=2

The conclusion follows. ]

Theorem 4.2. Assume that F decomposes into Fg + F,, with discrete and continuous mea-
sures Fg and F,, respectively, and that F, % 0. It is then necessary that r < n — 1 for E|T,|" to
be finite.

Proof. Let F, have total mass ¢ > 0. It suffices to verify that E|T,,|”’1 is infinite, which, by
Theorem 3.1, is equivalent to

1
/ / R ((PAX — x| < hixD)" ™" = p~ ') dh dF (x) = 0.
x#£0 JO

The last identity is a consequence of

1
// R (P(X — x| < hl)cl))n_1 dhdF,.(x) = oo. (12)
0

To verify (12), consider the restriction of F, to aset [-C, —1/C]JU[1/C, C] with C sufficiently
large so that the restricted measure still has positive mass. It then suffices to establish the condi-
tion

/(P(|X —x| < h)h_l)"_1 dF.(x) > n, for all & and some constant n,, = n,(F.,n). (13)

First, consider n = 2. Discretize [—C, C] uniformly with interval length £, that is, put x; = hk
fork € [N, N]and N = [Ch~!]. Then

Xk

k=N
/P(|Xc—x| <hdF.(x)= ) P(|X. — x| < h)dF.(x)
k=—N

Xk—1

k=N

> 3 [ PGt tun) ar
k=—N *¥k-1

k=N

= Y (P(Xe € (1. 1))

=N
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Applying the Cauchy—Schwarz inequality, we obtain

k=N k=N 2
37 (P(Xe € (et xiD)’ = ( > P(xce (xk_l,xk])> eN)'=e2@eN) > e
k

k=—N =—N

Conclusion (13) follows with 7o = C~'¢2. For n > 2, an application of the Holder inequality
yields

n—1
mt < (/ P(|X, — x| <h)h~! dFC(x)) < s"*2/(P(|XC —x| < h)h*l)"*1 dF,(x).

The desired conclusion (13) follows with 1, = 77;_182_". O

5. Regularity and concentration functions

Definition 5.1. Given the distribution of a random variable X, define the concentration func-
tions q and Q, for real-valued arguments h > 0, by

Q) =supP(X —x|<h),  q(h)=supP(X — x| <|x|h).

Q is known as the Lévy concentration function. Theorem 5.1 below characterizes finiteness of
E|T,|" in terms of the limiting behaviour of ¢ (&) as & tends to zero. Note that a statement of the
kind “Q(h) = O(h*)” (for some A < 1) refers to the local behaviour of the distribution. The most
regular behaviour in this respect is that of an absolutely continuous distribution with bounded
density function, in which case Q (h) = O(h), while A < 1 typically corresponds to one or several
“explosions” of the density function. The Cantor distributions also form fundamental examples of
such irregularity (cf. [5], pages 29-31). The parameter A has, in this sense, a meaning of “degree
of irregularity” concerning the distribution, with smaller values of A indicating higher degrees
of irregularity. A statement g(h) = O(h*), on the other hand, also has a global component. It
requires more regularity of the distribution “at infinity” compared with Q (h) = Oh™), while, at
the same time, being less restrictive regarding the local behaviour of the distribution at the origin.

Theorem 5.1. The following two implications hold for any continuous probability measure F:
1 qh)= O(hk)for some . >r/(n—1) = E|T,|" < o0;
(i) EIT,|" < 0o == q(h) = O(h*) with » =r/n.

A simple criterion guaranteeing the optimal ¢ (h) = O(h) is given by the following proposi-
tion.

Proposition 5.1. The property q(h) = O(h) is obtained for any absolutely continuous distribu-
tion F with bounded density function f satisfying the assumption of a positive constant N such
that

f(x2) < f(x1) for any x1, xp such that N <x1 <xpor — N > x| > x2. (14)
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Proof of Theorem 5.1. For (i), condition (iii) of Theorem 3.1 reads, by continuity,

1
/ / B (PX — x| < AlxD)" " dhdF(x) < oc. (15)
x#0 J0

Applying the assumption on g to the integrand yields
1
/ / R~ (P(X — x| < hlx])" " dhdF (x)
x7#0J0

1 1
< C/ / h—(r+1)h)u(ﬂ—1) dh dF()C) — C/ h—(r-‘rl)h)»(n—l) dn
x#0J0 0

:C/(A(n -1 —r),
which proves (15). To verify the second implication, we argue by contraposition. Assume that
q(h) # Oh™) with A =r/n. (16)
It suffices, by condition (ii) of Theorem 3.1 and the assumption of continuity, to prove that
n
E<|X1|*/\|Xi —X1|"> = oo, (17)
i=2

Statement (16) is equivalent to the existence of sequences {x}x>1 and {h}r>1 such that
1/2> hy >0, lim Ay =0, lim hk"/"P(|X—xk| < |xx|hy) = oo. (18)
k— o0 k— 00

Define intervals I = (xx — |xg|hk, Xk + |xk|hi). It then follows that for some K and all k > K,

n n
E<|X1 "\ 1Xi — X |—’) > E(|x1 "\ 1Xi = Xa| 7" I{X; € I, all i})

i=2 i=2
n
>2"! kalrE(/\ |X; — X117 I{X; € I, all i})
=2
> 27D "R e TTEUX € I, alli})
=27t n T (PAUX — Xl < el )"
We conclude from (18) that (17) holds. O

Proof of Proposition 5.1. It follows that, for x > N,

—-N

f(x)(x—N)s/Nf(y)dysl, Feoe-M= [ fordy=<1,

—X
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so that f(x)|x| < C. Consequently, assuming that x > 2N and 7 < 1/2, we have

x| (144) 2C [l
P(IX—XISIXIh)Zf fHdy < — dy =4Ch. 19
lx|(1—h) x| Jyxj1-n)

Regarding 0 < x <2N, we use the fact that f is bounded, f < M, so that

[x[(1+h) 2N (14h)
/ dy=4MNh. (20)
2

P(X — x| < [x[h) =[ Sy

|x|(1—h N(1—h)

Bounds analogous to (19) and (20) follow for negative x, which proves that g (h) = O(h). (I

6. Convergence

Convergence in distribution of {7},} to a random variable T (e.g., standard normally distributed)
is, due to Lemma 3.2, equivalent to convergence of {S,/V,} to T. A complete classification in
terms of possible limit distributions with corresponding conditions on F was given recently by
Chistyakov and Gotze (see [1]). The following interesting property was derived somewhat earlier
by Giné, Gotze and Mason in [3].

Theorem 6.1. Let a distribution F be given such that S,/ V, —? T. The sequence {S,/V,} is
then sub-Gaussian, in the sense that, for some constant C, sup, E[exp (¢S,,/ V;,)] <2exp (C 12).

Corollary 6.1. For any F satisfying the condition of Theorem 6.1 with respect to a random
variable T and any r > 0, lim,,_, 5, E|S,,/ V,,|" = E|T|" < o0.

Proof. The result follows from Theorem 6.1 and general properties of integration; see, for ex-
ample, [4], Theorem 5.9, Chapter 5, or [4], Corollary 4.1, Chapter 5. O

We are now ready for the main result of this section.

Theorem 6.2. Let F, T and r be given as in Corollary 6.1. If E|T,,,|" is finite for some ng > 2,
then lim,_,  E|T,|" = E|T|".

Proof. The case “X = constant”, which leads to T,, = 0, is degenerate and is henceforth ex-
cluded. Recall, from Lemma 3.2, that

n
E|T,|" = %n(n - 1)r/2/ PP > (- 2)7 P D gz
0
We split the desired conclusion lim, .« E|7,,|" = E|T'|" into the two conditions

n—=é
lim Zp/2+1 f PTIPWUF > ) (n—2) DAz = EIT|” forany0<8<1, (21)
0

n—00 2

n—o0

n
lim n/ PU'>z2)(n—2)""*Ddz=0 forsome0<8<1.  (22)
n—=48
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Replace (22), via a change of variables n — z = h2, by the condition

n—oo

)
lim n/ h="*VP( — U <h?)dz=0  forsome0 <8 <1,
0

which, in turn, by the same steps as in the proof of Theorem 3.1, we find to be equivalent to

lim R, s =0,
n— oo

s (23)
Rys :=/ / n =D ((P(X — x| < h|x|))”‘l — pt~Y)dhdF(x)
x#0J0
for some 0 < § < 1 (with p, = P(X = x)). We separate the verifications of (21) and (23) into
Lemmas 6.2 and 6.1, respectively. Note that the assumption E|7,|" < oo, via Theorems 3.1

and 4.1, implies that R, . < oo for all (n, &) € N>, X R*. The proof of Theorem 6.2 is hence
completed by applying Lemmas 6.1 and 6.2. ]

Lemma 6.1. Assume that there exists ng > 2 such that R, o < oo for all (n, &) € N5, x RT.
There then also exists § > 0 such that lim,_, o R, s =0.

Lemma 6.2. Statement (21) is a consequence of Corollary 6.1.

Proof of Lemma 6.1. We arrive at the conclusion from Lebesgue’s dominated convergence
theorem, [2], Theorem 2.4.4, page 72, by establishing that the integrand

n" =D ((P(X — x| < h|x|))”‘l -ph (24)

for some choice of § and all 4 < §, is pointwise decreasing in n for sufficiently large » and
pointwise converging to 0 as n tends to infinity. To this end, define 7, = P(|X — x| < h|x]|),
2 (y) =y () — pY), A = —logm,, Ay = —log p,. To see that pointwise convergence to 0
holds, note that for some § and some 1 > 0,

Te<1l—n for all x and all & < §. 25)

Condition (25) indeed prevails, except in the case where F is degenerate with total mass at a
single point. Given § sufficiently small, n;’_l - pg_l therefore decays exponentially in n, which
yields pointwise convergence to 0 of (24). The decreasing behaviour is equivalent to the existence
of yg > 0 such that

&x(y1) = gx(»2) for all yy, y2 such that yo < y; < y>. (26)

To verify (26), note that

() ==y (e ™ —ape ™) fry e MY —e M) = £,(0) — L) (2T)
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with f, (1) := e ™ (Ay" — ry"~!) and furthermore that

[ =0 =y ) = (r+ Dy = ). (28)

We verify (26) using the fact that fy/ (X)) <0 for A1 < A < A, which, by (28), is satisfied for
y > yp, provided A; > 5 for some n > 0. The latter condition is equivalent to (25). (]

Proof of Lemma 6.2. It follows from Corollary 6.1 with U, = S2/V? that

r n
lim = [ z/>7'P(U, > z)dz=E|T|”  forallr > 0. (29)
n—oQ 0
Define E, ={X; =Xo=--- =X, #0} sothat P(U, > z2) =P(U}f > 2) + P(E,) for 0 < z < n.
The desired conclusion is hence established by showing that for all r > 0,
n—34
lim n"/2+! / ZIIPE)(n—2)7 P Dz =0, (30)
n—oQ 0
-8
lim 7P, > Z)(nr/2+1(n —z) "4 1) dz =0, 3D

n—oo 0

n
lim 7?7 1'pU, > 7)dz = 0. (32)

n—oo n—>as

Starting with (30), let {ax }«>1 be a denumeration of all non-zero points attributed mass by F" and
define py = P(X = ax), p = sup;> pk. It follows that p < 1 since X is not constant. Moreover,

PEN=) pi<p" 'Y m=p"

k>1 k>1

This shows that P(E,,) decays exponentially in n. However, the quantities
n—3s
n(n _ 1)}’/2/ Z(r—2)/2(n _ Z)—(r+2)/2 dZ
0

are all finite and grow with polynomial rate as n grows. Conclusion (30) follows. Statement (32)
may be deduced from (29) in the following way:

n n
/ 7P, > 2)dz < (n — 5)—1/ Z?P(U, > 2)dz < (n — 8) "' Crya,
n—=a n—=a

where the constant C, stems from the identity in (29) with r replaced by » + 2. It remains to
prove (31), which we split into

1
lim [ z727VPW, > 2)(n(n — 1) —2)"D —1)dz =0, (33)
n—>oo 0
n—=e
lim P, > ) (nn— 12— 272D — 1) dz = 0. (34)

n—oo 1
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Statement (33) follows from Lebesgue’s dominated convergence theorem, [2], Theorem 2.4.4,
page 72. To verify (34), we introduce the notation

f21@ =P, > ) (n(n = 1P — )~ D — 1)1,
D, ={z:1<z<(@n-79)}, gn(z) =2"P(U, > 2)Ip,, g(2) =2"P(T* > 2)Ip,.

The desired conclusion (34) is now written as (36), while (37) follows from the assumptions,
(29) and the elementary inequalities (35):

(n—1/(zn—2) <(mn—1/(8(n—38)<C  whenze D, (35)
Jim [ fy =0, (36)
/gn%/gv &n — &> Jn— 0, [ ful < Cign. (37)

By a technique called Pratt’s lemma, Fatou’s lemma, [2], Theorem 2.4.3, page 72, and (37) then
give

Cl/g:/IiIr}linf(Clgn —Jfn) flin"llinf/(clgn —fn)=C1/g—limSUP/fn, (38)

¢ / ¢= f liminf(C1g, + f,) < limint / (Cign+ fi)=C / g+ liminf / for (39)

Statement (36) follows from (38) and (39). U
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