On the heavy-tailedness of Student's *t*-statistic

FREDRIK JONSSON

Department of Mathematics, Uppsala University, Box 480, SE-751 06 Uppsala, Sweden. E-mail: jonsson@math.uu.se

Let $\{X_i\}_{i\geq 1}$ be an i.i.d. sequence of random variables and define, for $n\geq 2$,

$$T_n = \begin{cases} n^{-1/2} \hat{\sigma}_n^{-1} S_n, & \hat{\sigma}_n > 0, \\ 0, & \hat{\sigma}_n = 0, \end{cases} \text{ with } S_n = \sum_{i=1}^n X_i, \ \hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - n^{-1} S_n)^2.$$

We investigate the connection between the distribution of an observation X_i and finiteness of $\mathrm{E}|T_n|^r$ for $(n,r)\in\mathbb{N}_{\geq 2}\times\mathbb{R}^+$. Moreover, assuming $T_n\stackrel{d}{\longrightarrow} T$, we prove that for any r>0, $\lim_{n\to\infty}\mathrm{E}|T_n|^r=\mathrm{E}|T|^r<\infty$, provided there is an integer n_0 such that $\mathrm{E}|T_{n_0}|^r$ is finite.

Keywords: finiteness of moments; robustness; Student's t-statistic; t-distributions; t-test

1. Introduction

Assume, in the following, that $\{X_i\}_{i\geq 1}$ is a sequence of independent random variables, each with distribution F. Then, for $n\geq 2$, define the *t-statistic* random variables

$$T_n = \begin{cases} n^{-1/2} \hat{\sigma}_n^{-1} S_n, & \hat{\sigma}_n > 0, \\ 0, & \hat{\sigma}_n = 0, \end{cases} \text{ with } S_n = \sum_{i=1}^n X_i, \ \hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - n^{-1} S_n)^2.$$

In the case where F is a normal distribution with mean zero, the distribution of T_n is the well-known t-distribution with n-1 degrees of freedom. The effect of non-normality of F on the distribution of T_n has received considerable attention in the statistical literature. For a review, see [7]. t-distributions do not only occur in the inference of means, but also sometimes in models of data in the economic sciences; see [6]. There seem to be two characteristic properties which, in comparison with the normal distribution, make these distributions convenient in certain modeling situations: a higher degree of heavy-tailedness (moments are finite only below the degree of freedom) and a higher degree of so-called kurtosis.

This paper investigates the tail behaviour of T_n and the related issue of the existence of moments $E|T_n|^r$, for a parameter r>0, under more general conditions than the normal assumption. Motivating questions were the following: Is it generally true that $E|T_n|^r$ can only be finite for r< n-1? For which kinds of distributions is the converse implication false? Assuming the often encountered $T_n \stackrel{d}{\longrightarrow} T$, is it then generally true that $E|T_n|^r \to E|T|^r$?

2. Summary

The fundamental result is Theorem 3.1, which presents two conditions, each equivalent to finiteness of $E|T_n|^r$. The result is based on a connection between the tail behaviour of T_n and probabilities of having almost identical observations X_1, \ldots, X_n . Theorem 4.1 states that finiteness of $E|T_n|^r$ implies finiteness of $E|T_n|^r$, and is followed by Theorem 4.2 which states that t-statistic random variables never possess moments above the degree of freedom unless F is discrete. It is established in Section 5, under the assumption that F is continuous, that regularity, referring to the degree of heavy-tailedness of t-statistic random variables, is measurable in terms of the behaviour of certain concentration functions related to F. Theorem 6.2 states that $\lim_{n\to\infty} E|T_n|^r = E|T|^r$ whenever there is an integer n_0 such that $E|T_{n_0}|^r$ is finite and $\{T_n\}$ converges in distribution.

Remark. This paper is an abridged version of [5]. The results found in Section 5 here are there generalized beyond the continuity assumption. We also refer to [5] for a discussion of related results previously obtained by H. Hotelling.

3. Characterizing $E|T_n|^r < \infty$ through bounds on $P(|T_n| > x)$

A close connection exists between T_n and the *self-normalized sum* S_n/V_n ; see Lemma 3.1 (whose elementary proof we omit). The connection allows $E|T_n|^r$ to be expressed with probabilities relating to S_n/V_n , as in Lemma 3.2, revealing that finiteness of $E|T_n|^r$ depends on the magnitude of the probabilities of having S_n/V_n close to $\pm \sqrt{n}$. Some geometric relations between S_n/V_n close to $\pm \sqrt{n}$ and almost identical observations X_1, \ldots, X_n are then given in Lemmas 3.3 and 3.4.

Lemma 3.1. Define

$$V_n = \left(\sum_{i=1}^n X_i^2\right)^{1/2}, \qquad U_n^* = \begin{cases} 0, & S_n/V_n = n \text{ or } V_n = 0, \\ (S_n/V_n)^2, & \text{otherwise.} \end{cases}$$

It then holds, for any $x \ge 0$, that $T_n^2 > x$ if and only if $U_n^* > nx/(n+x-1)$.

Lemma 3.2. For r > 0 and U_n^* as in Lemma 3.1,

$$E|T_n|^r = \frac{r}{2}n(n-1)^{r/2} \int_0^n z^{r/2-1} P(U_n^* > z)(n-z)^{-(r/2+1)} dz.$$

Lemma 3.3. Let $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $h \in (0, 1)$ be given such that $x_1 \neq 0$ and $n - u_n < h^2$ with $u_n = (\sum_{i=1}^n x_i)^2 / \sum_{i=1}^n x_i^2$. Then, with $C_1 = \sqrt{5}$,

$$|x_i - x_1| < hC_1|x_1|$$
 for all $i \neq 1$.

Moreover, $C_1 = C_1(n, h) = \sqrt{2 + 2h + h^2}$ is optimal for the conclusion to be valid for all **x**.

Lemma 3.4. Let $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $h \in (0, 1)$ be given such that, with $C_2 = 1$,

$$|x_i - x_1| < C_2 h|x_1|/\sqrt{n-1}$$
 for all $i \neq 1$.

Then $n - u_n < h^2$ with $u_n = (\sum_{i=1}^n x_i)^2 / \sum_{i=1}^n x_i^2$. Moreover, in the case where n is odd, $C_2 = C_2(n,h)$ must satisfy $C_2 \le \sqrt{n/(n-h^2)}$ for the conclusion to be valid for all \mathbf{x} .

Theorem 3.1. The following three quantities are either all finite or all infinite:

(i) $E|T_n|^r$;

(ii)
$$E\left(|X_1|^r \bigwedge_{i=2}^n |X_i - X_1|^{-r} I\{|X_i - X_1| > 0, \text{ some } i \le n\}\right);$$

(iii)
$$\int_{x \neq 0} \int_0^1 h^{-(r+1)} \left(\left(P(|X - x| < h|x|) \right)^{n-1} - p_x^{n-1} \right) dh dF(x)$$
 with $p_x = P(X = x)$.

Proof of Lemma 3.2. By [4], Theorem 12.1, Chapter 2, together with Lemma 3.1 and a change of variables, we have

$$\begin{aligned} \mathbf{E}|T_n|^r &= \frac{r}{2} \int_0^\infty y^{r/2-1} \mathbf{P}(T_n^2 > y) \, \mathrm{d}y \\ &= \frac{r}{2} \int_0^\infty y^{r/2-1} \mathbf{P}(U_n^* > ny/(n+y-1)) \, \mathrm{d}y \\ &= \frac{r}{2} n(n-1)^{r/2} \int_0^n z^{r/2-1} \mathbf{P}(U_n^* > z)(n-z)^{-(r/2+1)} \, \mathrm{d}z. \end{aligned}$$

Proof of Lemma 3.3. We argue by contraposition. Due to the invariance with respect to scaling of \mathbf{x} and permutation of the coordinates x_2, \ldots, x_n , it suffices to prove that

$$|x_2 - x_1| \ge h|x_1| \implies n - u_n \ge h^2/C_1^2$$

with $C_1 = \sqrt{2 + 2h + h^2}$ and that equalities are simultaneously attained. Set $x_2 = x_1 + \varepsilon$ and $\underline{x} = (x_3, \dots, x_n)$. We then minimize $n - u_n$ with respect to \underline{x} and ε . Note that

$$\frac{\partial (n - u_n)}{\partial x_j} = \frac{-2\sum_{i=1}^n x_i (\sum_{i=1}^n x_i^2 - x_j \sum_{i=1}^n x_i)}{(\sum_{i=1}^n x_i^2)^2}.$$
 (1)

First, set (1) to zero for j = 3, ..., n. Since $\sum x_i = 0$ corresponds to $u_n = 0$, which is non-interesting with respect to the minimization of $n - u_n$, these equations reduce to

$$\sum_{i=3}^{n} x_i^2 - x_j \sum_{i=3}^{n} x_i = x_j (x_1 + x_2) - (x_1^2 + x_2^2) \quad \text{for } j = 3, \dots, n.$$
 (2)

We claim that (2) has the unique solution

$$x_j = (x_1^2 + x_2^2)/(x_1 + x_2) = (2x_1^2 + 2x_1\varepsilon + \varepsilon^2)/(2x_1 + \varepsilon)$$
 for $j = 3, ..., n$. (3)

To verify this, assume that \underline{x} is a solution of (2). Since $\sum_{i=3}^{n} x_i^2$ and $\sum_{i=3}^{n} x_i$ do not vary with j, \underline{x} must be of the form $x_j = const.$, j = 3, ..., n. However, the left-hand side of (2) then vanishes for all j, which gives (3) as the unique solution. Inserting the solution into $n - u_n$ gives

$$(n - u_n)_{\min}(\varepsilon) = \varepsilon^2 / (x_1^2 + x_2^2) = \varepsilon^2 / (2x_1^2 + 2x_1\varepsilon + \varepsilon^2).$$
 (4)

It remains to minimize with respect to ε with $\varepsilon \notin (-h|x_1|, h|x_1|)$. The equation

$$\frac{\partial}{\partial \varepsilon} \left(\frac{\varepsilon^2}{2x_1^2 + 2x_1 \varepsilon + \varepsilon^2} \right) = 0$$

has the unique solution $\varepsilon = -2x_1$ which cannot be a minimum since a minimum must satisfy $sign(\varepsilon) = sign(x_1)$, by the representation (4). The solution is hence obtained for $\varepsilon = sign(x_1)h|x_1|$,

$$(n - u_n)_{\min} = (hx_1)^2 / (x_1^2(2 + 2h + h^2)) = h^2 / (2 + 2h + h^2).$$

It follows that $C_1 = C_1(h) = \sqrt{2 + 2h + h^2} \le \sqrt{5}$ is an optimal constant, as claimed.

Proof of Lemma 3.4. Assume that

$$|x_i - x_1| < C_2 h|x_1| / \sqrt{n-1}$$
 for all $i = 2, ..., n$. (5)

The aim is to verify that $n - u_n < h^2$ with $C_2 = C_2(n,h)$ optimally large. We therefore maximize $n - u_n$ over the rectangular region (5) with $x_1 \neq 0$, C_2 and h fixed. It suffices to consider the restriction of $n - u_n$ to the corners of the region (5) since the maximum attained at a point $y = (y_1, \ldots, y_n)$ in the interior of the region, or in the interior of an edge, would mean that, for some $j = 2, \ldots, n$ and some $\eta > 0$,

$$\frac{\partial (n - u_n)}{\partial x_i}(y) = 0, (6)$$

$$\frac{\partial (n - u_n)}{\partial x_j}(y_1, \dots, y_{j-1}, y_j - h, y_{j+1}, \dots, y_n) \ge 0 \quad \text{for all } 0 < h < \eta, \tag{7}$$

$$\frac{\partial (n - u_n)}{\partial x_j}(y_1, \dots, y_{j-1}, y_j + h, y_{j+1}, \dots, y_n) \le 0 \quad \text{for all } 0 < h < \eta.$$
 (8)

Recall, from the proof of Lemma 3.3, that

$$\frac{\partial (n - u_n)}{\partial x_i} = \frac{-2\sum_{i=1}^n x_i (\sum_{i \neq j} x_i^2 - x_j \sum_{i \neq j} x_i)}{(\sum_{i=1}^n x_i^2)^2}.$$

We may assume that $C_2h < \sqrt{n-1}$ since the point $x_i \equiv 0$ would otherwise belong to the region yielding $u_n = 1$, in which case $n - u_n < h^2$ cannot hold. This implies that $\mathrm{sign}(x_i) = \mathrm{sign}(x_1)$ for all $i = 2, \ldots, n$ so that neither $\sum x_i$ nor $\sum_{i \neq j} x_i$ change sign within the region. Assume, due to invariance with respect to scaling, that $x_1 > 0$. Conditions (6)–(8) may then be reformulated as

$$\sum_{i \neq j} y_i^2 - y_j \sum_{i \neq j} y_i = 0, \qquad \sum_{i \neq j} y_i^2 - (y_j - h) \sum_{i \neq j} y_i < 0, \qquad \sum_{i \neq j} y_i^2 - (y_j + h) \sum_{i \neq j} y_i > 0,$$

which is contradictory since h > 0 and $\sum_{i \neq j} y_i > 0$.

Now, consider the restriction of $n - u_n$ to the corners of the region (5). Set $k := |\{i : x_i = x_1 + \varepsilon\}| - |\{i : x_i = x_1 - \varepsilon\}|$ so that

$$n - u_n = \frac{n(nx_1^2 + (n-1)\varepsilon^2 + 2k\varepsilon x_1) - (nx_1 + k\varepsilon)^2}{nx_1^2 + (n-1)\varepsilon^2 + 2k\varepsilon x_1}$$

$$= \frac{\varepsilon^2 (n(n-1) - k^2)}{nx_1^2 + (n-1)\varepsilon^2 + 2k\varepsilon x_1} = \frac{h^2 C_2^2 (n - k^2/(n-1))}{n + C_2^2 h^2 + 2kC_2 h/\sqrt{n-1}}.$$
(9)

Take $C_2 = 1$ in (9) and $z = k(n-1)^{-1/2}$. Algebraic manipulations yield

$$\frac{n - k^2/(n-1)}{n + h^2 + 2kh/\sqrt{n-1}} \le 1 \iff (h+z)^2 \ge 0$$

so that $C_2 = 1$ is sufficiently small for the desired bound $n - u_n < h^2$. We find, by taking k = 0 in (9) (which is possible when n is odd) that

$$C_2^2 n/(n+C_2^2 h^2) \le 1 \iff C_2^2 \le n/(n-h^2)$$

so that $C_2 \le \sqrt{n/(n-h^2)}$ is then necessary for $n-u_n < h^2$ to hold.

Proof of Theorem 3.1. We first deduce the equivalence between (i) and (iii). By Lemma 3.2, we find that $E|T_n|^r < \infty$ is equivalent to, for some $\delta < 1$,

$$\int_{n-\delta}^{n} z^{r/2-1} P(U_n^* > z) (n-z)^{-(r/2+1)} dz < \infty \quad \iff \quad \int_{0}^{\delta} h^{-(r+1)} P(n-U_n^* < h^2) dh < \infty,$$

which, in turn, is equivalent to

$$\int \int_0^{\delta} h^{-(r+1)} P(0 < n - U_n < h^2 \mid X_1 = x) \, dh \, dF(x) < \infty.$$
 (10)

The event $X_1 = 0$ implies $U_n \le n - 1$ by the Cauchy–Schwarz inequality so that (10) reduces to

$$\int_{x \neq 0} \int_0^{\delta} h^{-(r+1)} P(0 < n - U_n < h^2 \mid X_1 = x) \, \mathrm{d}h \, \mathrm{d}F(x) < \infty,$$

which is equivalent to

$$\int_{x \neq 0} \int_{0}^{\delta} h^{-(r+1)} P(n - U_n < h^2 \mid X_1 = x) - p_x^{n-1} dh dF(x) < \infty$$

since $U_n = n$ corresponds to $X_i = X_1$ with $p_x = P(X = x)$. Finally, apply Lemmas 3.3 and 3.4, and set $\delta = 1$ to arrive at condition (iii).

For the equivalence between (ii) and (iii), define $A_n = \{|X_i - X_1| > 0, \text{ some } i \leq n\}$. Condition on X_1 and convert expectation into integration of tail probabilities (cf. [4], Theorem 12.1, Chapter 2):

$$\begin{split} \mathbf{E}\bigg(|X_1|^r \bigwedge_{i=2}^n |X_i - X_1|^{-r} I_{A_n}\bigg) &= \int_{x \neq 0} \mathbf{E}\bigg(\bigwedge_{i=2}^n (|X_i - x||x|^{-1})^{-r} I_{A_n}\bigg) \, \mathrm{d}F(x) \\ &= r \int_{x \neq 0} \int_0^\infty h^{-(r+1)} \big(\mathbf{P}(|X - x| < h|x|\big)^{n-1} - p_x^{n-1} \, \mathrm{d}h \, \mathrm{d}F(x). \end{split}$$

The equivalence between (ii) and (iii) then follows from the fact that

$$\int_{x \neq 0} \int_{1}^{\infty} h^{-(r+1)} \left(P(|X - x| < h|x|) \right)^{n-1} dh dF(x)$$

$$\leq \int_{x \neq 0} \int_{1}^{\infty} h^{-(r+1)} dh dF(x) < \infty.$$

4. Two general facts regarding finiteness of $E|T_n|^r$

Theorem 4.1. For any couple $(n,r) \in \mathbb{N}_{\geq 2} \times \mathbb{R}^+$, if $\mathbb{E}|T_n|^r$ is finite, then so is $\mathbb{E}|T_{n+1}|^r$.

Proof. Due to Theorem 3.1, it suffices to show that

$$E\left[|X_1|^r \bigwedge_{i=2}^n |X_i - X_1|^{-r} I_{A_n}\right] < \infty \implies E\left[|X_1|^r \bigwedge_{i=2}^{n+1} |X_i - X_1|^{-r} I_{A_{n+1}}\right] < \infty, \quad (11)$$

where $A_k := \{|X_i - X_1| > 0$, some $i \le k\}$. Define $A'_n = \{|X_i - X_1| > 0$, some $3 \le i \le n+1\}$. It follows that $A_{n+1} = A_n \cup A'_n$ so that $I_{A_{n+1}} \le I_{A_n} + I_{A'_n}$, which gives

$$E\left[|X_{1}|^{r} \bigwedge_{i=2}^{n+1} |X_{i} - X_{1}|^{-r} I_{A_{n+1}}\right] \\
\leq E\left[|X_{1}|^{r} \bigwedge_{i=2}^{n+1} |X_{i} - X_{1}|^{-r} I_{A_{n}}\right] + E\left[|X_{1}|^{r} \bigwedge_{i=2}^{n+1} |X_{i} - X_{1}|^{-r} I_{A'_{n}}\right]$$

$$\leq E \left[|X_1|^r \bigwedge_{i=2}^n |X_i - X_1|^{-r} I_{A_n} \right] + E \left[|X_1|^r \bigwedge_{i=3}^{n+1} |X_i - X_1|^{-r} I_{A'_n} \right]$$

$$= 2E \left[|X_1|^r \bigwedge_{i=2}^n |X_i - X_1|^{-r} I_{A_n} \right].$$

The conclusion follows.

Theorem 4.2. Assume that F decomposes into $F_d + F_c$, with discrete and continuous measures F_d and F_c , respectively, and that $F_c \not\equiv 0$. It is then necessary that r < n - 1 for $E|T_n|^r$ to be finite.

Proof. Let F_c have total mass $\varepsilon > 0$. It suffices to verify that $E|T_n|^{n-1}$ is infinite, which, by Theorem 3.1, is equivalent to

$$\int_{x \neq 0} \int_0^1 h^{-n} \left(\left(P(|X - x| < h|x|) \right)^{n-1} - p_x^{n-1} \right) dh dF(x) = \infty.$$

The last identity is a consequence of

$$\iint_0^1 h^{-n} \left(P(|X - x| < h|x|) \right)^{n-1} dh dF_c(x) = \infty.$$
 (12)

To verify (12), consider the restriction of F_c to a set $[-C, -1/C] \cup [1/C, C]$ with C sufficiently large so that the restricted measure still has positive mass. It then suffices to establish the condition

$$\int \left(P(|X - x| < h)h^{-1} \right)^{n-1} dF_c(x) > \eta_n \qquad \text{for all } h \text{ and some constant } \eta_n = \eta_n(F_c, n). \tag{13}$$

First, consider n = 2. Discretize [-C, C] uniformly with interval length h, that is, put $x_k = hk$ for $k \in [-N, N]$ and $N = \lceil Ch^{-1} \rceil$. Then

$$\int P(|X_c - x| < h) dF_c(x) = \sum_{k=-N}^{k=N} \int_{x_{k-1}}^{x_k} P(|X_c - x| < h) dF_c(x)$$

$$\geq \sum_{k=-N}^{k=N} \int_{x_{k-1}}^{x_k} P(X_c \in (x_{k-1}, x_k]) dF_c(x)$$

$$= \sum_{k=-N}^{k=N} \left(P(X_c \in (x_{k-1}, x_k]) \right)^2.$$

Applying the Cauchy-Schwarz inequality, we obtain

$$\sum_{k=-N}^{k=N} \left(P(X_c \in (x_{k-1}, x_k]) \right)^2 \ge \left(\sum_{k=-N}^{k=N} P(X_c \in (x_{k-1}, x_k]) \right)^2 (2N)^{-1} = \varepsilon^2 (2N)^{-1} \ge C^{-1} \varepsilon^2 h.$$

Conclusion (13) follows with $\eta_2 = C^{-1} \varepsilon^2$. For n > 2, an application of the Hölder inequality yields

$$\eta_2^{n-1} \le \left(\int P(|X_c - x| < h)h^{-1} dF_c(x) \right)^{n-1} \le \varepsilon^{n-2} \int \left(P(|X_c - x| < h)h^{-1} \right)^{n-1} dF_c(x).$$

The desired conclusion (13) follows with $\eta_n = \eta_2^{n-1} \varepsilon^{2-n}$.

5. Regularity and concentration functions

Definition 5.1. Given the distribution of a random variable X, define the concentration functions q and Q, for real-valued arguments $h \ge 0$, by

$$Q(h) = \sup_{x} P(|X - x| \le h), \qquad q(h) = \sup_{x} P(|X - x| \le |x|h).$$

Q is known as the Lévy concentration function. Theorem 5.1 below characterizes finiteness of $E|T_n|^r$ in terms of the limiting behaviour of q(h) as h tends to zero. Note that a statement of the kind " $Q(h) = \mathcal{O}(h^{\lambda})$ " (for some $\lambda \leq 1$) refers to the local behaviour of the distribution. The most regular behaviour in this respect is that of an absolutely continuous distribution with bounded density function, in which case $Q(h) = \mathcal{O}(h)$, while $\lambda < 1$ typically corresponds to one or several "explosions" of the density function. The Cantor distributions also form fundamental examples of such irregularity (cf. [5], pages 29–31). The parameter λ has, in this sense, a meaning of "degree of irregularity" concerning the distribution, with smaller values of λ indicating higher degrees of irregularity. A statement $q(h) = \mathcal{O}(h^{\lambda})$, on the other hand, also has a global component. It requires more regularity of the distribution "at infinity" compared with $Q(h) = \mathcal{O}(h^{\lambda})$, while, at the same time, being less restrictive regarding the local behaviour of the distribution at the origin.

Theorem 5.1. The following two implications hold for any continuous probability measure F:

(i)
$$q(h) = \mathcal{O}(h^{\lambda})$$
 for some $\lambda > r/(n-1) \Longrightarrow \mathbb{E}|T_n|^r < \infty$;

(ii)
$$E|T_n|^r < \infty \Longrightarrow q(h) = \mathcal{O}(h^{\lambda})$$
 with $\lambda = r/n$.

A simple criterion guaranteeing the optimal $q(h) = \mathcal{O}(h)$ is given by the following proposition.

Proposition 5.1. The property q(h) = O(h) is obtained for any absolutely continuous distribution F with bounded density function f satisfying the assumption of a positive constant N such that

$$f(x_2) < f(x_1)$$
 for any x_1, x_2 such that $N < x_1 < x_2$ or $-N > x_1 > x_2$. (14)

Proof of Theorem 5.1. For (i), condition (iii) of Theorem 3.1 reads, by continuity,

$$\int_{x \neq 0} \int_{0}^{1} h^{-(r+1)} \left(P(|X - x| < h|x|) \right)^{n-1} dh dF(x) < \infty.$$
 (15)

Applying the assumption on q to the integrand yields

$$\int_{x \neq 0} \int_{0}^{1} h^{-(r+1)} \left(P(|X - x| < h|x|) \right)^{n-1} dh dF(x)$$

$$\leq C \int_{x \neq 0} \int_{0}^{1} h^{-(r+1)} h^{\lambda(n-1)} dh dF(x) = C \int_{0}^{1} h^{-(r+1)} h^{\lambda(n-1)} dh$$

$$= C / \left(\lambda(n-1) - r \right),$$

which proves (15). To verify the second implication, we argue by contraposition. Assume that

$$q(h) \neq \mathcal{O}(h^{\lambda})$$
 with $\lambda = r/n$. (16)

It suffices, by condition (ii) of Theorem 3.1 and the assumption of continuity, to prove that

$$E\left(|X_1|^r \bigwedge_{i=2}^n |X_i - X_1|^{-r}\right) = \infty.$$
 (17)

П

Statement (16) is equivalent to the existence of sequences $\{x_k\}_{k\geq 1}$ and $\{h_k\}_{k\geq 1}$ such that

$$1/2 > h_k > 0,$$
 $\lim_{k \to \infty} h_k = 0,$ $\lim_{k \to \infty} h_k^{-r/n} P(|X - x_k| \le |x_k| h_k) = \infty.$ (18)

Define intervals $I_k = (x_k - |x_k|h_k, x_k + |x_k|h_k)$. It then follows that for some K and all $k \ge K$,

$$E\left(|X_{1}|^{r} \bigwedge_{i=2}^{n} |X_{i} - X_{1}|^{-r}\right) \ge E\left(|X_{1}|^{r} \bigwedge_{i=2}^{n} |X_{i} - X_{1}|^{-r} I\{X_{i} \in I_{k}, \text{ all } i\}\right)$$

$$\ge 2^{-1} |x_{k}|^{r} E\left(\bigwedge_{i=2}^{n} |X_{i} - X_{1}|^{-r} I\{X_{i} \in I_{k}, \text{ all } i\}\right)$$

$$\ge 2^{-(r+1)} |x_{k}|^{r} h_{k}^{-r} |x_{k}|^{-r} E(I\{X_{i} \in I_{k}, \text{ all } i\})$$

$$= 2^{-(r+1)} h_{k}^{-r} \left(P(|X - x_{k}| \le |x_{k}| h_{k})\right)^{n}.$$

We conclude from (18) that (17) holds.

Proof of Proposition 5.1. It follows that, for x > N,

$$f(x)(x-N) \le \int_{N}^{x} f(y) \, dy \le 1, \qquad f(-x)(x-N) \le \int_{-x}^{-N} f(y) \, dy \le 1,$$

so that $f(x)|x| \le C$. Consequently, assuming that x > 2N and $h \le 1/2$, we have

$$P(|X - x| \le |x|h) = \int_{|x|(1-h)}^{|x|(1+h)} f(y) \, dy \le \frac{2C}{|x|} \int_{|x|(1-h)}^{|x|(1+h)} dy = 4Ch.$$
 (19)

Regarding $0 \le x \le 2N$, we use the fact that f is bounded, $f \le M$, so that

$$P(|X - x| \le |x|h) = \int_{|x|(1-h)}^{|x|(1+h)} f(y) \, dy \le M \int_{2N(1-h)}^{2N(1+h)} dy = 4MNh.$$
 (20)

Bounds analogous to (19) and (20) follow for negative x, which proves that $q(h) = \mathcal{O}(h)$.

6. Convergence

Convergence in distribution of $\{T_n\}$ to a random variable T (e.g., standard normally distributed) is, due to Lemma 3.2, equivalent to convergence of $\{S_n/V_n\}$ to T. A complete classification in terms of possible limit distributions with corresponding conditions on F was given recently by Chistyakov and Götze (see [1]). The following interesting property was derived somewhat earlier by Giné, Götze and Mason in [3].

Theorem 6.1. Let a distribution F be given such that $S_n/V_n \to^d T$. The sequence $\{S_n/V_n\}$ is then sub-Gaussian, in the sense that, for some constant C, $\sup_n \mathbb{E}[\exp(tS_n/V_n)] \le 2\exp(Ct^2)$.

Corollary 6.1. For any F satisfying the condition of Theorem 6.1 with respect to a random variable T and any r > 0, $\lim_{n \to \infty} \mathbb{E}|S_n/V_n|^r = \mathbb{E}|T|^r < \infty$.

Proof. The result follows from Theorem 6.1 and general properties of integration; see, for example, [4], Theorem 5.9, Chapter 5, or [4], Corollary 4.1, Chapter 5. \Box

We are now ready for the main result of this section.

Theorem 6.2. Let F, T and r be given as in Corollary 6.1. If $E|T_{n_0}|^r$ is finite for some $n_0 \ge 2$, then $\lim_{n\to\infty} E|T_n|^r = E|T|^r$.

Proof. The case "X = constant", which leads to $T_n \equiv 0$, is degenerate and is henceforth excluded. Recall, from Lemma 3.2, that

$$E|T_n|^r = \frac{r}{2}n(n-1)^{r/2} \int_0^n z^{r/2-1} P(U_n^* > z)(n-z)^{-(r/2+1)} dz.$$

We split the desired conclusion $\lim_{n\to\infty} E|T_n|^r = E|T|^r$ into the two conditions

$$\lim_{n \to \infty} \frac{r}{2} n^{r/2+1} \int_0^{n-\delta} z^{r/2-1} P(U_n^* > z) (n-z)^{-(r/2+1)} dz = E|T|^r \quad \text{for any } 0 < \delta < 1, \quad (21)$$

$$\lim_{n \to \infty} n^r \int_{n-\delta}^n P(U_n^* > z) (n-z)^{-(r/2+1)} dz = 0 \quad \text{for some } 0 < \delta < 1.$$
 (22)

Replace (22), via a change of variables $n - z = h^2$, by the condition

$$\lim_{n \to \infty} n^r \int_0^{\delta} h^{-(r+1)} P(n - U_n^* < h^2) dz = 0 \quad \text{for some } 0 < \delta < 1,$$

which, in turn, by the same steps as in the proof of Theorem 3.1, we find to be equivalent to

$$\lim_{n \to \infty} R_{n,\delta} = 0,$$

$$R_{n,\delta} := \int_{x \to 0} \int_0^{\delta} n^r h^{-(r+1)} \left(\left(P(|X - x| < h|x|) \right)^{n-1} - p_x^{n-1} \right) dh dF(x)$$
(23)

for some $0 < \delta < 1$ (with $p_x = P(X = x)$). We separate the verifications of (21) and (23) into Lemmas 6.2 and 6.1, respectively. Note that the assumption $E|T_{n_0}|^r < \infty$, via Theorems 3.1 and 4.1, implies that $R_{n,\varepsilon} < \infty$ for all $(n,\varepsilon) \in \mathbb{N}_{\geq n_0} \times \mathbb{R}^+$. The proof of Theorem 6.2 is hence completed by applying Lemmas 6.1 and 6.2.

Lemma 6.1. Assume that there exists $n_0 \ge 2$ such that $R_{n,\varepsilon} < \infty$ for all $(n,\varepsilon) \in \mathbb{N}_{\ge n_0} \times \mathbb{R}^+$. There then also exists $\delta > 0$ such that $\lim_{n \to \infty} R_{n,\delta} = 0$.

Lemma 6.2. *Statement* (21) *is a consequence of Corollary* 6.1.

Proof of Lemma 6.1. We arrive at the conclusion from Lebesgue's dominated convergence theorem, [2], Theorem 2.4.4, page 72, by establishing that the integrand

$$n^{r}h^{-(r+1)}((P(|X-x| < h|x|))^{n-1} - p_{x}^{n-1})$$
(24)

for some choice of δ and all $h \le \delta$, is pointwise decreasing in n for sufficiently large n and pointwise converging to 0 as n tends to infinity. To this end, define $\pi_x = P(|X - x| < h|x|)$, $g_x(y) = y^r(\pi_x^y - p_x^y)$, $\lambda_1 = -\log \pi_x$, $\lambda_2 = -\log p_x$. To see that pointwise convergence to 0 holds, note that for some δ and some $\eta > 0$,

$$\pi_x < 1 - \eta$$
 for all x and all $h < \delta$. (25)

Condition (25) indeed prevails, except in the case where F is degenerate with total mass at a single point. Given δ sufficiently small, $\pi_x^{n-1} - p_x^{n-1}$ therefore decays exponentially in n, which yields pointwise convergence to 0 of (24). The decreasing behaviour is equivalent to the existence of $y_0 \ge 0$ such that

$$g_x(y_1) \ge g_x(y_2)$$
 for all y_1, y_2 such that $y_0 \le y_1 \le y_2$. (26)

To verify (26), note that

$$g_{x}'(y) = -y^{r}(\lambda_{1}e^{-\lambda_{1}y} - \lambda_{2}e^{-\lambda_{2}y}) + ry^{r-1}(e^{-\lambda_{1}y} - e^{-\lambda_{2}y}) = f_{y}(\lambda_{2}) - f_{y}(\lambda_{1})$$
 (27)

with $f_y(\lambda) := e^{-\lambda y} (\lambda y^r - ry^{r-1})$ and furthermore that

$$f_{y}'(\lambda) = e^{-\lambda y} (y^{r} - \lambda y^{r+1} + ry^{r}) = e^{-\lambda y} ((r+1)y^{r} - \lambda y^{r+1}).$$
 (28)

We verify (26) using the fact that $f_y'(\lambda) < 0$ for $\lambda_1 \le \lambda \le \lambda_2$, which, by (28), is satisfied for $y > y_0$, provided $\lambda_1 > \eta$ for some $\eta > 0$. The latter condition is equivalent to (25).

Proof of Lemma 6.2. It follows from Corollary 6.1 with $U_n = S_n^2 / V_n^2$ that

$$\lim_{n \to \infty} \frac{r}{2} \int_0^n z^{r/2 - 1} P(U_n > z) dz = E|T|^r \quad \text{for all } r > 0.$$
 (29)

Define $E_n = \{X_1 = X_2 = \dots = X_n \neq 0\}$ so that $P(U_n > z) = P(U_n^* > z) + P(E_n)$ for 0 < z < n. The desired conclusion is hence established by showing that for all r > 0,

$$\lim_{n \to \infty} n^{r/2+1} \int_0^{n-\delta} z^{r/2-1} P(E_n) (n-z)^{-(r/2+1)} dz = 0, \tag{30}$$

$$\lim_{n \to \infty} \int_0^{n-\delta} z^{r/2-1} P(U_n > z) \left(n^{r/2+1} (n-z)^{-(r/2+1)} - 1 \right) dz = 0, \tag{31}$$

$$\lim_{n \to \infty} \int_{n-\delta}^{n} z^{r/2-1} P(U_n > z) dz = 0.$$
 (32)

Starting with (30), let $\{a_k\}_{k\geq 1}$ be a denumeration of all non-zero points attributed mass by F and define $p_k = P(X = a_k)$, $p = \sup_{k\geq 1} p_k$. It follows that p < 1 since X is not constant. Moreover,

$$P(E_n) = \sum_{k>1} p_k^n \le p^{n-1} \sum_{k>1} p_k \le p^{n-1}.$$

This shows that $P(E_n)$ decays exponentially in n. However, the quantities

$$n(n-1)^{r/2} \int_0^{n-\delta} z^{(r-2)/2} (n-z)^{-(r+2)/2} dz$$

are all finite and grow with polynomial rate as n grows. Conclusion (30) follows. Statement (32) may be deduced from (29) in the following way:

$$\int_{n-\delta}^{n} z^{r/2-1} P(U_n > z) dz \le (n-\delta)^{-1} \int_{n-\delta}^{n} z^{r/2} P(U_n > z) dz \le (n-\delta)^{-1} C_{r+2},$$

where the constant C_{r+2} stems from the identity in (29) with r replaced by r+2. It remains to prove (31), which we split into

$$\lim_{n \to \infty} \int_0^1 z^{(r/2-1)} P(U_n > z) \left(n(n-1)^{r/2} (n-z)^{-(r/2+1)} - 1 \right) dz = 0, \tag{33}$$

$$\lim_{n \to \infty} \int_{1}^{n-\delta} z^{r/2-1} P(U_n > z) \left(n(n-1)^{r/2} (n-z)^{-(r/2+1)} - 1 \right) dz = 0.$$
 (34)

Statement (33) follows from Lebesgue's dominated convergence theorem, [2], Theorem 2.4.4, page 72. To verify (34), we introduce the notation

$$f_n(z) = z^{r/2-1} P(U_n > z) (n(n-1)^{r/2} (n-z)^{-(r/2+1)} - 1) I_{D_n},$$

$$D_n = \{ z : 1 \le z \le (n-\delta) \}, \qquad g_n(z) = z^r P(U_n > z) I_{D_n}, \qquad g(z) = z^r P(T^2 > z) I_{D_n}.$$

The desired conclusion (34) is now written as (36), while (37) follows from the assumptions, (29) and the elementary inequalities (35):

$$(n-1)/(z(n-z)) \le (n-1)/(\delta(n-\delta)) \le C \quad \text{when } z \in D_n,$$
 (35)

$$\lim_{n \to \infty} \int f_n = 0,\tag{36}$$

$$\int g_n \to \int g, \qquad g_n \to g, \qquad f_n \to 0, \qquad |f_n| \le C_1 g_n. \tag{37}$$

By a technique called *Pratt's lemma*, Fatou's lemma, [2], Theorem 2.4.3, page 72, and (37) then give

$$C_1 \int g = \int \liminf_n (C_1 g_n - f_n) \le \liminf_n \int (C_1 g_n - f_n) = C_1 \int g - \limsup_n \int f_n, \quad (38)$$

$$C_1 \int g = \int \liminf_n (C_1 g_n + f_n) \le \liminf_n \int (C_1 g_n + f_n) = C_1 \int g + \liminf_n \int f_n. \quad (39)$$

Statement (36) follows from (38) and (39).

Acknowledgements

I would like to thank my Ph.D. supervisor Allan Gut for guidance, encouragement and persistent reading of drafts. I also wish to express my gratitude to Professor Lennart Bondesson for offering valuable comments and criticism regarding [5] in connection with the defense of my Licentiate thesis.

References

- [1] Chistyakov, G.P. and Götze, F. (2004). Limit distributions of studentized means. Ann. Probab. 34 28–71. MR2040775
- [2] Cohn, D.L. (1980). Measure Theory. Boston, MA: Birkhäuser. MR0578344
- [3] Giné, E., Götze, F. and Mason, D.M. (1997). When is the Student *t*-statistic asymptotically standard normal? *Ann. Probab.* **25** 1514–1531. MR1457629
- [4] Gut, A. (2007). Probability: A Graduate Course, Corr. 2nd printing. New York: Springer. MR2125120
- [5] Jonsson, F. (2008). Existence and convergence of moments of Student's t-statistic. Licentiate thesis, U.U.D.M. Report 2008:18.

- [6] Praetz, P.D. (1972). The distribution of share price changes. J. Business 45 49-55.
- [7] Zabell, S.L. (2008). On Student's 1908 article "The probable error of a mean". With comments and a rejoinder by the author. *J. Amer. Statist. Assoc.* **481** 1–20. MR2394634

Received August 2009 and revised January 2010