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Multivariate extreme value theory assumes a multivariate domain of attraction condition for the distribution
of a random vector. This necessitates that each component satisfies a marginal domain of attraction condi-
tion. An approximation of the joint distribution of a random vector obtained by conditioning on one of the
components being extreme was developed by Heffernan and Tawn [12] and further studied by Heffernan
and Resnick [11]. These papers left unresolved the consistency of different models obtained by conditioning
on different components being extreme and we here provide clarification of this issue. We also clarify the
relationship between these conditional distributions, multivariate extreme value theory and standard regular
variation on cones of the form [0,∞] × (0,∞].
Keywords: asymptotic independence; conditional extreme value model; domain of attraction; regular
variation

1. Introduction

Classical multivariate extreme value theory (abbreviated as MEVT) captures the extremal depen-
dence structure between components under a robust multivariate domain of attraction condition
which requires that each marginal distribution belongs to the (maximum) domain of attraction
(hereafter abbreviated as DOA) of some univariate extreme value distribution. Extremal depen-
dence has been well studied, both in the case of asymptotic dependence and asymptotic indepen-
dence [6,7,15,16,18,24–29]. An innovative approach was provided by Heffernan and Tawn [12],
who approximated multivariate distributions by assuming that only one of the components was
in an extreme value domain of attraction and that this component was extreme. Their approach
allowed for a variety of examples of different types of asymptotic dependence and asymptotic
independence. Their statistical ideas were given a more mathematical framework by Heffernan
and Resnick [11] after slight changes in the assumptions which make the theory more probabilis-
tically viable.
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In [11], a bivariate random vector (X,Y ) is considered, where the distribution of Y is in the
DOA of an extreme value distribution Gγ , where, for γ ∈ R,

Gγ (x) = exp{−(1 + γ x)−1/γ }, 1 + γ x > 0. (1.1)

For γ = 0, the distribution function is interpreted as G0(x) = exp{−e−x}, x ∈ R. Instead of
conditioning on Y being large, their theory was developed under the equivalent assumption of
the existence of a vague limit for the modified joint distribution of a suitably scaled and centered
(X,Y ). The precise definition (Definition 1.1) is given in Section 1.2 and defines the conditional
extreme value (CEV) model. The CEV model differs from classical MEVT and does not assume
that the distribution of (X,Y ) is in a multivariate DOA. Only one of the marginal distributions is
assumed to be in the univariate DOA of an extreme value distribution.

The CEV model is useful in two contexts. In the first, the MEV model holds, but asymptotic
independence makes it difficult to compute probabilities of risk regions; in this case, the CEV
model, if applicable, provides a supplementary assumption to the MEV model and thus may
provide better risk estimates. Therefore, both the MEV and CEV models are assumed to hold.
This is the way in which hidden regular variation may be used; see [28] for some background.
In the other context, we do not assume that (X,Y ) is in a multivariate domain of attraction and
the CEV assumptions may still hold; the CEV model is then a standalone model. In a study of
Internet traffic data [3,17], one variable was found to be not in any univariate DOA and hence
MEVT was not applicable, but the conditional model was still valid.

In Section 3, we complete the study of the relationship between multivariate extreme value
theory and conditioned limit theory begun in [11]. The connection is through the theory of regular
variation on cones. The defining relation of MEVT can be standardized to produce standard
regular variation on the cone [0,∞]2 \ {(0,0)}. The limit relation in conditioned limit theory can
sometimes be standardized to regular variation on the smaller cone [0,∞] × (0,∞]. We explain
the precise circumstances when the CEV model can be standardized to regular variation.

Section 2 studies a consistency question for conditional models related to one raised in [12]
and its discussion following the paper. In practice, for a vector (X,Y ), one has a choice of
whether to condition on X being large or Y being large and, depending on the choice, different
models are potentially possible. We show that if conditional approximations are possible no mat-
ter which variable is chosen as the conditioning variable, then, in fact, the joint distribution is in
a classical multivariate DOA of an extreme value law. A related issue is when the CEV model
can be extended to a classical MEV model; Section 4 provides conditions for this. Section 5
relates hidden regular variation [18,26] and the CEV model under the assumption of multivari-
ate extreme value DOA for (X,Y ) with asymptotic independence. Finally, Section 6 presents
some examples in order to demonstrate features of the conditioned models and the final section
supplies some deferred proofs.
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1.1. Notation

Below, we list some commonly used notation and provide some references.

Rd+ [0,∞)d . Also, similarly denote R
d

+ = [0,∞]d ,R
d = [−∞,∞]d .

E∗ A nice subset of the compactified finite-dimensional Euclidean space,
often denoted E with different subscripts and superscripts, as required.

E ∗ The Borel σ -field of the subspace E∗.
M+(E∗) The class of Radon measures on Borel subsets of E∗.
f ← The left-continuous inverse of a monotone function f .

For an increasing function, f ←(x) = inf{y :f (y) ≥ x}.
For a decreasing function, f ←(x) = inf{y :f (y) ≤ x}.

RVρ The class of regularly varying functions with index ρ; see [1,6,10,29,32].

� The class of �-varying functions; see [1,29].
E(γ ) {x : 1 + γ x > 0} for γ ∈ R.

E
(γ )

The closure on the right of the interval E(γ ).

E(γ ) The closure on both sides of the interval E(γ ).

E(λ,γ ) E(λ) × E(γ ) \ {(− 1
λ
,− 1

γ
)}.

E Usually [0,∞]2 \ {0}.
E0 Usually (0,∞]2.

E� [0,∞] × (0,∞]. Similarly, E� = (0,∞] × [0,∞].
v→ Vague convergence of measures; see [13,22].

Gγ An extreme value distribution given by (1.1) with parameter γ ∈ R.
D(Gγ ) The DOA of the extreme value distribution Gγ ; in other words, the set of F ’s

satisfying (1.6). For γ > 0, F ∈ D(Gγ ) is equivalent to 1 − F ∈ RV−1/γ .

1.2. Model setup and basic assumptions

Our model assumptions follow those of [11].

Definition 1.1 (Conditional extreme value model). Suppose that (X,Y ) ∈ R2 is a random vector
and that there exist functions α(t) > 0, a(t) > 0, β(t), b(t) ∈ R, a constant γ ∈ R and a non-null

Radon measure μ on Borel subsets of [−∞,∞] × E
(γ )

such that

(a) tP
((

X − β(t)

α(t)
,
Y − b(t)

a(t)

)
∈ ·

)
v→ μ(·) in M+

([−∞,∞] × E
(γ ))

. (1.2)

Assume that μ satisfies the following conditional non-degeneracy conditions: for each y ∈ Eγ ,

(b) μ
([−∞, x] × (y,∞]) is not a degenerate distribution in x, (1.3)

(c) μ
([−∞, x] × (y,∞]) < ∞. (1.4)
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Additionally, we assume that

(d) H(x) := μ
([−∞, x] × (0,∞]) is a probability distribution. (1.5)

We say that (X,Y ) follows a conditional extreme value model (abbreviated CEV model) if con-
ditions (1.2)–(1.5) hold. We write (X,Y ) ∈ CEV(α,β, a, b, γ ) and often ignore the parameters
for generic usage.

Since convergence in (1.2) holds in M+([−∞,∞]×E
(γ )

), it also holds without the X variable
and so if the marginal distribution of Y is F , then F ∈ D(Gγ ) for γ ∈ R, as defined in (1.1); that
is, as t → ∞,

t
(
1 − F

(
a(t)y + b(t)

)) = tP
(

Y − b(t)

a(t)
> y

)
→ (1 + γy)−1/γ , 1 + γy > 0. (1.6)

Also, conditions (1.2), (1.3) and (1.4) imply that if (x,0) is a continuity point of μ(·), then

P
(

X − β(t)

α(t)
≤ x

∣∣∣Y > b(t)

)
→ H(x) = μ

([−∞, x] × (0,∞]) as t → ∞, (1.7)

that is, a conditioned limit holds. This accounts for the name conditional extreme value model
and we can think of Y , the variable in a univariate DOA, as the conditioning variable. Under the
above assumptions, a convergence to types argument [11] yields properties of the scaling and
centering functions: there exist functions ψ1,ψ2 : R+ 
→ R such that for c > 0,

lim
t→∞

α(tc)

α(t)
= ψ1(c), lim

t→∞
β(tc) − β(t)

α(t)
= ψ2(c). (1.8)

This implies that ψ1(c) = cρ for some ρ ∈ R ([6], Theorem B.1.3), and either ψ2 ≡ 0 or ψ2(c) =
k(cρ − 1)/ρ for some k �= 0 ([6], Theorem B.2.1).

1.3. Comparison with the model proposed by Heffernan and Tawn

The model discussed in [11] was motivated by ideas of Heffernan and Tawn [12]. The basic
premise is that in classical MEVT, probabilities of extreme sets (values which are very high or
very low) are calculated under the existence of a joint extreme value limit. However, in practice,
we sometimes observe that only a subset of the components is extreme or, alternatively, we are
interested in regions where all extreme values do not occur together. Let us look at a descrip-
tion of Heffernan and Tawn’s model with d = 2 for simplicity and ease of comparison with the
formulation used in this paper.

(1) Assume that X = (X1,X2) is a random vector with joint distribution FX and marginal
distributions F1 and F2. Also, assume that we have n i.i.d. copies of X.

(2) Assume that C is an extreme set in the sense that, for any element in C, at least one of its
components is extreme. Define

Ci = C ∩ {x ∈ Rd :Fi(xi) > Fj (xj )}, i = 1,2, j �= i.
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Also, define vXi
= infx∈Ci

(xi), i = 1,2, and assume that each P(Xi > vXi
) is close to 1,

making the Ci ’s extreme and hence making C an extreme set. We then write

P(X ∈ C) = P(X ∈ C1) + P(X ∈ C2) =
2∑

i=1

P(X ∈ Ci |Xi > vXi
)P(Xi > vXi

).

(3) The Xi ’s are marginally assumed to be extreme-valued. A generalized Pareto distribution
is fitted to each of the marginals above a threshold, in the case above, vXi

; see [23]. Below
the threshold, the marginals are approximated by an empirical distribution. Denote the
estimate of the marginal distributions by F̂i .

(4) All the marginals are transformed to Gumbel marginals using the transformation

Yi = − log[− log{F̂i(xi)}], i = 1,2.

(5) In order to estimate P(Y ∈ Ci |Yi > vyi
) (the transformed case), a conditioned limit is

assumed, as follows: there exist normalizing vectors a1(y), a2(y), b1(y), b2(y) ∈ R such
that

lim
yi→∞ P

(
Yj ≤ aj (yi)yj + bj (yi)|Yi = yi

) = Gi(yj ), i = 1,2, yj ∈ R. (1.9)

(6) The parameters ai(y) and bi(y) are estimated by assuming a parametric structural form;
see [12] for details.

For the model defined in [11] and used in this paper:

(1) We start with the same assumption (1).
(2) We focus on one of the extreme sets C1 and C2; without loss of generality, assume this

is C2. We assume only one of the marginals X2 is extreme-valued. In [12], all of the
marginals are extreme-valued.

(3) Instead of fitting an exact GPD over a threshold for the marginal distribution, we assume
that X2 ∈ D(G), in the sense of (1.6).

(4) Instead of Gumbel marginals, we transform to Pareto marginals for X2, which facilitates
the use of tools from standard regular variation theory. Thus, the transformation here is
X∗

2 = 1/(1 − F(X2)) and X1 remains unchanged.
(5) In order to estimate P((X1,X

∗
2) ∈ C2|X∗

2 > x2), a conditioned limit is assumed: there exist
normalizations α(x2) > 0, β(x2) ∈ R such that

lim
x2→∞ P

(
X1 ≤ α(x2)x1 + β(x2)|X∗

2 > x2
) = G(x1), x1 ∈ R. (1.10)

This is equivalent to (1.2) when Y = X∗
2 has been standardized to a Pareto margin.

A technique for estimating model parameters has been discussed in [9]. Further, if one makes
precise what version of the conditional distribution is being used in (1.9), then, as expected, it is
shown in [30] that (1.9) implies (1.10), but (1.10) may hold without (1.9) holding.
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2. A consistency result for conditional extreme value models

The CEV model defined in Section 1.2 is not symmetric in X and Y . So, given bivariate data,
which component should serve as the conditioning variable? A similar issue was raised in [12]
and [11]. Heffernan and Tawn [12] considered (X,Y ) in a multivariate DOA with asymptotic
independence, introduced the supplementary assumption that a conditional model was also valid
and raised the question of criteria for deciding which variable to make the conditioning variable.
If either variable could be made the conditioning variable, then they considered self-consistency
of the two conditional models. Assuming densities, they provided a natural constraint of equality
of joint limiting densities under each model for the common region where both models were
defined. We consider a related problem without assuming that (X,Y ) has a distribution in a
multivariate domain.

Definition 1.1 does not assume that the distribution of (X,Y ) is in a multivariate DOA.
Suppose that X ∼ FX,Y ∼ FY . Assume that (X,Y ) ∈ CEV(α,β, a, b, γ ) with limit measure
μX,Y>(·) and FY ∈ D(Gγ ), and also (Y,X) ∈ CEV(c, d,χ,φ,λ) with limit measure μY,X>(·)
and FX ∈ D(Gλ). Assuming both conditional models implies that (X,Y ) is in the DOA of a
bivariate extreme value distribution G. If the limit distribution G is not a product measure, then
μX,Y> and μY,X> are equal up to linear transformation on subsets that are defined on the intersec-
tion of the domains of both measures. Recall that if, marginally, FX ∈ D(Gλ) and FY ∈ D(Gγ ),
then we do not necessarily have (X,Y ) ∈ D(G) for a bivariate extreme value distribution G; see
[31]. The precise consistency statement is next; the proof is deferred to Section 7.

Theorem 2.1. Suppose we have a bivariate random vector (X,Y ) ∈ R2, non-negative func-
tions α(·), a(·), χ(·), c(·) and real-valued functions β(·), b(·),φ(·), d(·) such that (X,Y ) ∈
CEV(α,β, a, b, γ ), that is,

tP
[(

X − β(t)

α(t)
,
Y − b(t)

a(t)

)
∈ ·

]
v→ μX,Y>(·) in M+

([−∞,∞] × E
(γ ))

(2.1)

and (Y,X) ∈ CEV(c, d,χ,φ,λ), that is,

tP
((

X − φ(t)

χ(t)
,
Y − d(t)

c(t)

)
∈ ·

)
v→ μY,X>(·) in M+

(
E

(λ) × [−∞,∞]) (2.2)

for λ,γ ∈ R, where both μX,Y> and μY,X> satisfy conditional non-degeneracy conditions cor-
responding to (1.3) and (1.4). Then (X,Y ) is in the DOA of a multivariate extreme value distrib-
ution on E(λ,γ ), that is,

tP
((

X − φ(t)

χ(t)
,
Y − b(t)

a(t)

)
∈ ·

)
v→ μX,Y (·) in M+

(
E(λ,γ )

)
, (2.3)

where μX,Y (·) is a non-null Radon measure on E(λ,γ ).

Remark 2.1. Theorem 2.1 does not impose a restriction on the scaling and centering functions of
X and Y , which means that the joint conditional convergences (2.1) and (2.2) impose sufficient
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regularity so that (X,Y ) belongs to a joint DOA. Equation (2.3) says that μX,Y is the exponent
measure of an extreme value distribution G. The following are further consequences from the
proof of Theorem 2.1:

(1) if (X,Y ) is not asymptotically independent, then we get α ∼ k1χ and c ∼ k2a for some
non-zero constants k1, k2, hence μX,Y> and μY,X> are equal up to linear transformations;

(2) if (X,Y ) is asymptotically independent, then limt→∞ α(t)/χ(t) = 0, limt→∞ c(t)/

a(t) = 0.

Consistency: Standard regularly varying case. We were led to Theorem 2.1 by considering the
special case of standard regular variation where (X,Y ) satisfies (X,Y ) ∈ CEV(α(t) = t, β(t) =
0, a(t) = t, b(t) = 0, γ = 1), (Y,X) ∈ CEV(α(t) = t, β(t) = 0, a(t) = t, b(t) = 0, γ = 1) and
the vague convergence in (1.2) is regular variation on the cone E� = [0,∞] × (0,∞] ([4,28],
[27], page 173). We can show [2] that if

tP[t−1(X,Y ) ∈ ·] v→ μX,Y>(·) in M+(E�), (2.4)

tP[t−1(X,Y ) ∈ ·] v→ μY,X>(·) in M+(E�), (2.5)

where μX,Y> and μY,X> satisfy the conditional non-degeneracy conditions (1.3) and (1.4), then
(X,Y ) is standard regularly varying on E := [0,∞]2 \ {0}, that is,

tP
[(

X

t
,
Y

t

)
∈ ·

]
v→ μX,Y (·) in M+(E), (2.6)

where μX,Y is a Radon measure on E such that

μX,Y |E�(·) = μX,Y>(·) on E� and μX,Y |E�(·) = μY,X>(·) on E�.

A proof and discussion of the absolutely continuous case is in [2].

Example 1. Suppose that (X,Y ) is a bivariate random variable with joint density

fX,Y (x, y) = 4x

(x2 + y)3
+ 4y

(x + y2)3
, x ≥ 1, y ≥ 1.

The following hold as t → ∞:

t2fX(tx) → 2

x2
, t2fY (ty) → 2

y2
, x, y > 0,

t5/2fX,Y

(
tx,

√
ty

) → 4y

(x + y2)3
=: g1(x, y) ∈ L1(E�),

t5/2fX,Y

(√
tx, ty

) → 4x

(x2 + y)3
=: g1(x, y) ∈ L1(E�).
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This means that the conditions of Theorem 2.1 hold. Note that we here have identical Pareto
marginals. We are thus led to the analogs of (1.2) on different cones:

tP
(

X√
t

≤ x,
Y

t
> y

)
→ 1

y
− 1

y + x2
, x ≥ 0, y > 0,

tP
(

X

t
> x,

Y√
t

≤ y

)
→ 1

x
− 1

x + y2
, x > 0, y ≥ 0,

tP
((

X

t
,
Y

t

)
∈ ([0, x] × [0, y])c

)
→ 1

x
+ 1

y
, x > 0, y > 0.

3. The CEV model and standard regular variation

As remarked after Theorem 2.1, questions about the general conditional model are effectively
analyzed by starting with standard regular variation on the cones E� or E�. It is theoretically
useful to know when standardization of the conditional extreme value model is possible. A partial
answer appears in [11], Section 2.4, and we consider this issue in more detail, starting with a
review and definition of standardization [6,7,27,29].

3.1. Standardization

Standardization is the process of marginally transforming a random vector X into a different
vector Z∗, X 
→ Z∗, so that the distribution of Z∗ is standard regularly varying on a cone E∗;
that is, for some Radon measure μ∗(·),

tP[t−1Z∗ ∈ ·] v→ μ∗(·) in M+(E∗). (3.1)

Depending on the cone, one or more components of Z∗ are asymptotically Pareto. For classi-
cal multivariate extreme value theory, each component is asymptotically Pareto and E∗ = E =
[0,∞] \ {0}. The technique is used in classical multivariate extreme value theory to character-
ize multivariate domains of attraction and dates back to at least [7]; see also [6,19,20,27] and
[29], Chapter 5. Standardization is analogous to the copula transformation, but is better suited to
studying limit relations [14].

In Cartesian coordinates, the limit measure in (3.1) has the scaling property

μ∗(c·) = c−1μ∗(·), c > 0. (3.2)

This scaling in Cartesian coordinates translates to a product limit when expressed in polar coor-
dinates. An angular measure exists, allowing the characterization of limits

μ∗
{

x :‖x‖ > r,
x

‖x‖ ∈ �

}
= r−1S(�)

for Borel subsets � of the unit sphere in E∗.
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In classical multivariate extreme value theory, S is a finite measure which we may take to be
a probability measure without loss of generality. However, when E∗ = E�, S is not necessar-
ily finite because absence of the horizontal axis boundary in E� implies the unit sphere is not
compact.

Here is an explicit description of standardization. Suppose that X = (X1,X2, . . . ,Xd) is a
random vector in Rd which satisfies

tP
[(

X1 − β1(t)

α1(t)
,
X2 − β2(t)

α2(t)
, . . . ,

Xd − βd(t)

αd(t)

)
∈ ·

]
v→ μ(·) in M+(D) (3.3)

for some D ⊂ R
d
, αi(t) > 0, βi(t) ∈ R for i = 1, . . . , d . Suppose that we have f = (f1, . . . , fd)

such that, for i = 1, . . . , d :

(a) fi : range of Xi → (0,∞);
(b) fi is monotone;
(c) �K > 0 such that |fi | ≤ K .

Then f standardizes X if Z∗ = f(X) = (fi(Xi), i = 1, . . . , d) satisfies (3.1). We call f the stan-
dardizing function and say (3.1) is the standardization of (3.3).

For the conditional model defined in Definition 1.1 in Section 1.2, where F , the distribution
of Y , satisfies F ∈ D(Gγ ), we can always use b(·) = (1/(1 − F))←(·) to standardize Y and
Y ∗ = b←(Y ) is the standardization of Y ; see [11].

3.2. When can the conditional extreme value model be standardized?

Suppose that (X,Y ) satisfies Definition 1.1 and, in particular, (1.2) holds. Standardization in (1.2)
is possible unless (ψ1,ψ2) = (1,0), which is equivalent to the limit measure being a product
measure [11]. The converse is also true. Consequently, when the limit measure is not a product
measure, we can reduce to standard regular variation on the cone E� and, conversely, we can
think of the general conditional model as a transformation of standard regular variation on E�.

We begin by showing that when we have standardized convergence on E�, the limit measure
cannot be a product measure.

Lemma 3.1. Suppose that (X,Y ) is standard regularly varying on the cone E� such that

tP[t−1(X,Y ) ∈ ·] v→ μ(·) in M+(E�) (3.4)

for some non-null Radon measure μ(·) on E� satisfying the conditional non-degeneracy condi-
tions as in (1.3) and (1.4). Then μ(·) cannot be a product measure.

Proof. If μ is a product measure, then we have

μ
([0, x] × (y,∞]) = G(x)y−1 for x ≥ 0, y > 0 (3.5)
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for some finite distribution function G on [0,∞). Now, (3.4) implies that μ is homogeneous of
order −1, that is,

μ(c�) = c−1μ(�) ∀c > 0, (3.6)

where � is a Borel subset of E�. Therefore, using (3.5),

μ
(
c([0, x] × (y,∞])) = μ

([0, cx] × (cy,∞]) = G(cx)(cy)−1 = c−1G(cx)y−1.

Moreover, using (3.5) and (3.6), μ(c([0, x] × (y,∞])) = c−1G(x)y−1 and, therefore, G(cx) =
G(x) ∀c > 0, x > 0. Hence, for fixed y ∈ E(γ ), c > 0, x > 0,

μ
([0, cx] × (y,∞]) = G(cx)y−1 = G(x)y−1 = μ

([0, x] × (y,∞]).
Thus, μ becomes a degenerate distribution in x, contradicting our conditional non-degeneracy
assumptions and, consequently, μ(·) cannot be a product measure. �

Suppose we have a general CEV model as in Definition 1.1 with product limit measure. We
show this CEV model cannot be standardized to regular variation on some cone C ⊂ E (C = E�
in our case). Since Definition 1.1 implies that Y can always be standardized, in the following, we
assume that Y ∗ is the standardized version of Y and we only consider the problem of standardiz-
ing X.

Theorem 3.2. Suppose that X ∈ R, Y ∗ > 0 are random variables such that for functions α(·) >

0, β(·) ∈ R, we have, as t → ∞,

tP
[(

X − β(t)

α(t)
,
Y ∗

t

)
∈ ·

]
v→ G × ν1(·) in M+

([−∞,∞] × (0,∞]), (3.7)

where ν1(x,∞] = x−1, x > 0, and G is some finite, non-degenerate distribution on R. Then there
does not exist a standardizing function, f (·) : range of X 
→ (0,∞), in the sense of the discussion
after (3.3), such that

tP[t−1(f (X),Y ∗) ∈ ·] v→ μ(·) in M+(E�), (3.8)

where μ satisfies the conditional non-degeneracy conditions.

Proof. Note that Y ∗ is already standardized here. Suppose that there exists a standardization
function f (·) such that (3.8) holds. Without loss of generality, assume f (·) to be non-decreasing.
This implies that for μ-continuity points (x, y), we have

tP[f (X) ≤ tx, Y ∗ > ty] → μ
(
(−∞, x] × (y,∞]) (t → ∞),

which is equivalent to

tP
(

X − β(t)

α(t)
≤ f ←(xt) − β(t)

α(t)
,
Y ∗

t
> y

]
→ μ

(
(−∞, x] × (y,∞]) (t → ∞). (3.9)
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Since μ((−∞, x] × (y,∞]) < ∞ and is non-degenerate in x, we have, as t → ∞, that
(
f ←(xt) − β(t)

)
/α(t) → h(x) (3.10)

for some non-decreasing function h(·) which has at least two points of increase. Thus, (3.9) and
(3.10) imply that μ((−∞, x] × (y,∞]) = G(h(x)) × y−1. Hence, μ(·) is a product measure
which, by Lemma 3.1, is not possible. �

Summary. There follows a summary describing when standardization is possible and the rela-
tionship of standardization to the limit measure being a product. Part 2 is proved in Section 7.
Statistical methods for detecting when a CEV model is appropriate and whether the limit measure
is a product are given in [3]:

(1) Suppose that (X,Y ) satisfy Definition 1.1 so that the limits in (1.8) hold. If (ψ1,ψ2) �=
(1,0), then there exists a standardizing function f = (f1, f2) such that (X∗, Y ∗) =
(f1(X),f2(Y )) is standard regularly varying on E�,

tP[t−1(f1(X),f2(Y )) ∈ ·] v→ μ∗∗(·) in M+(E�)

and μ∗∗ is a non-null Radon measure satisfying the conditional non-degeneracy condi-
tions.

(2) Conversely, suppose that we have a bivariate random vector (X∗, Y ∗) ∈ R2+ satisfying

tP[t−1(X∗, Y ∗) ∈ ·] v→ μ∗∗(·) in M+(E�),

where μ∗∗ is a non-null Radon measure satisfying the conditional non-degeneracy condi-
tions. Consider functions α(·) > 0, β(·) ∈ R such that (1.8) holds with (ψ1,ψ2) �= (1,0).
There then exist functions a(·) > 0, b(·) ∈ R satisfying (1.6) and λ(·) ∈ R, γ ∈ R such that

tP
[(

λ(X∗) − β(t)

α(t)
,
b(Y ∗) − b(t)

a(t)

)
∈ ·

]
v→ μ̃(·) in M+

([−∞,∞] × E
(γ ))

, (3.11)

where μ̃ is a non-null Radon measure in [−∞,∞] × E
(γ )

satisfying the conditional non-
degeneracy conditions and b(Y ∗) ∈ D(Gγ ).

Remark 3.1. The previous summary applies to attempts to produce a standard pair by marginal
transformations. If one waives the requirement that only marginal transformations be used, more
is possible. Suppose that H is a non-degenerate probability and, in M+([−∞,∞] × (0,∞]),

tP
[(

X − β(t)

α(t)
,
Y ∗

t

)
∈ ·

]
v→ H × ν1(·).

Define X∗ = ((X − β(Y ∗))Y ∗)/α(Y ∗). Then [11] in M+([−∞,∞] × (0,∞]),

tP
(

X∗

t
≤ x,

Y ∗

t
> y

)
→

∫ 1/y

0
H(xv)dv = 1

x

∫ x/y

0
H(s)ds (t → ∞).
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The limit measure is homogeneous of order −1 and, thus, a transformation of (X,Y ∗) to a stan-
dard regularly varying pair exists, even when we have a limit measure which is a product. Note
that this transformation is more complex than just a marginal transformation and is not in the
sense of the discussion after (3.3).

3.3. A characterization of regular variation on E�

The CEV model with limit measure which is not a product can always be standardized to give
regular variation on E�, so we would like useful characterizations of such regular variation. Stan-
dard regular variation on E was characterized by [5] in terms of one-dimensional regular variation
of max-linear combinations and [26] provides a characterization of hidden regular variation in E
and E0 in terms of max- and min-linear combinations of the random vector. The following are
comparable results for E�.

Proposition 3.3. Suppose that (X,Y ) ∈ R2+ is a random vector and X > 0 almost surely. The
following are equivalent:

(1) (X,Y ) is standard multivariate regularly varying on E� with limit measure satisfying the
non-degeneracy conditions (1.3) and (1.4);

(2) for all a ∈ (0,∞], we have

lim
t→∞ tP

(
t−1min(aX,Y ) > y

) = c(a)y−1, y > 0, (3.12)

for some non-constant, non-decreasing function c : (0,∞] → (0,∞).

Proof. (2) ⇒ (1): Assume that (3.12) holds for some function c : (0,∞] → (0,∞). Then, for
x ≥ 0, y > 0,

tP
(

X

t
≤ x,

Y

t
> y

)
= tP

(
Y

t
> y

)
− tP

(
X

t
> x,

Y

t
> y

)

= tP(X > 0, Y > ty) − tP
(
(y/x)X > ty,Y > ty

)
= tP

(
min(a1X,Y) > ty

) − tP
(
min

(
(y/x)X,Y

)
> ty

)
(a1 := ∞)

→ c(∞)y−1 − c(y/x)y−1 (t → ∞)

=: μ([0, x] × (y,∞]).
Since c(·) is non-decreasing and non-constant, μ is a non-null Radon measure on E� and we have
our result. The non-degeneracy of μ follows from the fact that c(·) is a non-constant function.

(1) ⇒ (2): Assume now that (X,Y ) is standard multivariate regularly varying on E�. Hence,
there exists a non-degenerate Radon measure μ on E� such that

lim
t→∞ tP

(
X

t
≤ x,

Y

t
> y

)
= μ

([0, x] × (y,∞])
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and, for any a ∈ (0,∞],

tP
(

min(aX,Y )

t
> y

)
= tP

(
X

t
>

y

a
,
Y

t
> y

)
→ μ

((
y

a
,∞

]
× (y,∞]

)
(t → ∞)

= y−1μ

((
1

a
,∞

]
× (1,∞]

)
=: c(a)y−1,

by defining c(a) = μ((a−1,∞] × (1,∞]) and using the homogeneity property (3.2). Note that
the conditional non-degeneracy of μ implies that c is non-constant and non-decreasing. �

The condition “X > 0 almost surely” in Proposition 3.3 can be removed if we assume that
limt→∞ tP(Y > t) → 1.

3.4. Polar coordinates

Section 3.2 shows that when the limit measure is not a product measure, we can transform (X,Y )

to (X∗, Y ∗) such that

P[t−1(X∗, Y ∗) ∈ ·] v→ μ∗∗(·) in M+(E�). (3.13)

Hence, μ∗∗ satisfies (3.2) and, when written in polar coordinates, has a spectral form [11],
Section 3.2. We summarize some useful facts. For convenience, take the norm ‖(x, y)‖ =
|x| + |y|, (x, y) ∈ R2, although any other norm would suffice. A standard homogeneity argu-
ment [29], Chapter 5, yields, for r > 0 and � a Borel subset of [0,1),

μ∗∗
{
(x, y) ∈ [0,∞] × (0,∞] :x + y > r,

x

x + y
∈ �

}
(3.14)

= r−1μ∗∗
{
(x, y) ∈ [0,∞] × (0,∞] :x + y > 1,

x

x + y
∈ �

}
=: r−1S(�),

where S is a Radon measure on [0,1). For x > 0, y > 0, we get, from (3.15),

μ∗∗([0, x] × (y,∞]) = y−1
∫ x/(x+y)

0 (1 − w)S(dw) − x−1
∫ x/(x+y)

0 wS(dw). (3.15)

S need not be a finite measure on [0,1), but to guarantee that

H ∗∗(x) := μ∗∗([0, x] × (1,∞]) (3.16)

is a probability measure, we can see by taking x → ∞ in (3.15) that we need

∫ 1

0
(1 − w)S(dw) = 1. (3.17)

Conclusion: The class of conditional limits H ∗∗(x) = limt→∞ P [X∗/t ≤ x|Y ∗ > t] or limits
μ∗∗ in (3.13) is indexed by Radon measures S on [0,1) satisfying condition (3.17).
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Example 2 (Finite angular measure). If S is uniform on [0,1), S(dw) = 2 dw, then (3.17) is
satisfied and we have

μ∗∗([0, x] × (y,∞]) = x

y(x + y)
.

Putting y = 1, we get the Pareto distribution H ∗∗(x) = 1 − (1 + x)−1 for x > 0.

Example 3 (Infinite angular measure). The infinite measure S(dw) = (1 − w)−1 dw satisfies
equation (3.17) and we have

μ∗∗([0, x] × (y,∞]) = 1

y
+ 1

x
log

(
1 − x

x + y

)
.

Putting y = 1 yields H ∗∗(x) = 1 − x−1 log(1 + x), x > 0, and H ∗∗ is a continuously increasing
probability distribution function. One way to get a class of infinite angular measures satisfying
(3.17) is to take S(dw) = (1 − w)−1F(dw) for probability measures F(·) on [0,1).

4. Extending the CEV model to a multivariate extreme value
model

The CEV model assumes the existence of a vague limit in a smaller subset of Euclidean space
than that required by classical MEVT. Given a CEV model, when can it be extended to a MEVT
model? If such an extension of the CEV model is possible, then X will also have a distribution
in a DOA, so this will be assumed. The following is a sufficient condition for such an extension.

Proposition 4.1. Suppose that (X,Y ) satisfy Definition 1.1 and, in particular, (1.2)–(1.5). As-
sume that X ∈ D(Gλ) for some λ ∈ R so that there exist functions χ(t) > 0, φ(t) ∈ R such that

tP
(

X − φ(t)

χ(t)
> x

)
→ (1 + λx)−1/λ, 1 + λx > 0.

If limt→∞ α(t)/χ(t) exists and is finite and both limt→∞ β(t), limt→∞ φ(t) exist (≤ ∞) and are
equal, then (X,Y ) is in the domain of attraction of a multivariate extreme value distribution on
E(λ,γ ); that is, for a Radon measure μX,Y (·) on E(λ,γ ),

tP
[(

X − φ(t)

χ(t)
,
Y − b(t)

a(t)

)
∈ ·

]
v→ μX,Y (·) in M+

(
E(λ,γ )

)
.

Proof. For λ > 0, the proof is a consequence of cases 1 and 2 of Theorem 2.1. The other cases
can be proven similarly. �

We now discuss the extension of the CEV model to MEVT after first standardizing (X,Y ) to
(X∗, Y ∗), which is regularly varying on E�. We consider extending regular variation on E� to
an asymptotically tail equivalent regular variation on E, a notion we define next.
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Definition 4.1 (Tail equivalence in multivariate regular variation [18]). If X and Y are Rd+-

valued random vectors, then X and Y are tail equivalent on a cone C ⊂ R
d

+ if there exists a
scaling function b(t) ↑ ∞ such that

tP[X/b(t) ∈ ·] v→ ν(·) and tP[Y/b(t) ∈ ·] v→ cν(·)

in M+(C) for some c > 0 and non-null Radon measure ν on C. We write X
te(C)∼ Y .

Proposition 4.2. Suppose that (X∗, Y ∗) is standard regularly varying on E� with limit measure
ν� and angular measure S� on [0,1). The following are equivalent:

(1) S� is finite on [0,1);
(2) there exists a random vector (X#, Y #) defined on E = [0,∞]2 \ {0} such that

(X#, Y #)
te(E�)∼ (X∗, Y ∗)

and (X#, Y #) is multivariate regularly varying on E with limit measure ν such that ν|E� =
ν�.

Proof. (1) ⇒ (2): Define the polar coordinate transformation (R,�) = (X∗+Y ∗, X∗
X∗+Y ∗ ). From

Section 3.4 and (3.15), for r > 0 and � a Borel subset of [0,1), as t → ∞,

tP
[
R

t
> r,� ∈ �

]
→ r−1S�(�) = ν�

{
(x, y) ∈ E� :x + y > r,

x

x + y
∈ �

}
.

Since S� is finite on [0,1), the distribution of � is finite on [0,1). Assume that S�[0,1) = 1
so that it is a probability measure and extend the measure S� to [0,1] by putting S�({1}) = 0.
Define R0 and �0 to be independent. �0 has distribution given by the extended S� on [0,1] and
R0 has the standard Pareto distribution. Define (X#, Y #) = (R0�0,R0(1 − �0)), so (X#, Y #) is
regularly varying on E with standard scaling and limit measure ν, where ν|E� = ν�.

(2) ⇒ (1): Referring to (3.15), note that S�([0,1)) = ν�{(x, y) ∈ E� : x + y > 1}. Since
(X#, Y #) is regularly varying on E, we have

tP(X# + Y # > t) → ν{(x, y) ∈ E� :x + y > 1} < ∞.

However,

ν{(x, y) ∈ E� :x + y > 1} = ν�{(x, y) ∈ E� :x + y > 1} = S�([0,1)).

Hence, S� is finite on [0,1). �

5. The CEV model and hidden regular variation

A vector (X∗, Y ∗) whose distribution is standard bivariate regularly varying on E possesses
hidden regular variation (HRV) [26] if there exists a Radon measure ν0 �= 0 on E0 = (0,∞] ×
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(0,∞] and a non-decreasing function a0(t) ↑ ∞ with t/a0(t) → ∞, such that, in M+(E0),

tP
(
a−1

0 (t)(X∗, Y ∗) ∈ ·) v→ ν0(·).

If hidden regular variation holds, then X∗ and Y ∗ must be asymptotically independent,

ν∗∗([0, (x, y)]c) = x−1 + y−1, x, y > 0.

Built into the definition of HRV is regular variation on E; our formulation of the CEV model,
when it can be standardized, does not require regular variation on E, but only on E�. Therefore,
comparisons between HRV and the CEV model must be carefully posed.

Suppose that (X,Y ) ∈ D(G) for a bivariate extreme value distribution G. If X and Y are as-
ymptotically dependent, then the CEV model holds with either X or Y as conditioning variable.
The centering and scaling functions for CEV can be the same ones as for MEV. We can standard-
ize (X,Y ) 
→ (X∗, Y ∗), so (X∗, Y ∗) is standard regularly varying on E with limit measure ν∗∗,
but asymptotic dependence implies that hidden regular variation cannot hold.

It is possible for HRV to hold without a CEV model being valid.

Example 4. Suppose that (X∗, Y ∗) are random variables such that for α > 1 and x, y ≥ 1,

P
[
(X∗, Y ∗) ∈ ([0, (x, y)])c] = [x−1 + y−1 + (xα ∧ yα)−1]/3.

Asymptotic independence and HRV hold for (X∗, Y ∗) with a0(t) = t1/α . The CEV model does
not hold, whatever normalization we choose; if a limit holds, it is degenerate.

The following are comments on the relations between MEVT, the CEV model and HRV:
MEVT is equivalent via standardization to regular variation on E. The CEV model, if standard-
ization is possible, is equivalent to regular variation on E�. Hidden regular variation requires
standard regular variation on E and regular variation of lower order on E0. For a pair (X∗, Y ∗)
which is standard regularly varying on E:

• asymptotic dependence of (X∗, Y ∗) implies that the CEV model holds, but HRV does not;
the requirement that a0(t) be of lower order than t fails;

• the presence of HRV does not imply that the CEV model holds;
• we conjecture that if CEV holds with asymptotic independence, then HRV must hold; this

is evident in several examples, but we have no proof to turn this conjecture into fact.

More on HRV and generalizations to higher dimensions can be found in [21].

6. Examples

This section presents examples that illustrate how the CEV model differs from the usual multi-
variate extreme value model.
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Example 5. This example emphasizes that different scaling and centering functions are required
for different cones. We will consider a bivariate random vector which is multivariate regularly
varying on E with asymptotic independence. We then show that it possesses hidden regular vari-
ation (see Section 5) and also CEV limits under different scalings. Let X,Y be i.i.d. Pareto(1)

random variables. Let B be a Bernoulli random variable with P(B = 0) = P(B = 1) = 0.5, U a
Uniform(0,1) random variable and suppose that X,Y,B,U are all independent. Define

Z = (Z1,Z2) = B(UX,X2) + (1 − B)(Y 2,UY ).

As t → ∞, observe that the following hold:

(i) in M+(E),

tP
[

Z
t2

∈ ([0, x] × [0, y])c
]

→ 1

2

[
1√
x

+ 1√
y

]
, x ∧ y > 0; (6.1)

(ii) in M+(E0),

tP
[

Z
t

∈ (x,∞] × (y,∞]
]

→ 1

2

[
1

x
+ 1

y

]
, x ∧ y > 0; (6.2)

(iii) in M+(E�), the limit is not a product measure and we have

tP
[(

Z1

t
,
Z2

t2

)
∈ [0, x] × (y,∞]

]
→ 1

2

[
1√
y

− 1

2x

]
+
, x ∧ y > 0; (6.3)

(iv) similarly, in M+(E�), the limit is still not a product measure and we have

tP
[(

Z1

t2
,
Z2

t

)
∈ (x,∞] × [0, y]

]
→ 1

2

[
1√
x

− 1

2y

]
+
, x ∧ y > 0. (6.4)

This provides an example for the validity of Theorem 2.1. The example holds even if we ignore
the random variable U , but then the distribution of Z concentrates on two parabolic lines re-
stricted to [0,∞)2. Also, note that the limit measure for (i) concentrates on the lines through 0,
the limit measure in (ii) concentrates on the lines through ∞ and, in (iii) (and, similarly, (iv)),
the limit measure does not concentrate on the boundaries. This final feature can also be observed
in Example 6.

Example 6 (Example 1 continued). Recall Example 1. We had a bivariate joint density for
(X,Y ) and in the different cones, we have convergence with different normalizations (as t → ∞):

in M+(E) : tP
((

X

t
,
Y

t

)
∈ ([0, x] × [0, y])c

)
→ 1

x
+ 1

y
, x > 0, y > 0,

in M+(E0) : tP
(

X√
t

> x,
Y√
t

> y

)
→ 1

x2
+ 1

y2
, x > 0, y > 0,
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in M+(E�) : tP
(

X√
t

≤ x,
Y

t
> y

)
→ 1

y
− 1

y + x2
, x ≥ 0, y > 0,

in M+(E�) : tP
(

X

t
> x,

Y√
t

≤ y

)
→ 1

x
− 1

x + y2
, x > 0, y ≥ 0.

Example 7. Suppose that (X,Y ) has the following distribution generated by an Archimedean
copula:

F(x, y) := (1 − 1/x)(1 − 1/y)

(1 + 1/(xy))
, x, y ≥ 1.

Clearly, X and Y are marginally Pareto(1) random variables and, for x, y > 0,

tP
[
t−1(X,Y ) ∈ [0, (x, y)]c] = t

(
1 − F(tx, ty)

) → x−1 + y−1 (t → ∞).

Hence, asymptotic independence holds and, for x, y > 0,

tP[X > t1/3x,Y > t1/3y] → 1

xy

(
1

x
+ 1

y

)
(t → ∞),

which implies hidden regular variation. We also have the CEV model holding with a limit product
measure since

tP[X ≤ x,Y > ty] → (1 − x−1)y−1 (t → ∞).

Example 8. This example gives a class of limit distributions on E� indexed by probability dis-
tributions on [0,∞]. Suppose that R is a Pareto random variable on [1,∞) with parameter 1 and
ξ is a random variable with distribution G(·) on [0,∞]. Assume that ξ and R are independent
and define (X,Y ) = (Rξ,R). Then, for y > 0, x ≥ 0 and ty > 1,

tP
[
X

t
≤ x,

Y

t
> y

]
= tP

[
Rξ

t
≤ x,

R

t
> y

]
= t

∫ ∞

ty

P
[
ξ ≤ tx

r

]
r−2 dr

=
∫ ∞

y

P
[
ξ ≤ x

s

]
s−2 ds =

∫ ∞

y

G

(
x

s

)
s−2 ds

= 1

x

∫ x/y

0
G(s)ds

= μ
([0, x] × (y,∞]).

This can be expressed in polar coordinates. The angular measure S(·) on E� is

S([0, η]) = μ

{
(u, v) :u + v > 1,

u

u + v
≤ ξ

}
, 0 ≤ η < 1.
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Hence, we have

tP
[
X + Y

t
> 1,

X

X + Y
≤ η

]

= tP
[
Rξ + R

t
> 1,

Rξ

Rξ + R
≤ η

]
= tP

[
R(1 + ξ)

t
> 1, ξ ≤ η

1 − η

]

= t

∫
0≤s≤η/(1−η)

P
[
R

t
(1 + s) > 1

]
G(ds) = t

∫
0≤s≤η/(1−η)

(
t

1 + s
∨ 1

)−1

G(ds)

=
∫

0≤s≤η/(1−η)

(1 + s)G(ds)

for t > 1/(1 − η). However, the left-hand side goes to μ{(u, v) :u+ v > 1,
y

u+v
≤ ξ} = S([0, η])

as t → ∞ and, thus,

S([0, η]) =
∫

0≤s≤η/(1−η)

(1 + s)G(ds), 0 ≤ η < 1.

Hence, S is a finite angular measure if and only if G has first moment.

7. Proofs

In this section, we provide proofs of some of the results given in the previous sections.

7.1. Proof of Theorem 2.1

Assume that λ > 0, γ > 0; other cases can be dealt with similarly. From (2.1) and (2.2), respec-
tively, we get

tP
(

Y − b(t)

a(t)
> y

)
→ (1 + γy)−1/γ , 1 + γy > 0, (7.1)

tP
(

X − φ(t)

χ(t)
> x

)
→ (1 + λx)−1/λ, 1 + λx > 0. (7.2)

Hence, for (x, y) ∈ E(λ) × E(γ ), which are continuity points of the limit measures μX,Y> and
μY,X>,

Qt(x, y) := tP
[(

X − φ(t)

χ(t)
,
Y − b(t)

a(t)

)
∈ ([−∞, x] × [−∞, y])c

]

= tP
[
X − φ(t)

χ(t)
> x

]
+ tP

[
Y − b(t)

a(t)
> y

]
(7.3)
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− tP
[
X − φ(t)

χ(t)
> x,

Y − b(t)

a(t)
> y

]

= At(x) + Bt(y) + Ct(x, y) (say).

It suffices to show that Qt(x, y) has a limit and that the limit is non-degenerate in (x, y) (using
a generalized version of [27], Lemma 6.1). As t → ∞, we have the limits for At(x) and Bt(y)

from (7.2) and (7.1). Clearly, 0 ≤ Ct(x, y) ≤ min(At (x),Bt (y)) and these inequalities also hold
for any limit of Qt .

From [11], Proposition 1, there exist functions ψ1(·),ψ2(·),ψ3(·),ψ4(·) such that

lim
t→∞

α(tz)

α(t)
= ψ1(z) = zρ1 , lim

t→∞
β(tz) − β(t)

α(t)
= ψ2(z), (7.4)

lim
t→∞

c(tz)

c(t)
= ψ3(z) = zρ2 , lim

t→∞
d(tz) − d(t)

c(t)
= ψ4(z) (7.5)

for z > 0 and ρ1, ρ2 real. Temporarily assume that ρ1 and ρ2 are positive. Either ψ2(z) = 0,
which implies that limt→∞ β(t)/α(t) = 0 (from [1], Theorem 3.1.12(a,c)) or ψ2(z) = k(zρ1 −
1)/ρ1 for k �= 0, which means that limt→∞ β(t)/α(t) = k/ρ1 ([6], Proposition B.2.2). Hence,
allowing the constant k to be zero as well, we can write both cases as limt→∞ β(t)/α(t) = k1/ρ1

for some k1 ∈ R. Similarly, we have limt→∞ d(t)/c(t) = k2/ρ2 for some k2 ∈ R.
Additionally, marginal DOA conditions for X,Y yield (z > 0,w > 0)

lim
t→∞

b(tz) − b(t)

a(t)
= zγ − 1

γ
, lim

t→∞
φ(tw) − φ(t)

χ(t)
= wλ − 1

λ
, (7.6)

which imply

lim
t→∞

a(tz)

a(t)
= zγ , lim

t→∞
χ(tw)

χ(t)
= wλ. (7.7)

Observe that

Ct(x, y) = tP
[
X − φ(t)

χ(t)
> x,

Y − b(t)

a(t)
> y

]
(7.8)

= tP
[
X − β(t)

α(t)
>

(
x + φ(t)

χ(t)

)
χ(t)

α(t)
− β(t)

α(t)
,
Y − b(t)

a(t)
> y

]

and also

Ct(x, y) = tP
[
X − φ(t)

χ(t)
> x,

Y − d(t)

c(t)
>

(
y + b(t)

a(t)

)
a(t)

c(t)
− d(t)

c(t)

]
. (7.9)

From [6], Proposition B.2.2, we have that

b(t)/a(t) → 1/γ and φ(t)/χ(t) → 1/λ. (7.10)
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We analyze Ct(x, y) for the different cases. First, we will show that at least one of the limits
limt→∞ χ(t)

α(t)
and limt→∞ a(t)

c(t)
must exist. Suppose both do not exist. We have, for (x, y) ∈ E(λ) ×

E(γ ), which are continuity points of the limit measures μX,Y> and μY,X>,

tP
[
X − β(t)

α(t)
> x,

Y − b(t)

a(t)
> y

]
→ μX,Y>

(
(x,∞] × (y,∞]), (7.11)

tP
[
X − φ(t)

χ(t)
> x,

Y − d(t)

c(t)
> y

]
→ μY,X>

(
(x,∞] × (y,∞]). (7.12)

Now, (7.11) implies that

tP
[
X − φ(t)

χ(t)

χ(t)

α(t)
+ φ(t) − β(t)

α(t)
> x,

Y − d(t)

c(t)

c(t)

a(t)
+ d(t) − b(t)

a(t)
> y

]

→ μX,Y>

(
(x,∞] × (y,∞]),

which is equivalent to

tP
[
X − φ(t)

χ(t)
>

α(t)

χ(t)

(
x − φ(t) − β(t)

α(t)

)
,
Y − d(t)

c(t)
>

a(t)

c(t)

(
y − d(t) − b(t)

a(t)

)]

→ μX,Y>

(
(x,∞] × (y,∞]).

From (7.12), we also have that the left-hand side of the previous line has a limit

tP
[
X − φ(t)

χ(t)
>

α(t)

χ(t)

(
x − φ(t) − β(t)

α(t)

)
,
Y − d(t)

c(t)
>

a(t)

c(t)

(
y − d(t) − b(t)

a(t)

)]

→ μY,X>

(
(f (x),∞] × (g(y),∞])

for some (f (x), g(y)), assumed to be a continuity point of the limit μY,X>, if and only if, as
t → ∞, the following two limits hold:

α(t)

χ(t)

(
x − φ(t) − β(t)

α(t)

)
→ f (x), (7.13)

a(t)

c(t)

(
y − d(t) − b(t)

a(t)

)
→ g(y). (7.14)

For μY,X> to be non-degenerate, f and g should be non-constant and we should also have
μX,Y>((x,∞] × (y,∞]) = μY,X>((f (x),∞] × (g(y),∞]). Considering (7.13) and (7.14), we
can see that the limit as t → ∞ exists if and only if limt→∞ a(t)/c(t) and limt→∞ χ(t)/α(t)

exists.
We conclude that limt→∞ χ(t)/α(t) ∈ [0,∞] and consider the following cases:

• Case 1: limt→∞ χ(t)/α(t) = ∞. Consider (7.8) and note that
(

x + φ(t)

χ(t)

)
χ(t)

α(t)
− β(t)

α(t)
→

(
x + 1

λ

)
× ∞ − k1

ρ1
= ∞,
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which entails that limt→∞ Ct(x, y) = μX,Y>({∞} × (y,∞]) = 0. Hence,

lim
t→∞Qt(x, y) = (1 + λx)−1/λ + (1 + γy)−1/γ .

• Case 2: limt→∞ χ(t)/α(t) = M ∈ (0,∞). From (7.8), we have

(
x + φ(t)

χ(t)

)
χ(t)

α(t)
− β(t)

α(t)
→

(
x + 1

λ

)
× M − k1

ρ1
= f (x) (say).

Therefore,

lim
t→∞Ct(x, y) = μX,Y>

(
(f (x),∞] × (y,∞]) ≤ (1 + λy)−1/λ

with strict inequality holding for some x because of the non-degeneracy condition (1.3) for
μX,Y>. Hence,

lim
t→∞Qt(x, y) = (1 + λx)−1/λ + (1 + γy)−1/γ − μX,Y>

(
(f (x),∞] × (y,∞]).

• Case 3: limt→∞ χ(t)/α(t) = 0. In this case, (7.8) leads to a degenerate limit in x for
Ct(x, y) and putting M1 = k/ρ1, we get

lim
t→∞Ct(x, y) = μX,Y>

(
(M1,∞] × (y,∞]) =: f1(y) ≤ (1 + γy)−1/γ .

So, consider (7.9).

(1) If limt→∞ a(t)/c(t) exists in (0,∞], then we can use a similar technique as in case 1
or 2 to obtain a non-degenerate limit for Qt(x, y).

(2) If limt→∞ a(t)/c(t) = 0, then for some M2 ∈ R,

lim
t→∞Ct(x, y) = μY,X>

(
(x,∞] × (M2,∞]) =: f2(x) ≤ (1 + λx)−1/λ.

Therefore, we have, for any (x, y) ∈ E(λ) × E(γ ) which are continuity points of the
limit measures μX,Y> and μY,X>,

f1(y) = μX,Y>

(
(M1,∞] × (y,∞]) = μY,X>

(
(x,∞] × (M2,∞]) = f2(x).

It is now easy to check that for any (x, y) ∈ E(λ) × E(γ ) which are continuity
points of the limit measures μX,Y> and μY,X>, we have f1(y) = f2(x) = 0. Hence,
Ct(x, y) → 0 and thus Qt(x, y) has a non-degenerate limit.

This proves the result. For general ρ1, ρ2 ∈ R, we can follow the same steps to get to the result
by considering cases when ρi is greater than, less than or equal to zero, for each i = 1,2.
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7.2. Proof of the summary following Theorem 3.2

(1) This part has been dealt with in [11], Section 2.4.
(2) First, simplify the problem. For (x, y), a continuity point of μ(·),

tP
[
λ(X∗) − β(t)

α(t)
≤ x,

b(Y ∗) − b(t)

a(t)
> y

]
→ μ̃([−∞, x] × (y,∞]) (t → ∞)

is equivalent, as t → ∞, to

tP
(

λ(X∗) − β(t)

α(t)
≤ x,

Y ∗

t
> y

)
→ μ̃

([−∞, x] × (h(y),∞])
(7.15)

=: μ∗([−∞, x] × (y,∞]),
where

h(y) =
{

(1 + γy)1/γ , γ �= 0,
ey, γ = 0.

(7.16)

Hence, (3.11) is equivalent to

tP
[(

λ(X∗) − β(t)

α(t)
,
Y ∗

t

)
∈ ·

]
v→ μ∗(·)

and μ∗ is a non-null Radon measure on [−∞,∞] × �E(γ ) satisfying the conditional non-
degeneracy conditions. Hence, our proof will show the existence of λ(·) satisfying (7.15). Now,
note that (1.8) implies that α(·) ∈ RVρ for some ρ ∈ R and ψ1(x) = xρ ([29], page 14). The
function ψ2(·) may be identically equal to 0 or

ψ2(x) =
{

k(xρ − 1)/ρ if ρ �= 0, x > 0,
k logx if ρ = 0, x > 0

(7.17)

for k �= 0 ([6], page 373). We have assumed that (ψ1,ψ2) �= (1,0). We will consider three cases:
ρ > 0, ρ = 0, ρ < 0.

Case 1: ρ > 0. First, suppose that ψ2 ≡ 0. Since α(·) ∈ RVρ , there exists α̃(·) ∈ RVρ which
is ultimately differentiable and strictly increasing and α ∼ α̃ ([6], page 366). Thus, α̃← exists.
Additionally, from [1], Theorem 3.1.12(a), we have that β(t)/α(t) → 0. Hence, for x > 0, as
t → ∞, we have

α̃(tx) + β(t)

α(t)
= α̃(tx)

α̃(t)
· α̃(t)

α(t)
+ β(t)

α(t)
→ xρ

and inverting, we get, for z > 0,

α̃←(
α(t)z + β(t)

)
/t → z1/ρ (t → ∞).
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Thus, we have

tP
[
α̃(X∗) − β(t)

α(t)
≤ x,

Y ∗

t
> y

]
= tP

[
X∗

t
≤ α̃←(α(t)x + β(t))

t
,
Y ∗

t
> y

]

→ μ∗∗([0, x1/ρ] × (y,∞]).
Set λ(·) = α̃(·) and this defines μ̃.

Next, suppose that ψ2 �= 0. Therefore,

ψ2(x) = lim
t→∞

(
β(tx) − β(t)

)
/α(t) = k(xρ − 1)/ρ,

that is, β(·) ∈ RVρ and k > 0. There exists β̃ which is ultimately differentiable, strictly increasing
and such that β̃ ∼ β ([6], page 366). Thus, β̃← exists. We then have, for x > 0, as t → ∞,

β̃(tx) − β(t)

α(t)
= β̃(tx) − β(tx)

α(t)
+ β(tx) − β(t)

α(t)

= β̃(tx) − β(tx)

β(tx)

β(tx)

α(tx)

α(tx)

α(t)
+ β(tx) − β(t)

α(t)

→ (1 − 1) · xρ/ρ + k(xρ − 1)/ρ = k(xρ − 1)/ρ.

Inverting, we get, as t → ∞,

β̃←(
α(t)x + β(t)

)
/t → (1 + ρx/k)1/ρ.

Thus, we have

tP
[
β̃(X∗) − β(t)

α(t)
≤ x,

Y ∗

t
> y

]
= tP

[
X∗

t
≤ β̃←(α(t)x + β(t))

t
,
Y ∗

t
> y

]

→ μ∗∗
([

0,

(
1 + ρx

k

)1/ρ]
× (y,∞]

)
.

Here, we can set λ(·) = β̃(·) and this defines μ̃.
Case 2: ρ = 0. We have ψ1(x) = 1,ψ2(x) = k logx for x > 0 and some k ∈ R. By assumption,

(ψ1,ψ2) �= (1,0) and hence k �= 0. First, assume that k > 0, which means that β ∈ �+(α).
There exists β̃(·) which is continuous, strictly increasing and β − β̃ = o(α) ([8], page 1031). If
β(∞) = β̃(∞) = ∞, then, for x > 0,

β̃(tx) − β(t)

α(t)
= β̃(tx) − β(tx)

α(tx)

α(tx)

α(t)
+ β(tx) − β(t)

α(t)
→ 0 + k logx

and, inverting, we get for z ∈ R, as t → ∞, β̃←(α(t)z + β(t))/t → exp{z/k}. Thus, we have

tP
(

β̃(X∗) − β(t)

α(t)
≤ x,

Y ∗

t
> y

)
= tP

(
X∗

t
≤ β̃←(α(t)x + β(t))

t
,
Y ∗

t
> y

)

→ μ
([0, ek/x] × (y,∞]).



250 B. Das and S.I. Resnick

If β(∞) = β̃(∞) = B < ∞, define

β∗(t) = 1

B − β̃(t)
, α∗(t) = α(t)

(B − β̃(t))2

and we have that β∗ ∈ �+(α∗), β∗(t) → ∞ and (B − β̃(t))/α(t) → ∞ ([10], page 25). Hence,
we have reduced the problem to the previous case, which implies that

tP
(

β∗(X∗) − β∗(t)
α∗(t)

≤ x,
Y ∗

t
> y

)
→ μ

([0, ek/x] × (y,∞])

or, equivalently,

tP
(

β̃(X∗) − β̃(t)

α(t)
≤ x

1 + α(t)x/(B − β̃(t))
,
Y ∗

t
> y

)
→ μ

([0, ek/x] × (y,∞]),

and since B − β̃(t)/α(t) → ∞ implies α(t)/B − β̃(t) → 0, we can write

tP
(

β̃(X∗) − β̃(t)

α(t)
≤ x,

Y ∗

t
> y

)
→ μ

([0, ek/x] × (y,∞]),

which implies, since β − β̃ = o(α), that

tP
(

β̃(X∗) − β(t)

α(t)
≤ x,

Y ∗

t
> y

)
→ μ

([0, ek/x] × (y,∞]).

We have thus produced the required transformation λ(·) = β̃(·).
The case for which k < 0, that is, β ∈ �−(α), can be proven similarly.
Case 3: ρ < 0. This case is similar to the case for ρ > 0 and is therefore omitted.
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