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We establish an optimal transportation inequality for the Poisson measure on the configuration space. Fur-
thermore, under the Dobrushin uniqueness condition, we obtain a sharp transportation inequality for the
Gibbs measure on N

� or the continuum Gibbs measure on the configuration space.
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1. Introduction

Transportation inequality W1H . Let X be a Polish space equipped with the Borel σ -field B and
d be a lower semi-continuous metric on the product space X × X (which does not necessarily
generate the topology of X ). Let M1(X ) be the space of all probability measures on X . Given
p ≥ 1 and two probability measures μ and ν on X , we define the quantity

Wp,d(μ, ν) = inf

(∫ ∫
d(x, y)p dπ(x, y)

)1/p

,

where the infimum is taken over all probability measures π on the product space X × X with
marginal distributions μ and ν (say, coupling of (μ, ν)). This infimum is finite provided that
μ and ν belong to Mp

1 (X , d) := {ν ∈ M1(X ); ∫ dp(x, x0)dν < +∞}, where x0 is some fixed
point of X . This quantity is commonly referred to as the Lp-Wasserstein distance between μ

and ν. When d is the trivial metric d(x, y) = 1x �=y,2W1,d (μ, ν) = ‖μ− ν‖TV, the total variation
of μ − ν.

The Kullback information (or relative entropy) of ν with respect to μ is defined as

H(ν/μ) =
{∫

log
dν

dμ
dν if ν � μ,

+∞ otherwise.
(1.1)

Let α be a non-decreasing left-continuous function on R
+ = [0,+∞) which vanishes at 0. If,

moreover, α is convex, we write α ∈ C . We say that the probability measure μ satisfies the
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transportation inequality α-W1H with deviation function α on (X , d) if

α(W1,d (μ, ν)) ≤ H(ν/μ) ∀ν ∈ M1(X ). (1.2)

This transportation inequality W1H was introduced and studied by Marton [11] in relation
with measure concentration, for quadratic deviation function α. It was further characterized by
Bobkov and Götze [1], Djellout, Guillin and Wu [4], Bolley and Villani [2] and others. The latest
development is due to Gozlan and Léonard [7], in which the general α-W1H inequality above
was introduced in relation to large deviations and characterized by concentration inequalities, as
follows.

Theorem 1.1 (Gozlan and Léonard [7]). Let α ∈ C and μ ∈ M1
1(X , d). The following state-

ments are then equivalent:

(a) the transportation inequality α-W1H (1.2) holds;
(b) for all λ ≥ 0 and all F ∈ bB, ‖F‖Lip(d) := supx �=y

|F(x)−F(y)|
d(x,y)

≤ 1,

log
∫

X
exp

(
λ[F − μ(F)])μ(dx) ≤ α∗(λ),

where μ(F) := ∫
X F dμ and α∗(λ) := supr≥0(λr − α(r)) is the semi-Legendre transfor-

mation of α;
(b′) for all λ ≥ 0 and all F,G ∈ Cb(X ) (the space of all bounded and continuous functions

on X ) such that F(x) − G(y) ≤ d(x, y) for all x, y ∈ X ,

log
∫

X
eλF μ(dx) ≤ λμ(G) + α∗(λ);

(c) for any measurable function F such that ‖F‖Lip(d) ≤ 1, the following concentration in-
equality holds true: for all n ≥ 1, r ≥ 0,

P

(
1

n

n∑
1

F(ξk) ≥ μ(F) + r

)
≤ e−nα(r), (1.3)

where (ξn)n≥1 is a sequence of i.i.d. X -valued random variables with common law μ.

The estimate on the Laplace transform in (b) and the concentration inequality in (1.3) are the
main motivations for the transportation inequality (α-W1H ).

Objective and organization. The objective of this paper is to prove the transportation inequality
(α-W1H) for:

(1) (the free case) the Poisson measure P 0 on the configuration space consisting of Radon
point measures ω = ∑

i δxi
, xi ∈ E with some σ -finite intensity measure m on E, where

E is some fixed locally compact space;



Transportation inequalities 157

(2) (the interaction case) the continuum Gibbs measure over a compact subset E of R
d ,

P φ(dω) = e
−(1/2)

∑
xi ,xj ∈suppω,i �=j φ(xi−xj )−∑

k,xi∈supp(ω) φ(xi−yk)

Z
P 0(dω),

where φ : Rd → [0,+∞] is some pair-interaction non-negative even function (see Sec-
tion 4 for notation) and P 0 is the Poisson measure with intensity z dx on E.

For Poisson measures on N, Liu [10] obtained the optimal deviation function by means of
Theorem 1.1. For transportation inequalities of Gibbs measures on discrete sites, see [12] and
[17].

For an illustration of our main result (Theorem 4.1) on the continuum Gibbs measure P φ , let
E := [−N,N ]d (1 ≤ N ∈ N) and f : [−N,N ]d → R be measurable and periodic with period 1 at
each variable so that |f | ≤ M . Consider the empirical mean per volume F(ω) := ω(f )/(2N)d

of f . Under Dobrushin’s uniqueness condition D := z
∫

Rd (1 − e−φ(y))dy < 1, we have (see
Remark 4.3 for proof)

P φ
(
F > P φ(F ) + r

) ≤ exp

(
− (2N)d(1 − D)r

2M
log

(
1 + (1 − D)r

zM

))
, r > 0, (1.4)

an explicit Poissonian concentration inequality which is sharp when φ = 0.
The paper is organized as follows. In the next section, we prove (α–W1H) for the Poisson

measure on the configuration space with respect to two metrics: in both cases, we obtain optimal
deviation functions. Our main tool is Gozlan and Leonard’s Theorem 1.1 and a known concentra-
tion inequality in [15]. Section 3, as a prelude to the study of the continuum Gibbs measure P φ

on the configuration space, is devoted to the study of a Gibbs measure on N
�. Our method is a

combination of a lemma on W1H for mixed measure, Dobrushin’s uniqueness condition and the
McDiarmid–Rio martingale method for dependent tensorization of the W1H -inequality. Finally,
in the last section, by approximation, we obtain a sharp (α–W1H) inequality for the continuum
Gibbs measure P φ under Dobrushin’s uniqueness condition D = z

∫
Rd (1 − e−φ(y))dy < 1. The

latter is a sharp sufficient condition, both for the analyticity of the pressure functional and for the
spectral gap; see [16].

2. Poisson point processes

Poisson space. Let E be a metric complete locally compact space with the Borel field BE and m

a σ -finite positive Radon measure on E. The Poisson space (�, F ,P 0) is given by:

(1) � := {ω = ∑
i δxi

(Radon measure); xi ∈ E} (the so-called configuration space over E);
(2) F = σ(ω → ω(B)|B ∈ BE);

(3) ∀B ∈ BE,∀k ∈ N: P 0(ω :ω(B) = k) = e−m(B) m(B)k

k! ;
(4) ∀B1, . . . ,Bn ∈ BE disjoint, ω(B1), . . . ,ω(Bn) are P 0-independent,

where δx denotes the Dirac measure at x. Under P 0, ω is exactly the Poisson point process on
E with intensity measure m(dx). On �, we consider the vague convergence topology, that is,
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the coarsest topology such that ω → ω(f ) is continuous, where f runs over the space C0(E) of
all continuous functions with compact support on E. Equipped with this topology, � is a Polish
space and this topology is the weak convergence topology (of measures) if E is compact.

Definition 2.1. Letting ϕ be a positive measurable function on E, we define a metric dϕ(·, ·)
(which may be infinite) on the Poisson space (�, F ,P 0) by

dϕ(ω,ω′) =
∫

E

ϕ d|ω − ω′|,

where |ν| := ν+ + ν− for a signed measure ν (ν± are, respectively, the positive and negative
parts of ν in the Hahn–Jordan decomposition).

Lemma 2.2. If ϕ is continuous, then the metric dϕ is lower semi-continuous on �.

Proof. Indeed, for any ω,ω′ ∈ �,

dϕ(ω,ω′) = sup
f

|ω(f ) − ω′(f )|,

where the supremum is taken over all bounded BE-measurable functions f with compact support
such that |f | ≤ ϕ. Now, as ϕ is continuous, we can approximate such f by fn ∈ C0(E) in
L1(E,ω + ω′) and |fn| ≤ ϕ. Then

dϕ(ω,ω′) = sup
f ∈C0(E),|f |≤ϕ

|ω(f ) − ω′(f )|.

As (ω,ω′) → |ω(f ) − ω′(f )| is continuous on � × �, dϕ(ω,ω′) is lower semi-continuous on
� × �. �

Assume from now on that ϕ is continuous. Then, for any ν,μ ∈ M1(�), we have the
Kantorovitch–Rubinstein equality [8,9,14],

W1,dϕ (μ, ν) = sup

{∫
F dν −

∫
Gdμ

∣∣∣F,G ∈ Cb(�),F (ω) − G(ω′) ≤ dϕ(ω,ω′)
}

= sup

{∫
Gd(ν − μ) :G ∈ bF ,‖G‖Lip(dϕ) ≤ 1

}
.

Here, bF is the space of all real, bounded and F -measurable functions.
The difference operator D. We denote by L0(�,P 0) the space of all P 0-equivalent classes

of real measurable functions w.r.t. the completion of F by P 0. Hence, the difference operator
D :L0(�,P 0) → L0(E × �,m ⊗ P 0) given by

F → DxF(ω) := F(ω + δx) − F(ω)

is well defined (see [15]) and plays a crucial role in the Malliavin calculus on the Poisson space.
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Lemma 2.3. Given a measurable function F :� → R, ‖F‖Lip(dϕ) ≤ 1 if and only if |DxF(ω)| ≤
ϕ(x) for all ω ∈ � and x ∈ E.

Proof. If ‖F‖Lip(dϕ) ≤ 1, since

|DxF(ω)| = |F(ω + δx) − F(ω)| ≤ dϕ(ω + δx,ω) =
∫

E

ϕ d|(ω + δx) − ω| = ϕ(x),

the necessity is true. We now prove the sufficiency. For any ω,ω′ ∈ �, we write ω = ∑i
k=1 δxk

+
ω ∧ ω′ and ω′ = ∑j

k=1 δyk
+ ω ∧ ω′, where ω ∧ ω′ := 1

2 (ω + ω′ − |ω − ω′|). We then have

|F(ω) − F(ω′)| ≤ |F(ω) − F(ω ∧ ω′)| + |F(ω′) − F(ω ∧ ω′)|

≤
i∑

k=1

∣∣∣∣∣F
(

ω ∧ ω′ +
k∑

l=1

δxl

)
− F

(
ω ∧ ω′ +

k−1∑
l=1

δxl

)∣∣∣∣∣
+

j∑
k=1

∣∣∣∣∣F
(

ω ∧ ω′ +
k∑

l=1

δyl

)
− F

(
ω ∧ ω′ +

k−1∑
l=1

δyl

)∣∣∣∣∣
≤

i∑
k=1

ϕ(xk) +
j∑

k=1

ϕ(yk) =
∫

E

ϕ d|ω − ω′| = dϕ(ω,ω′),

which implies that ‖F‖Lip(dϕ) ≤ 1. �

Remark 2.4. When ϕ = 1, we denote dϕ by d . Obviously, d(ω,ω′) = |ω−ω′|(E) = ‖ω−ω′‖TV,
that is, d is exactly the total variation distance.

The following result, due to the fourth-named author [15], was obtained by means of the L1-
log-Sobolev inequality and will play an important role.

Lemma 2.5 ([15], Proposition 3.2). Let F ∈ L1(�,P 0). If there is some 0 ≤ ϕ ∈ L2(E,m)

such that |DxF(ω)| ≤ ϕ(x), m ⊗ P 0-a.e., then for any λ ≥ 0,

E
P 0

eλ(F−P 0(F )) ≤ exp

{∫
E

(eλϕ − λϕ − 1)dm

}
.

In particular, if m is finite and |DxF(ω)| ≤ 1 for m × P 0-a.e. (x,ω) on E × � (i.e., ϕ(x) = 1),
then

E
P 0

eλ(F−P 0(F )) ≤ exp{(eλ − λ − 1)m(E)}.

We now state our main result on the Poisson space.
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Theorem 2.6. Let (�, F ,P 0) be the Poisson space with intensity measure m(dx) and ϕ a
bounded continuous function on E such that 0 < ϕ ≤ M and σ 2 = ∫

E
ϕ2 dm < +∞. Then

1

M
hc(W1,dϕ (Q,P 0)) ≤ H(Q|P 0) ∀Q ∈ M1(�), (2.1)

where c = σ 2/M and

hc(r) = c · h
(

r

c

)
, h(r) = (1 + r) log(1 + r) − r. (2.2)

Note that h∗(λ) := supr≥0(λr − h(r)) = eλ − λ − 1 and h∗
c (λ) = ch∗(λ).

Proof of Theorem 2.6. Since the function (eλϕ −λϕ − 1)/ϕ2 is increasing in ϕ, it is easy to see
that ∫

E

(eλϕ − λϕ − 1)dm ≤ eλM − λM − 1

M2

∫
ϕ2 dm. (2.3)

Further, the Legendre transformation of the right-hand side of (2.3) is, for r ≥ 0,

sup
λ≥0

{
λr − eλM − λM − 1

M2

∫
ϕ2 dm

}
=

(
r

M
+

∫
ϕ2 dm

M2

)
log

(
Mr∫
ϕ2 dm

+ 1

)
− r

M

= 1

M
hc(r).

The desired result then follows from Theorem 1.1, by Lemma 2.5. �

Remark 2.7. Let β(λ) := ∫
E
(eλϕ −λϕ−1)dm and α(r) := supλ≥0(λr −β(λ)). The proof above

gives us

α(W1,dϕ (Q,P 0)) ≤ H(Q|P 0) ∀Q ∈ M1(�).

This less explicit inequality is sharp. Indeed, assume that E is compact and let F(ω) :=∫
E

ϕ(x)(ω − m)(dx). We have ‖F‖Lip(dϕ) = 1 and

logE
P 0

eλF = β(λ).

The sharpness is then ensured by Theorem 1.1.

Proposition 2.8. If ϕ = 1 and m is finite, then the inequality (2.1) turns out to be

hm(E)(W1,d (Q,P 0)) ≤ H(Q|P 0) ∀Q ∈ M1(�). (2.4)

In particular, for the Poisson measure P (λ) with parameter λ > 0 on N equipped with the Euclid-
ean distance ρ,

hλ(W1,ρ(ν, P (λ))) ≤ H(ν|P (λ)) ∀ν ∈ M1(N). (2.5)
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Proof. The inequality (2.4) is a particular case of (2.1) with ϕ = 1 and it holds on �0 := {ω ∈
�;ω(E) < +∞} (for P 0 is actually supported in �0 as m is finite). For (2.5), let m(E) = λ and
consider the mapping � :�0 → N, �(ω) = ω(E). Since |�(ω) − �(ω′)| = |ω(E) − ω′(E)| ≤
d(ω,ω′), � is Lipschitzian with the Lipschitzian coefficient less than 1. Thus, (2.5) follows from
(2.4) by [4], Lemma 2.1 and its proof. �

Remark 2.9. The transportation inequality (2.5) was shown by Liu [10] by means of a tensoriza-
tion technique and the approximation of P (λ) by binomial distributions. It is optimal (therefore,
so is (2.4)). In fact, consider another Poisson distribution P (λ′) with parameter λ′ > λ. On the
one hand,

H(P (λ′)|P (λ)) =
∫

N

log
dP (λ′)
dP (λ)

dP (λ′) =
∞∑

n=0

P (λ′)(n) log

(
e−λ′

λ′n

n!
/e−λλn

n!
)

= λ − λ′ +
∞∑

n=0

P (λ′)(n)n log
λ′

λ

= λ − λ′ + λ′ log
λ′

λ
.

On the other hand, let r := λ′ − λ > 0. Let X,Y be two independent random variables having
distributions P (λ) and P (r), respectively. Obviously, the law of X + Y is P (λ′). Then

W1,ρ(P (λ′), P (λ)) ≤ E|X − (X + Y)| = EY = r.

Now, supposing that (X,X′) is a coupling of P (λ′) and P (λ), we have

E|X − X′| ≥ |EX − EX′| = r,

which implies that W1,ρ(P (λ′), P (λ)) ≥ r. Then W1,ρ(P (λ′), P (λ)) = r (and (X,X + Y) is an
optimal coupling for P (λ) and P (λ′)). Therefore,

hλ(W1,ρ(P (λ′), P (λ))) = hλ(r) = H(P (λ′)|P (λ)).

Namely, hλ is the optimal deviation function for the Poisson distribution P (λ).

3. A discrete spin system

The model and the Dobrushin interdependence coefficient. Let � = {1, . . . ,N} (2 ≤ N ∈ N) and
γ :� × � �→ [0,+∞] be a non-negative interaction function satisfying γij = γji and γii = 0 for
all i, j ∈ �. Consider the Gibbs measure P on N

� with

P(x1, . . . , xN) = e−∑
i<j γij xixj

N∏
i=1

P (δi)(xi)
/

C, (3.1)
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where P (δi)(xi) = e−δi
δ
xi
i

xi ! , xi ∈ N, is the Poisson distribution with parameter δi > 0 and C is the
normalization constant. Here and hereafter, the convention that 0 ·∞ = 0 is used. Let Pi(dxi |x�)

be the given regular conditional distribution of xi given x�\{i}, which is, in the present case,

the Poisson distribution P (δie
−∑

j �=i γij xj ) with parameter δie
−∑

j �=i γij xj , with the convention
that the Poisson measure P (0) with parameter λ = 0 is the Dirac measure δ0 at 0. Define the
Dobrushin interdependence matrix C := (cij )i,j∈� w.r.t. the Euclidean metric ρ by

cij = sup
x�=x′

�offj

W1,ρ(Pi(dxi |x�),Pi(dx′
i |x′

�))

|xj − x′
j |

∀i, j ∈ � (3.2)

(obviously, cii = 0). The Dobrushin uniqueness condition [5,6] is then

D := sup
j

∑
i

cij < 1.

For this model, we can identify cij .

Lemma 3.1. Recall that γij ≥ 0. We have

cij = δi(1 − e−γij ).

Proof. By Remark 2.9, if x� = x′
� off j , then

W1,ρ(Pi(dxi |x�),Pi(dx′
i |x′

�)) = δi |e−∑
k γikxk − e−∑

k γikx
′
k |.

Without loss of generality, suppose that xj = x′
j + x with x ≥ 1. We have then

cij = δi sup
x�=x′

�offj

|e−∑
k γikxk − e−∑

k γikx
′
k |

|xj − x′
j |

= δi sup
x≥1

1 − e−γij x

x
(taking xk = x′

k = 0 for k �= j , x′
j = 0)

= δi(1 − e−γij ).

Here, the first equality holds since γij is non-negative and the last equality is due to the fact that
(1 − e−γij x)/x is decreasing in x > 0. �

The transportation inequality W1H for mixed measure. We return to the general framework of
the Introduction. Let X be a general Polish space and d be a metric on X which is lower semi-
continuous on X × X . Consider a mixed probability measure μ := ∫

I
μλ dσ(λ) on X , where, for

each λ ∈ I , μλ is a probability on X and σ is a probability measure on another Polish space I .
Let ρ be a lower semi-continuous metric on I .

Proposition 3.2. Suppose that:



Transportation inequalities 163

(i) for any λ ∈ I , μλ satisfies α–W1H with deviation function α ∈ C ,

α(W1,d (ν,μλ)) ≤ H(ν|μλ) ∀ν ∈ M1(X );
(ii) σ satisfies a β–W1H inequality on I with deviation function β ∈ C ,

β(W1,ρ(η, σ )) ≤ H(η|σ) ∀η ∈ M1(I );
(iii) λ → μλ is Lipschitzian, that is, for some constant M > 0,

W1,d (μλ,μλ′) ≤ Mρ(λ,λ′) ∀λ,λ′ ∈ I.

The mixed probability μ = ∫
I
μλ dσ(λ) then satisfies

α̃(W1,d (ν,μ)) ≤ H(ν|μ) ∀ν ∈ M1(X ), (3.3)

where

α̃(r) = sup
b≥0

{br − [α∗(b) + β∗(bM)]}, r ≥ 0.

Proof. By Gozlan and Leonard’s Theorem 1.1, it is enough to show that for any Lipschitzian
function f on X with ‖f ‖Lip(d) ≤ 1 and b ≥ 0,∫

X
eb[f (x)−μ(f )] dμ(x) ≤ exp

(
α∗(b) + β∗(bM)

)
.

Let g(λ) := ∫
X f (x)dμλ(x) = μλ(f ). We have σ(g) = μ(f ) and, by Kantorovitch’s duality

equality and our condition (iii), |g(λ) − g(λ′)| ≤ Mρ(λ,λ′). Using Theorem 1.1 and our condi-
tions (i) and (ii), we then get, for any b ≥ 0,∫

X
eb[f (x)−μ(f )] dμ =

∫
I

(∫
X

eb[f (x)−μλ(f )] dμλ(x)

)
eb[g(λ)−σ(g)] dσ(λ),

≤ eα∗(b)+β∗(bM)

the desired result. �

We now turn to a mixed Poisson distribution,

μ =
∫ a

0
P (λ)σ (dλ), (3.4)

where a > 0. By Proposition 2.8, we know that w.r.t. the Euclidean metric ρ,

hλ(W1,ρ(ν, P (λ))) ≤ H(ν|P (λ))

and W1,ρ(P (λ), P (λ′)) = |λ − λ′|. Since hλ is decreasing in λ, the hypotheses in Proposi-
tion 3.2 with E = N, I = [0, a], both equipped with the Euclidean metric ρ, are satisfied with
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α(r) = ha(r) = ah( r
a
) and β(r) = 2r2/a2 (the well-known CKP inequality). On the other hand,

obviously,

h(r) = (1 + r) log(1 + r) − r ≤ r2

2
, r ≥ 0,

which implies that

ha2/4(r) = a2

4
h

(
4r

a2

)
≤ 2r2

a2
= β(r).

Since h∗
c (λ) = c(eλ − λ − 1),

sup
b≥0

{br − [(ha(b))∗ + (ha2/4(b))∗]} = sup
b≥0

{br − (a + a2/4)(eb − b − 1)} = ha+a2/4(r).

By Proposition 3.2, we have, for the mixed Poisson measure μ given in (3.4),

ha+a2/4(W1,d (ν,μ)) ≤ H(ν|μ) ∀ν ∈ M1(N). (3.5)

See Chafai and Malrieu [3] for fine analysis of transportation or functional inequalities for
mixed measures. We can now state the main result of this section.

Theorem 3.3. Let P be the Gibbs measure given in (3.1) with γij ≥ 0. Assume Dobrushin’s
uniqueness condition

D := sup
j∈�

∑
i∈�

δi(1 − e−γij ) < 1.

For any probability measure Q on N
� equipped with the metric ρH (x�,y�) := ∑

i∈� |xi − yi |
(the index H refers to Hamming), we then have, for c := ∑

i∈�(δi + δ2
i /4),

hc

(
(1 − D)W1,ρH

(Q,P )
) ≤ H(Q|P) ∀Q ∈ M1(N

�).

This result, without the extra constants δ2
i /4, would become sharp if γ = 0 (i.e., without inter-

action) or P = P (δ)⊗�.

Proof of Theorem 3.3. By Theorem 1.1, it is equivalent to prove that for any 1-Lipschitzian
functional F w.r.t. the metric ρH ,

logE
P eλ(F−E

P F) ≤ h∗
c

(
λ

1 − D

)
= ch∗

(
λ

1 − D

)
∀λ > 0. (3.6)

We prove the inequality (3.6) by the McDiarmid–Rio martingale method (as in [4,17]). Consider
the martingale

M0 = E
P (F ), Mk(x

k
1 ) =

∫
F(xk

1 , xN
k+1)P (dxN

k+1|xk
1 ), 1 ≤ k ≤ N,



Transportation inequalities 165

where x
j
i = (xk)i≤k≤j ,P (dxN

k+1|xk
1 ) is the conditional distribution of xN

k+1 given xk
1 . Since

MN = F, we have

E
P eλ(F−E

P F) = E
P exp

(
λ

N∑
k=1

(Mk − Mk−1)

)
.

By induction, for (3.6), it suffices to establish that for each k = 1, . . . ,N,P -a.s.,

log
∫

exp
(
λ
(
Mk(x

k−1
1 , xk) − Mk−1(x

k−1
1 )

))
P(dxk|xk−1

1 ) ≤ (δk + δ2
k/4)h∗

(
λ

1 − D

)
. (3.7)

By (3.5), P(dxk|xk−1
1 ), being a convex combination of Poisson measures Pk(dxk|x�) =

P (δke−∑
j �=k γkj xj ) (over xN

k+1), satisfies the W1H -inequality with the deviation function
hδk+δ2

k /4. Hence, by Theorem 1.1, (3.7) holds if

|Mk(x
k−1
1 , xk) − Mk(x

k−1
1 , yk)| ≤ 1

1 − D
|xk − yk|. (3.8)

In fact, the inequality (3.8) has been proven in [17], step 2 in the proof of Theorem 4.3. The proof
is thus complete. �

Remark 3.4. For a previous study on transportation inequalities for Gibbs measures on discrete
sites, see Marton [12] and Wu [17]. Our method here is quite close to that in [17], but with two
new features: (1) W1H for mixed probability measures; (2) Gozlan and Léonard’s Theorem 1.1
as a new tool.

Remark 3.5. Every Poisson distribution P (λ) satisfies the Poincaré inequality ([15], Re-
mark 1.4)

VarP (λ)(f ) ≤ λ

∫
N

(Df (x))2 dP (λ)(x) ∀f ∈ L2(N, P (λ)),

where Df (x) := f (x +1)−f (x) and Varμ(f ) := μ(f 2)−[μ(f )]2 is the variance of f w.r.t. μ.
By [17], Theorem 2.2 we have the following Poincaré inequality for the Gibbs measure P : if
D < 1, then

VarP (F ) ≤ max1≤i≤N δi

1 − D

∫
N�

∑
i∈�

(DiF )2(x)dP(x) ∀F ∈ L2(N�,P ),

where DiF(x1, . . . , xN) := F(x1, . . . , xi−1, xi + 1, xi+1, . . . , xN) − F(x1, . . . , xN). We remind
the reader that an important open question is to prove the L1-log-Sobolev inequality (or entropy
inequality)

H(FP |P) ≤ C

∫
N�

∑
i∈�

DiF · Di logF dP for all P -probability densities F
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(which is equivalent to the exponential convergence in entropy of the corresponding Glauber
system) under Dobrushin’s uniqueness condition, or at least for high temperature.

4. W1H -inequality for the continuum Gibbs measure

We now generalize the result for the discrete sites Gibbs measure in Section 3 to the continuum
Gibbs measure (continuous gas model), by an approximation procedure.

Let (�, F ,P 0) be the Poisson space over a compact subset E of R
d with intensity m(dx) =

z dx, where the Lebesgue measure |E| of E is positive and finite, and z > 0 represents the activity.
Given a non-negative pair-interaction function φ : Rd �→ [0,+∞], which is measurable and even
over R

d , the corresponding Poisson space is denoted by (�, F ,P 0) and the associated Gibbs
measure is given by

P φ(dω) = e
−(1/2)

∑
xi ,xj ∈supp(ω),i �=j φ(xi−xj )−∑

k,xi∈supp(ω) φ(xi−yk)

Z
P 0(dω),

where Z is the normalization constant and {yk, k} is an at most countable family of points in
R

d\E such that
∑

k φ(x −yk) < +∞ for all x ∈ E (boundary condition). The main result of this
section is the following theorem.

Theorem 4.1. Assume that the Dobrushin uniqueness condition holds, that is,

D := z

∫
Rd

(
1 − e−φ(y)

)
dy < 1. (4.1)

Then, w.r.t. the total variation distance d = dϕ with ϕ = 1 on �,

hz|E|
(
(1 − D)W1,d (Q,P φ)

) ≤ H(Q|P φ) ∀Q ∈ M1(�). (4.2)

Remark 4.2. Without interaction (i.e., φ = 0), D = 0 and the W1H -inequality (4.2) is exactly
the optimal W1H -inequality for the Poisson measure P 0 in Proposition 2.8. In the presence of
non-negative interaction φ, it is well known that D < 1 is a sharp condition for the analyticity
of the pressure functional p(z): indeed, the radius R of convergence of the entire series of p(z)

at z = 0 satisfies R
∫

Rd (1 − e−φ(y))dy < 1; see [13], Theorem 4.5.3. The corresponding sharp
Poincaré inequality for P φ was established in [16].

Proof of Theorem 4.1. We shall establish this sharp α–W1H inequality for P φ by approxima-
tion.

By part (b′) of Theorem 1.1, it is equivalent to show that for any F,G ∈ Cb(�) such that
F(ω) − G(ω′) ≤ d(ω,ω′), ω,ω′ ∈ �, and for any λ > 0,

log
∫

�

eλF dP φ ≤ λP φ(G) + z|E|h∗
(

λ

1 − D

)
, (4.3)
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where h∗(λ) = eλ − λ − 1.
Step 1. φ is continuous and {yk, k} is finite. We want to approximate P φ by the discrete sites

Gibbs measures given in the previous section. To this end, assume first that φ is continuous (+∞
is regarded as the one-point compactification of R

+) or, equivalently, that e−φ : Rd → [0,1] is
continuous with the convention that e−∞ := 0.

For each N ≥ 2, let {E1, . . . ,EN } be a measurable decomposition of E such that, as N goes to
infinity, max1≤i≤N Diam(Ei) → 0 and max1≤i≤N |Ei | → 0, where |E| is the Lebesgue measure
of E and Diam(Ei) = supx,y∈Ei

|x − y| is the diameter of Ei . Fix x0
i ∈ Ei for each i. Consider

the probability measure PN on N
� (� := {1, . . . ,N}) given by, for all (n1, . . . , nN) ∈ N

�,

PN(n1, . . . , nN) = (1/Z)e−(1/2)
∑

i �=j φ(x0
i −x0

j )ninj −∑
i,k φ(x0

i −yk)ni

N∏
i=1

P (z|Ei |)(ni)

= (1/Z′)e−∑
i<j φ(x0

i −x0
j )ninj

N∏
i=1

P (δN,i)(ni),

where Z,Z′ are normalization constants and δN,i = z|Ei |e−∑
k φ(x0

i −yk) ≤ z|Ei |. Consider the
mapping � : N� → � given by

�(n1, . . . , nN) =
N∑

i=1

niδx0
i
.

� is isometric from (N�,ρH ) to (�,d), where d = dϕ with ϕ = 1 (given in Section 2). Finally,
let P N be the push-forward of PN by �. It is quite direct to see that P N → P weakly.

The Dobrushin constant DN associated with PN is given by

DN = sup
j

∑
i

δN,i

(
1 − e−φ(x0

i −x0
j )) ≤ sup

j

∑
i

z|Ei |
(
1 − e−φ(x0

i −x0
j ))

.

When N goes to infinity,

lim sup
N→∞

DN ≤ sup
y∈Rd

z

∫
E

(
1 − e−φ(x−y)

)
dx = z

∫
Rd

(
1 − e−φ(x)

)
dx = D.

Therefore, if D < 1 and DN < 1 for all N large enough, then the W1H -inequality in Theorem 3.3
holds for PN . By the isometry of the mapping �, P N satisfies the same W1H -inequality on �

w.r.t. the metric d , which gives us, by Theorem 1.1(b′),

logE
PN

eλF ≤ λP N(G) +
(∑

i∈�

[δN,i + δ2
N,i/4]

)
h∗

(
λ

1 − DN

)
.

By letting N go to infinity, this yields (4.3), for P N → P φ weakly and∑
i∈�

[δN,i + δ2
N,i/4] ≤

∑
i∈�

z|Ei |(1 + z|Ei |/4) → z|E|.
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Step 2. General φ and {yk, k} is finite. For general measurable non-negative and even interac-
tion function φ, we take a sequence of continuous, even and non-negative functions (φn) such
that 1 − e−φn → 1 − e−φ in L1(Rd ,dx). Now, note that dP φn

dP 0 → dP φ

dP 0 in L1(�,P 0), that is,

P φn → P φ in total variation. Hence, (4.3) for P φn (proved in step 1) yields (4.3) for P φ .
Step 3. General case. Finally, if the set of points {yk, k} is infinite, approximating

∑∞
k=1 φ(xi −

yk) by
∑n

k=1 φ(xi − yk) in the definition of P φ , we get (4.3) for P φ , as in step 2. �

Remark 4.3. The explicit Poissonian concentration inequality (1.4) follows from Theorem 4.1
by Theorem 1.1(c) (with n = 1) by noting that the observable F(ω) = ω(f )/(2N)d there is
Lipschitzian w.r.t. d with ‖F‖Lip(d) ≤ M/(2N)d and h(r) ≥ (r/2) log(1 + r).

Remark 4.4. A quite curious phenomena occurs in the continuous gas model: the extra constant
δ2
i /4 coming from the mixture of measures now disappears.
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