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We present a framework for obtaining explicit bounds on the rate of convergence to equilibrium of a Markov
chain on a general state space, with respect to both total variation and Wasserstein distances. For Wasser-
stein bounds, our main tool is Steinsaltz’s convergence theorem for locally contractive random dynamical
systems. We describe practical methods for finding Steinsaltz’s “drift functions” that prove local contrac-
tivity. We then use the idea of “one-shot coupling” to derive criteria that give bounds for total variation
distances in terms of Wasserstein distances. Our methods are applied to two examples: a two-component
Gibbs sampler for the Normal distribution and a random logistic dynamical system.
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1. Introduction

In many theoretical or applied problems involving positive recurrent Markov chains, it is im-
portant to estimate the number of iterations until the distribution of the chain is “close” to its
equilibrium distribution. Suppose we have a Markov chain with state space χ , initial state x,
transition probability kernel P and limiting stationary distribution π . We would like a quantita-
tive bound such as

d(P n(x, ·),π(·)) ≤ g(x,n),

where d is a metric on the set of probability measures and g(x,n) is a function that can be
computed explicitly. For example, knowledge of such a function g can be valuable to Bayesian
statisticians using Markov chain Monte Carlo (MCMC) approximations because it tells them how
many MCMC steps will ensure a good approximation to the posterior distribution under consid-
eration. An excellent survey on the theory of general state space Markov chains and MCMC
is [19].

An important technical point is the specification of the metric d on the set of probability mea-
sures. Two common choices are the total variation (TV) metric (denoted dTV) and the Wasser-
stein metric (denoted dW); see Section 2 for definitions and basic properties of these two metrics.
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There is a rich literature on Markov chain convergence in total variation distance. Many
tools have been developed for convergence in TV, involving probabilistic methods (for example,
coupling, strong uniform times; see [5,13,19] for reviews), analytic methods (spectral analysis,
Fourier analysis, operator theory; see [5,21]) and geometric methods (path bounds, isoperime-
try; see [13,21]). Much of the progress, and many of the sharpest results, have been for discrete
state spaces [5,13,21], including spaces related to graphs, algebraic structures, or models from
statistical physics. Some results extend to general state spaces, but some basic discrete properties
and methods do not have convenient analogs in the general case. Continuous state spaces are
of particular interest in Bayesian MCMC applications [10,19], but quantitative rigorous results
about realistic examples are scarce.

Frequently, the desirable functions g to seek are of the form g(x,n) = C(x)rn, where C(x)

and r can be computed explicitly. The existence of such a function for the TV metric is called
geometric ergodicity and is known to hold under fairly general conditions (see, for example,
[16,17]). Explicit identification of such functions can be an intricate task, however. A classical
result in this context is due to Doeblin: if there exists a probability measure ν and 0 < ε < 1 such
that P(x,dy) ≥ εν(dy) for every x, then dTV(P n(x, ·),π) ≤ (1−ε)n. It is possible to get similar
bounds using coupling when Doeblin’s condition holds only on a subset K , if a “drift function” to
K exists. More precisely, one needs (i) P(x,dy) ≥ εν(dy) for all x ∈ K ; (ii) a function V > 1 and
a constant α > 1 such that E(V (Yn+1)|Yn = y) < V (y)/α for all y ∈ Kc . These conditions are
called (i) minorization and (ii) drift conditions [16,20]. For practitioners who want to implement
these conditions, the challenge is to identify such a set K and a drift function V that lead to
tractable calculations and good results. See [11] for an impressive application of these conditions
to a Bayesian random effects model. A good survey and another realistic application is in [14].

Coupling arguments for proving TV bounds typically use two coupled versions of a Markov
chain that coalesce relatively quickly. This is often technically easier to do in discrete state spaces
than in state spaces with no atoms. Minorization and drift conditions offer one solution to this
difficulty: coalescence is facilitated when the coupled chains are simultaneously in the set K .
However, in many situations, it may be hard to force coupled chains to coalesce, but it may
be easier to force them to come (and stay) very close to each other. Closeness of two chains
in the metric of the state space roughly corresponds to closeness of their distributions in the
Wasserstein distance. For this reason, the Wasserstein distance can be a tractable alternative to the
total variation distance for problems in continuous state spaces (see, for example, [8]). Although
Wasserstein convergence can be weaker than TV convergence, we shall show that under certain
conditions, bounds on the rate of Wasserstein convergence can be used to get bounds on the rate
of TV convergence (see Section 4). Thus, proving Wasserstein convergence is sometimes a step
toward proving TV convergence. Huber [12] also uses this general philosophy, employing rather
different methods from ours.

A particularly successful framework for studying convergence in Wasserstein distance is ran-
dom dynamical systems, or iterated function systems [6,22]. An iterated function system is a
sequence of random maps of the form Fn(x) = f1 ◦ f2 ◦ · · · ◦ fn(x) or F̃n(x) = fn ◦ fn−1 ◦ · · · ◦
f1(x), where f1, f2, . . . are independent and identically distributed (i.i.d.) random maps. (Two
examples are described later in this section.) The sequence {F̃n(x) :n ≥ 1} is called the forward
sequence and is a Markov chain. Many examples of Markov chains can be represented as for-
ward iterates of i.i.d. random maps. {Fn(x) :n ≥ 1} is called the backward sequence and, under
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certain conditions, it converges pointwise to a random variable, X∞, independent of the starting
point x. If X∞ exists, in which case the system is called attractive, the distribution of X∞ is also
the stationary distribution π of the Markov chain F̃n(x). The rate at which E[ρ(Fn(x),X∞)]
converges to zero is an upper bound on the rate of convergence in distribution of the Markov
chain F̃n(x) to π in Wasserstein distance. Indeed, since Fn(x) has distribution P n(x, ·) (as does
F̃n(x)) and since X∞ ∼ π , we have

dW(P n(x, ·),π) ≤ E[ρ(Fn(x),X∞)]. (1)

One condition that guarantees attractivity is strong contractivity, that is, E[log Lipf ] < 0,
where Lipf is the Lipschitz constant of the (random) function f . This condition is a general-
ization of the stronger condition that there exists a constant r ∈ (0,1) such that ρ(f (x), f (y)) ≤
rρ(x, y) for all x and y, with probability 1. (Gibbs [8] used a variation of this condition to get
a bound for the Wasserstein distance of a Markov chain Xn to its stationary distribution using
coupling. See also [6] for a related result.) However, applications frequently require weaker con-
ditions. Steinsaltz [22] proves attractivity under a more general condition, called “local contrac-
tivity”, which says that there exists a “drift function” φ : X �→ [1,∞) and a constant r ∈ (0,1)

such that

Gn(x) := E[DxFn] ≤ φ(x)rn,

where Dxf := lim supy→x
ρ(f (x),f (y))

ρ(x,y)
. He proves that if local contractivity holds, then

E[ρ(Fn(x),X∞)] ≤ Cxr
n for every n ≥ 1,

where Cx is a number that can be computed explicitly; see Section 3.1 for further discussion.
Steinsaltz’s use of the term “drift” is analogous to, but different from, Rosenthal’s use (which, in
turn, is closely related to Foster–Lyapunov functions; see [7] for a review and references).

Like the minorization and drift conditions, the local contractivity condition requires prelim-
inary work to obtain a drift function. The goal of the first part of this paper (Section 3) is to
provide a systematic framework for doing this.

We developed our methods using two examples. The first is a simple Gibbs sampler chain for
Bayesian estimation of the mean and variance of a Normal distribution. The second example is a
randomized version of the classical logistic map from dynamical systems theory.

The paper is organized as follows. The remainder of this section is devoted to descriptions of
our two main examples. Section 2 provides definitions and basic properties of the Wasserstein
and total variation metrics. Section 3 examines the task of finding a drift function that produces
quantitative bounds on Wasserstein convergence. Section 3.1 reviews the results of Steinsaltz [22]
and Section 3.2 presents an approach to finding drift functions by looking for sub-eigenfunctions
of a certain dominating operator. Section 3.3 then uses this approach to find drift functions for
our Gibbs sampler example. Section 4 shows how bounds on the Wasserstein metric may be
“upgraded” to bounds on the total variation metric in some situations. Section 4.1 reviews the
idea of “one-shot coupling” [18] and presents our key technical result (Theorem 12). Sections 4.2
and 4.3 apply this result to our two examples.
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Example 1 (Normal Gibbs sampler). A simple Bayesian estimation problem is the following.
Consider a random sample of size J from the Normal distribution with mean θ and variance σ 2

(written N(θ,σ 2)). We assume that θ and S := σ−2 are themselves independent random vari-
ables from Normal and Gamma prior distributions respectively:

θ ∼ N(ξ,K−1) and S := σ−2 ∼ �(α,β).

(Here, �(α,β) is the Gamma distribution with density sα−1βα exp(−βs)/�(α).) Let Y :=
Y1, . . . , YJ be our random sample from N(θ,σ 2) (conditionally independent, given θ and σ ).
The joint posterior for θ and S given Y is

p(θ, s|Y) ∝ sα−1+J/2 exp

[
−βs − K(θ − ξ)2

2
− s

∑
(Yj − θ)2

2

]
(2)

(where
∑

is the sum over j from 1 to J ). Besides positive values of K , we shall also consider
the case K = 0. When K = 0, the prior for θ is not a probability distribution; however, the joint
posterior is a probability distribution. (We can view K = 0 as the “flat prior” limit K → 0+. The
case β = 0 is similar.) The Gibbs sampler is the Markov chain (θt , St ) defined recursively by
drawing θt from its conditional distribution given Y and S = St−1, followed by drawing St from
its conditional distribution given Y and θ = θt :

θt ∼ N

(
St−1

∑
Yj + Kξ

St−1J + K
,

1

St−1J + K

)
,

St ∼ �

(
α + J

2
, β + 1

2

∑
(Yj − θt )

2
)

.

We can represent this procedure as follows:

θt = Zt√
St−1J + K

+ St−1
∑

Yj + Kξ

St−1J + K
, where Zt ∼ N(0,1), (3)

St = Gt

β + 1
2

∑
(Yj − θt )2

, where Gt ∼ �(α + J/2,1) (4)

(and {Zt } and {Gt } are independent i.i.d. sequences). Let

Ȳ = 1

J

J∑
j=1

Yj and �0 = β + 1

2

J∑
j=1

(Yj − Ȳ )2

(we treat these as constants, since we always condition on Y ). Since

J∑
j=1

(Yj − θ)2 =
J∑

j=1

(Yj − Ȳ )2 + J (Ȳ − θ)2, (5)
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we can write equation (4) as

St = Gt

�0 + (J/2)(Ȳ − θt )2
. (6)

Using equation (3), we can express (6) as a random dynamical system, as follows:

St = ft (St−1), t = 1,2, . . . , (7)

where ft : (0,∞) → (0,∞) is the random function

ft (s) = Gt

�0 + (J/2)(Zt/
√

sJ + K + (ξ − Ȳ )K/(sJ + K))2
(8)

with the random variables Gt and Zt as above. The case K = 0 is of special interest (representing
an improper prior for θ ) and equation (8) specializes to

ft (s) = Gt

�0 + Z2
t /(2s)

. (9)

We note that the posterior (2) is a proper probability distribution when K = 0, even though the
prior is not (to see this, use (5) and integrate θ first).

Without loss of generality, we can assume that ξ is zero and that K is either 0 or 1. (Indeed,
if K > 0, then we can let θ̃ = (θ − ξ)

√
K , Ỹi = (Yi − ξ)

√
K , σ̃ 2 = Kσ 2 and β̃ = Kβ; then

Ỹi ∼ N(θ̃, σ̃ 2), where θ̃ ∼ N(0,1) and σ̃−2 ∼ �(α, β̃).) Accordingly, for our Markov chain {St }
with K ∈ {0,1}, let PK be the chain’s transition probability kernel, let pK(·, ·) be the density of
PK and let πK be the stationary distribution.

We shall obtain quantitative bounds for the convergence of our Gibbs sampler chain PK (K ∈
{0,1}); see Propositions 11 and 14, and the discussions of numerical results following each.
Roberts and Rosenthal [18] analyzed this chain with flat priors, that is, K = ξ = β = 0 and α = 1.
In particular, their results show that lim supn→∞[dTV(P n

0 (x, ·),π0)]1/n ≤ 1/J . This would equal
our asymptotic rate if we could replace w by 1 in Proposition 14. The analysis of [18] uses the
property that the recursion for 1/St is a linear function of 1/St−1, which only holds when K = 0.
Their approach cannot handle the case K > 0. Our method of Section 4 may be viewed as a more
powerful (nonlinear) generalization of [18].

Example 2 (Random logistic map). We consider the i.i.d. random maps f1, f2, . . . on [0,1]
defined by

fi(x) = 4Bix(1 − x),

where B1,B2, . . . are i.i.d. random variables having the Beta(a + 1
2 , a − 1

2 ) distribution. Here,
a > 1

2 is a fixed number. It is known that the Beta(a, a) distribution is the unique stationary dis-
tribution for this iterated function system [3]. Our result for this example will provide bounds
that are more qualitative than quantitative. Asymptotic convergence properties of this example
have been studied in the literature. Steinsaltz [22] showed that the system is locally contractive
if a ≥ 2 and hence that the corresponding Markov chain converges to equilibrium exponentially
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rapidly in the Wasserstein distance. Using the techniques of Section 4, we shall prove the follow-
ing theorem.

Theorem 1. Assume that a > 1/2 and let x ∈ (0,1). There then exists a constant C̃a , depending
only on a, such that

dTV(F̃n(x),βa,a) ≤ C̃a[dW(F̃n−1(x),βa,a)]a/(a+1) for all n ≥ 1

(where βa,a is a random variable having the Beta(a, a) distribution).

Note that Theorem 1 does not assume local contractivity (indeed, local contractivity fails if
1/2 < a < 1, by Corollary 3 of [23] and Theorem 1 of [22]).

Theorem 1 implies the following. Assume that the random logistic Markov chain {F̃n(x) :n =
0,1, . . .} converges to its equilibrium exponentially rapidly in Wasserstein distance, that is, that
there exists a constant ρ ∈ (0,1) such that

lim sup
n→∞

[dW(F̃n(x),βa,a)]1/n ≤ ρ. (10)

It then also converges exponentially rapidly in TV distance, perhaps at a modestly slower rate:

lim sup
n→∞

[dTV(F̃n(x),βa,a)]1/n ≤ ρa/(a+1) < 1.

Since the state space (0,1) has diameter 1, we trivially have dW(F̃n(x),βa,a) ≤ dTV(F̃n(x),βa,a).
Hence, we conclude that for a > 1/2, our random logistic Markov chain converges to the equi-
librium exponentially rapidly in Wasserstein distance if and only if it converges exponentially
rapidly in TV distance.

2. Wasserstein and total variation metrics

In this section, we review the definitions and some properties of two metrics on the space of
probability measures: the Wasserstein metric and the total variation (TV) metric. For a broader
review of metrics on probabilities, see [9].

Let (χ,ρ) be a complete separable metric space. Consider two probability measures, μ1 and
μ2, on χ . Let Joint(μ1,μ2) denote the set of all probability measures M on χ × χ whose mar-
ginal distributions are μ1 and μ2, that is,

μ1(dx) =
∫

y

M(dx,dy) and μ2(dy) =
∫

x

M(dx,dy).

In other words, if two random variables X1 and X2 have distributions μ1 and μ2, respectively,
then Joint(μ1,μ2) is the set of all “couplings” of X1 and X2.

The Wasserstein distance between μ1 and μ2, denoted dW(μ1,μ2), is defined to be

dW(μ1,μ2) = inf

{∫
χ

∫
χ

ρ(x, y)M(dx,dy) :M ∈ Joint(μ1,μ2)

}
. (11)
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In other words, dW(μ1,μ2) is the infimum of E(ρ(X1,X2)) over all couplings of X1 and X2
(where Xi ∼ μi ). It can be shown that there exists an M that attains the infimum (see, for exam-
ple, Section 5.1 of [4]).

The total variation (TV) distance between μ1 and μ2, denoted dTV(μ1,μ2), is defined to be

dTV(μ1,μ2) = sup{|μ1(A) − μ2(A)| :A ⊂ χ}. (12)

This sup is attained by some set A (by the classical Hahn decomposition for the signed measure
μ1 − μ2). An equivalent definition of dTV is

dTV(μ1,μ2) = inf
{
M

({(x, y) :x 
= y}) :M ∈ Joint(μ1,μ2)
}
. (13)

In other words, dTV(μ1,μ2) is the infimum of Pr{X1 
= X2} over all couplings of X1 and X2
(where Xi ∼ μi ). For convenience, we shall sometimes talk about the Wasserstein or TV distance
between two random variables, which means the same thing as the Wasserstein or TV distance
between their distributions.

The following is relatively well known (see, for example, Theorem 5.7 of [4] or Proposition 3
of [19]).

Proposition 2. Assume that μ1 and μ2 are probability measures on χ , having density func-
tions p1 and ρ2, respectively, with respect to a common reference measure λ. Then

dTV(μ1,μ2) = 1

2

∫
χ

|p1(z) − p2(z)|λ(dz) (14)

=
∫

z : p1(z)>p2(z)

(
p1(z) − p2(z)

)
λ(dz) (15)

= 1 −
∫

χ

min{p1(z),p2(z)}λ(dz). (16)

If the state space χ is bounded, then dW(μ1,μ2) ≤ dTV(μ1,μ2) × [sup{ρ(x, y) :x, y ∈ χ}]
and, in particular, TV convergence implies Wasserstein convergence. However, in general, nei-
ther convergence implies the other. For example, in R, let μn be the two-point probability distri-
bution that has μn({0}) = 1 − n−1 and μn({n}) = n−1. Then μn converges to the point mass at 0
in the TV metric, but not in Wasserstein. Also, let νn be the probability distribution on [0,1] with
density 1 + sin(2πnx); then νn converges to the uniform distribution on [0,1] in Wasserstein,
but not in TV.

The following result will be very useful in Section 4.

Lemma 3. Consider a deterministic measurable function g :A × B → C. Let W1 and W2 be
two B-valued random variables and let U be an A-valued random variable that is independent
of both Wi ’s. Define the C-valued random variables X1 and X2 by Xi = g(U,Wi), i = 1,2.
Then

dTV(X1,X2) ≤ dTV(W1,W2).
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Proof. Choose a joint distribution M(dw1,dw2) of a random vector (W̃1, W̃2) on B × B such

that W̃i
d= Wi for i = 1,2 and M{W̃1 
= W̃2} = dTV(W1,W2). Also, make (W̃1, W̃2) independent

of U and let X̃i = g(U, W̃i). Then X̃i
d= Xi for i = 1,2, so

dTV(X1,X2) ≤ M{X̃1 
= X̃2} ≤ M{W̃1 
= W̃2} = dTV(W1,W2). �

3. Convergence in the Wasserstein metric

3.1. Local contractivity condition and a convergence theorem

Our main tool to obtain quantitative bounds for convergence in Wasserstein metric will be Stein-
saltz’s local contractivity convergence theorem [22]. Below, we review this result in a form con-
venient for us.

Definition 4. An iterated function system is locally contractive if there exists a function φ : X �→
[1,∞) and r ∈ (0,1) such that

Gn(x) := E[DxFn] ≤ φ(x)rn for all n ≥ 1,

where Dxf := lim supy→x
ρ(f (x),f (y))

ρ(x,y)
. If this holds, then φ is called a drift function.

Theorem 5. If an iterated function system is locally contractive with a drift function φ and if

Cx := E
[
ρ(f (x), x) sup

0≤t≤1

{
φ
(
x + t

(
f (x) − x

))}]
< ∞,

then the system is attractive (in particular, F∞(x) is independent of x) and

dW(Fn(x),F∞(x)) ≤ Eρ(Fn(x),F∞(x)) ≤ Cxr
n

1 − r
for every x ∈ χ.

Steinsaltz [22] also gives a sufficient condition, called the growth condition, for a function φ

to be a drift function: a continuous function φ : X �→ [1,∞) is a drift function if r < 1, where

r := sup
x

E

[
φ(f (x))

φ(x)
Dxf

]
.

Here is a short argument (different from the original proof in [22]) to explain why. Let L
be the positive linear operator which maps a generic function g to the function L(g)(x) =
E[g(f (x))Dxf ]. Then Gn(x) = Ln(1)(x), with 1 here being the constant function equal to 1.
Note that the growth condition is equivalent to Lφ ≤ rφ. We will refer to any φ > 0 satisfying
Lφ ≤ rφ as an r-sub-eigenfunction for L. Now, if φ ≥ 1 and φ is an r-sub-eigenfunction, then
Gn(x) = Ln1 ≤ Lnφ ≤ rnφ and hence φ is a drift function with rate r .

We note that Proposition 8 of [23] shows that the existence of a φ satisfying the growth con-
dition is also necessary for local contractivity.
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3.2. How to apply the local contractivity convergence theorem: Finding a
drift function

Applying Steinsaltz’s local contractivity convergence theorem to a specific problem would be
easy if one knew how to write down a drift function. Here, we will propose two practical strate-
gies that can help us to do this.

The first strategy is to find a linear operator L̃ that dominates L and is simpler to manage. If φ

is an r-sub-eigenfunction for L̃, then it is an r-sub-eigenfunction for L as well.
One kind of operator that we can manage is defined as follows: let {Ai}ni=1 be a finite partition

of the state space χ and let

L̃φ(x) = b(x)

n∑
i=1

1Ai
(x)

∫
χ

φ(s)μi(ds), (17)

where b(x) is a positive function and each μi is a non-zero finite measure on χ .

Theorem 6. Let L̃ be an operator of the form (17). In order for L̃ to have an r-sub-eigenfunction,
it is necessary and sufficient that the matrix

Q(i, j) =
∫

Aj

b(x)μi(dx)

has an r-sub-eigenvector p = (p1,p2, . . . , pn)
t , that is, pi > 0 ∀i and Qp ≤ rp. Moreover, if p

is an r-sub-eigenvector for Q, then the function

φ(x) =
n∑

j=1

pj 1Aj
(x)b(x) (18)

(and any positive multiple of it) is an r-sub-eigenfunction for L̃.

Proof. If φ is an r-sub-eigenfunction of L̃, then b(x)
∑n

j=1 1Aj
(x)

∫
φ(dc)μj (c) ≤ rφ(x), by

definition of L̃. Integrating both sides with respect to μi gives

n∑
j=1

∫
Aj

b(x)μi(dx)

∫
φ(c)μj (dc) ≤ r

∫
φ(x)μi(dx).

Therefore, the vector p defined by pi := ∫
φμi is an r-sub-eigenvector for Q. Conversely, if p

is an r-sub-eigenvector for Q and if φ is as defined in (18), then

L̃φ(x) = b(x)

n∑
i=1

1Ai
(x)

n∑
j=1

pj

∫
Aj

b(s)μi(ds) ≤ b(x)

n∑
i=1

1Ai
(x)rpi = rφ(x).

Hence φ is an r-sub-eigenfunction and so is any positive multiple of it. �
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For the case n = 1, Theorem 6 implies the following.

Corollary 7. Assume that b is a positive function and μ is a finite measure such that Lφ(x) ≤
b(x)

∫
χ

φ(s)μ(ds) for every x ∈ χ and every positive φ. Let r = ∫
b(s)μ(ds). Then b is an r-

sub-eigenfunction for L.

Note that for an r-sub-eigenfunction φ to be a drift function, it must be greater than 1. If φ

is bounded away from 0, we can get a drift function simply by scaling φ. However, if φ is not
bounded away from 0, we first need to truncate it, as in the following lemma.

Lemma 8. Let φ be an r-sub-eigenfunction for L. Let ε > 0 and define

φε(x) = 1

ε
max{φ(x), ε}. (19)

Define A0 := supx E[Dxf
φ(x)

] and rε := r + εA0, and assume that A0 < ∞. Then φε is an rε-sub-
eigenfunction for L.

Proof. Since φε(x) ≥ 1 for every x and φε(f (x))
φε(x)

≤ φ(f (x))+ε
φ(x)

, we have

E

[
φε(f (x))

φε(x)
Dxf

]
≤ E

[
φ(f (x))

φ(x)
Dxf

]
+ εE

[
Dxf

φ(x)

]
≤ r + εA0. (20)

�

The second strategy is to switch to an easier operator, analogously to switching from one
measure to another by the use of a Radon–Nikodym derivative.

Lemma 9. Assume that a positive linear operator L1 has the integral representation L1(φ)(x) =∫
φ(y)K(x,dy) and let L2(φ)(x) = 1

h(x)

∫
φ(y)h(y)K(x,dy), where h is a strictly positive func-

tion. Then φ is an r-sub-eigenfunction for L1 if and only if φ
h

is an r-sub-eigenfunction for L2.

Proof. It is enough to prove one direction only. Let φ be an r-sub-eigenfunction for L1. Then

L2

(
φ

h

)
(x) = 1

h(x)

∫
φ(y)

h(y)
h(y)K(x,dy) ≤ r

φ(x)

h(x)
. �

In particular, this lemma tells us that if r := supx K(x,χ) < 1, then 1/h is an r-sub-
eigenfunction for L2.

3.3. Example 1: Normal Gibbs sampler

We shall use the techniques of Section 3.2 to find drift functions for the Gibbs sampler example
of Section 1. Recall that, without loss of generality, we assume that K = 0 or 1 and ξ = 0. The
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following proposition gives three different drift functions that are valid under different conditions
on the parameters and the data Y . It should be clear that other drift functions are possible; also,
the bounds ri can be tightened somewhat at the cost of additional effort and/or more complicated
expressions. For numerical illustrations, see the remarks following the proof of Proposition 11.

Proposition 10. (i) For given K ≥ 0, let

A := (α + J/2)(|Ȳ |√K + 1)(|Ȳ |√K + 1/2)

�2
0

and r1 := (|Ȳ |√K + 1)(|Ȳ |√K + 1/2)

α + J/2 − 1
.

If r1 < 1, then for any ε such that r1,ε := r1 + εA < 1, φ1,ε(x) := 1
ε

max(ε, 1
x2 ) is a drift function

with rate r1,ε .

(ii) Assume K = 1. Let r2 := (α + J
2 ) J 2

�2
0
(|Ȳ | + 1)(|Ȳ | + 1

2 ). If r2 < 1, then φ2(x) = 1 is a

drift function with rate r2.

(iii) Assume K = 1. Define

Â := (|Ȳ | + 1)(α + J/2)J
√

2π

2�2
0

, b(x) := J√
2π

(
2|Ȳ |

(xJ + 1)3/2
+ 1

xJ + 1

)
(21)

and

r3 := 1√
2π

(
4|Ȳ |

(
1 − 1√

J (α + J/2)/�0 + 1

)
+ log

(
J (α + J/2)

�0
+ 1

))
.

If r3 < 1, then for any ε such that r3,ε := r3 + εÂ < 1, the function φ3,ε(x) = 1
ε

max(ε, b(x)) is
a drift function with rate r3,ε .

Proof. The idea of the proof is that for each case, we find a sub-eigenfunction φ for the opera-
tor L and, if necessary, we truncate φ, as in Lemma 8, to obtain a drift function.

Recall L(φ)(x) = E[φ(f (x))Dxf ], where

f (x) = G

�0 + (J/2)(ȲK/(xJ + K) − Z/
√

xJ + K)2
,

and G and Z are two independent random variables with �(α+J/2,1) and N(0,1) distributions,
respectively. We shall frequently use (without reference) the following two easy calculations for
G and Z. First, the definition of the Gamma distribution implies that

E(Gp) = �(α + J/2 + p)

�(α + J/2)
for p > −

(
α + J

2

)
. (22)

Second, for all constants a, b, c, d , the Schwarz inequality and E(Z2) = 1 imply

E(|a + bZ||c + dZ|) ≤
√

a2 + b2
√

c2 + d2 ≤ (|a| + |b|)(|c| + |d|). (23)
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(i) The local Lipschitz constant Dxf is equal to the absolute value of the derivative f at x, so,
by direct computation,

Dxf = GJ 2|ȲK/(xJ + K) − Z/
√

xJ + K||ȲK/(xJ + K)2 − Z/(2(xJ + K)3/2)|
(�0 + (J/2)(ȲK/(xJ + K) − Z/

√
xJ + K)2)2

. (24)

Let kx be the joint distribution of f (x) and D̃x , where

D̃x := J 2|ȲK/(xJ + K) − Z/
√

xJ + K||ȲK/(xJ + K)2 − Z/(2(xJ + K)3/2)|
G

and let Kx(dc) = x2(
∫

0<y<∞ ykx(dc,dy)). Note that f (x)2D̃x = Dxf . Therefore,

L(φ)(x) = E[φ(f (x))Dxf ] = E[φ(f (x))f (x)2D̃x] = 1

h(x)

∫
φ(c)h(c)Kx(dc),

where h(c) = c2. Let L1 be the operator defined by L1φ(x) := ∫
φ(c)Kx(dc) and let L2 = L.

By Lemma 9, we see that if φ is an r-sub-eigenfunction for L1 then φ
h

is an r-sub-eigenfunction
for L2 = L. We find that

sup
x

∫ ∞

0
Kx(dc) = sup

x
x2E[D̃x]

≤ sup
x

x2J 2

(xJ + K)2

(|Ȳ |√K + 1)(|Ȳ |√K + 1/2)

α + J/2 − 1
= r1.

If r1 < 1, then φ(x) = 1 is an r1-sub-eigenfunction for L1 and hence φ1(x) = x−2 is an r1-sub-
eigenfunction for L. Finally, note that for every x > 0,

E

[
Dxf

φ2(x)

]
= E

[
(xJ )2

(xJ + K)2

G|ȲK/
√

xJ + K − Z||ȲK/
√

xJ + K − Z/2|
(�0 + (J/2)(ȲK/(xJ + K) − Z/

√
xJ + K)2)2

]
≤ A.

Hence, by Lemma 8, φ1,ε is a drift function with growth rate less than r1 + εA.
(ii) When K = 1, supx E(Dxf ) ≤ r2. If r2 < 1 and we let φ2(x) = 1 ∀x, then Lφ2(x) =

E(Dxf ) ≤ r2φ2(x) and thus φ2(x) is a drift function with rate r2.
(iii) We first derive a more explicit formula for L and then look for an operator L̃ of the

form (17) with n = 1 that dominates L (as in Corollary 7). Note that we can write

L(φ)(x) =
∫ ∞

0
φ(c)

(∫ ∞

−∞
�x(z, c)hZ,f (x)(z, c)dz

)
dc,

where hZ,f (x) is the joint density of (Z,f (x)) and

�x(z, c) = cJ 2|Ȳ /(xJ + 1) − z/
√

xJ + 1||Ȳ /(xJ + 1)2 − z/(2(xJ + 1)3/2)|
�0 + (J/2)(Ȳ /(xJ + 1) − z/

√
xJ + 1)2
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(observe that �x(Z,f (x)) = Dxf , by (24)). To simplify the formulae, let us put

Ax(z) = Ȳ

(xJ + 1)
− z√

xJ + 1
, Bx(z) =

∣∣∣∣ Ȳ

(xJ + 1)2
− z

2(xJ + 1)3/2

∣∣∣∣
and ux(z) = �0 + J

2 Ax(z)
2.

To find hZ,f (x), we consider the mapping Tx(z, g) = (z, g/ux(z)). Note that Tx(Z,G) =
(Z,f (x)). Tx(z, c) is one-to-one and T −1

x (z, c) = (z, c(ux(z))). Let D be the Jacobian of T −1.
We have hZ,f (x)(z, c) = hZ,G(T −1

x (z, c))|detD| and |detD| = ux(z); therefore,

hZ,f (x)(z, c) = 1

�(α + J/2)
√

2π
ux(z)e

−z2/2(cux(z))
α+J/2−1e−cux(z).

Now,

∫ ∞

−∞
�x(z, c)hZ,f (x)(z, c)dz

= cJ 2

�(α + J/2)
√

2π

(∫
z≤Ȳ /

√
xJ+1

e−z2/2Ax(z)Bx(z)(cux(z))α+J/2−1e−cux(z) dz

−
∫

z>Ȳ /
√

xJ+1
e−z2/2Ax(z)Bx(z)(cux(z))

α+J/2−1e−cux(z) dz

)
.

Substituting u = cux(z) and noting that du = −cJ 1√
xJ+1

Ax(z)dz, we get

∫ ∞

−∞
�x(z, c)hZ,f (x)(z, c)dz

=
∫

u≥c�0

J

�(α + J/2)2
√

2π
√

xJ + 1
uα+J/2−1e−u

×
[

e−(1/2)(xJ+1)((Ȳ /(xJ+1))+√
(2/J )(u/c−�0))

2

∣∣∣∣∣ Ȳ

xJ + 1
−

√
2

J

(
u

c
− �0

)∣∣∣∣∣
+ e−(1/2)(xJ+1)((Ȳ /(xJ+1))−√

(2/J )(u/c−�0))
2

∣∣∣∣∣ Ȳ

xJ + 1
+

√
2

J

(
u

c
− �0

)∣∣∣∣∣
]

du.

Using the inequality |te−C(A+t)2 | ≤ |A| + 1√
2C

(where A and t are real and C > 0), we bound

the term inside the brackets by 2(
2|Ȳ |

xJ+1 + 1√
xJ+1

). Hence, L(φ)(x) ≤ b(x)
∫ ∞

0 φ(c)H̄ (c�0)dc,

where b(x) is defined in (21) and H̄ is one minus the c.d.f. of our gamma variable G, that is,
H̄ (x) = Pr{G > x}.



Wasserstein and TV convergence of Markov chains 895

Next, we compute r = ∫ ∞
0 b(c)H̄ (c�0)dc. Let g be the density of G. Note

∫ ∞

0

1

(cJ + 1)3/2
H̄ (c�0)dc = 2

J

∫ ∞

0

(
1 − 1√

xJ/�0 + 1

)
g(x)dx

≤ 2

J

(
1 − 1√∫ ∞

0 (xJ/�0 + 1)g(x)dx

)
(25)

= 2

J

(
1 − 1√

J (α + J/2)/�0 + 1

)
(26)

and

∫ ∞

0

1

cJ + 1
H̄ (c�0)dc = 1

J

∫ ∞

0
log

(
xJ

�0
+ 1

)
g(x)dx

≤ 1

J
log

(∫ ∞

0

(
xJ

�0
+ 1

)
g(x)dx

)
(27)

= 1

J
log

(
J (α + J/2)

�0
+ 1

)
, (28)

where (25) and (27) follow from Jensen’s inequality. Therefore, r ≤ r3. We conclude that φ3 is
an r3-sub-eigenfunction.

Using (23), we have

E(Dxf ) ≤ (α + J/2)J 2

�2
0

E

(∣∣∣∣ Ȳ

xJ + 1
− Z√

xJ + 1

∣∣∣∣
∣∣∣∣ Ȳ

(xJ + 1)2
− Z

2(xJ + 1)3/2

∣∣∣∣
)

≤ (α + J/2)J 2

�2
0(xJ + 1)

( |Ȳ |√
xJ + 1

+ 1

)( |Ȳ |
(xJ + 1)3/2

+ 1

2(xJ + 1)

)

= (α + J/2)J
√

2π

2�2
0(xJ + 1)

( |Ȳ |√
xJ + 1

+ 1

)
b(x),

where b is defined in equation (21). Hence, supx E[Dxf /b(x)] ≤ Â. By Corollary 7 and
Lemma 8, the function φ3,ε is a drift function with growth rate less than r3,ε . �

Proposition 11. Define ri and ri,ε as in Proposition 10:

(i) Let K ≥ 0 and assume that α + J/2 > 2. If r1,ε < 1, then for all x > 0 and all n ≥ 1,

dW(P n
K(x, ·),πK) ≤ Ĉ1,ε,x

1 − r1,ε

rn
1,ε,
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where

Ĉ1,ε,x =
(

x + α + J/2

�0

)(
max

{
1

εx2
,1

}

+
(

�2
0 + J�0

xJ + K

[
(ȲK)2

xJ + K
+ 1

]

+ J 2

4(xJ + K)2

[
(ȲK)4

(xJ + K)2
+ 6(ȲK)2

xJ + K
+ 3

])

× (
ε(α + J/2 − 1)(α + J/2 − 2)

)−1
)

.

(ii) Assume K = 1. If r2 < 1, then for all x > 0 and all n ≥ 1,

dW(P n
1 (x, ·),π1) ≤ x + (α + J/2)/�0

1 − r2
rn

2
.

(iii) Assume K = 1. If r3,ε < 1, then for all x > 0 and all n ≥ 1,

dW(P n
1 (x, ·),π1) ≤ Ĉ3,ε,x

1 − r3,ε

rn
3,ε,

where

Ĉ3,ε,x := max

{
1,

J (2|Ȳ | + 1)

ε
√

2π

}(
x + α + J/2

�0

)
.

Proof. (i) If r1,ε < 1, then dW(P n
K(x, ·),π1) ≤ C1,ε,x

1−r1,ε
rn

1,ε , where

C1,ε,x = E
[
|f (x) − x| sup

t∈[0,1]
{
φ1,ε

(
x + t

(
f (x) − x

))}]

≤ E

[(
f (x) + x

)
max

{
1

εx2
,

1

εf (x)2
,1

}]

≤ E

[(
f (x) + x

)(
max

{
1

εx2
,1

}
+ 1

εf (x)2

)]

≤ E[f (x) + x]E
[

max

{
1

εx2
,1

}
+ 1

εf (x)2

]
,

the last line following from the FKG inequality (see, for example, Theorem 3.17 of [15]) since
1/f (x)2 is a decreasing function of the random variable f (x). From

x + E(f (x)) ≤ x + α + J/2

�0
(29)
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and (using equation (22) with p = −2 > −(α + J/2))

E(f (x)−2) = E

[(
�0 + J

2

(
ȲK

xJ + K
− Z√

xJ + K

)2)2]
E(G−2)

=
(

�2
0 + J�0E

[(
ȲK

xJ + K
− Z√

xJ + K

)2]

+ J 2

4
E

[(
ȲK

xJ + K
− Z√

xJ + K

)4])
/(

(α + J/2 − 1)(α + J/2 − 2)
)
,

and calculation of the expectations in the brackets in the above expression, we find that Ĉ1,ε,x is
an upper bound for C1,ε,x .

(ii) If r2 < 1, then φ(x) = 1 is a drift function with rate r2. Hence, Theorem 5 implies that
dW(P n

1 (x, ·),π1) ≤ C2,x

1−r2
rn

2 , and C2,x = E(|f (x) − x|) ≤ x + α+J/2
�0

by equation (29).

(iii) If r3,ε < 1, then dW(P n
K(x, ·),π1) ≤ C3,ε,x

1−r1,ε
rn

1,ε and C3,ε,x ≤ E[f (x) + x] supy(φ3,ε(y)) ≤
Ĉ3,ε,x because of (29) and the fact that supy(φ3,ε(y)) = max{1,

J (2|Ȳ |+1)

ε
√

2π
}. �

Remarks. (1) The criterion r2 < 1 is essentially the condition that log supx E(Dxf ) < 0. This is
similar to the strong contractivity condition which says that E(log supx Dxf ) < 0. Logically, nei-
ther condition implies the other. Each implies the weaker condition supx,y E(log[ρ(f (x), f (y))/

ρ(x, y)]) < 0 used in [1] to prove attractivity (in a more restrictive setting).
(2) In the Bayesian model, as the number of observations J increases, Ȳ and �0/J both

converge (to θ and σ 2, respectively). Therefore, for large J , we expect r1 to be small, but r2 and
r3 to be large.

(3) (K = 1) To illustrate the calculations in the preceding propositions, we considered some
cases with 5 ≤ J ≤ 10, α = 1, 0.5 ≤ Ȳ ≤ 1.5 and 5 ≤ �0 ≤ 60. As shown in Table 1, it is possible
for any one of r1, r2 or r3 to be less than the other two.

(a) In case A, we have r2 = 5/6 and Ĉ2,x = x + 0.1. Hence, for x = 1, we have

dW(P n
1 (1, ·),π1) ≤ 6.6 ∗ (5/6)n for n ≥ 1 in case A.

Table 1. Values of r1, r2 and r3 in three cases of the Normal Gibbs sampler
with K = 1. Observe that r2 is best in case A, r1 in case B and r3 in case C.
Numbers with “. . . ” have had trailing digits truncated; other numbers are exact

Case J α Ȳ �0 r1 r2 r3

A 10 1 1.5 60 1 5/6 0.97. . .
B 5 1 0.5 5 0.6 5.25 1.02. . .
C 5 1 1 12 1.2 1.82. . . 0.9368. . .
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Table 2. Values of expressions from Propositions 10(i) and 11(i) for the Normal Gibbs sampler with K = 0,
for the cases given in Table 1. The values of ε were chosen somewhat arbitrarily. We use x = 1 in all cases.
Numbers with “. . . ” have had trailing digits truncated; other numbers are exact

Case r1 A ε r1,ε Ĉ1,ε,x dW(P n
0 (1, ·),π0) ≤

A 0.1 1/1200 1 0.1008. . . 202.4. . . 226 ∗ (0.101)n

B 0.2 0.07 0.5 0.235 31.28. . . 40.9 ∗ (0.235)n

C 0.2 0.012. . . 1 0.212. . . 55.28. . . 70.3 ∗ (0.213)n

In particular, dW(P n
1 (1, ·),π1) < 0.01 for n ≥ 36 in case A.

(b) For case B, we have r1 = 0.6 and A = 0.21. We want to have r1,ε < 1, where r1,ε = 0.6 +
0.21ε. Suppose we choose ε = 0.5. Then r1,ε = 0.705 and Ĉ1,ε,x < (16+max{1,2x−2})(x+0.7)

for all x > 0. For x = 1, we obtain

dW(P n
1 (1, ·),π1) ≤ 104 ∗ 0.705n for n ≥ 1 in case B.

In particular, dW(P n
1 (1, ·),π1) < 0.01 for n ≥ 27 in case B.

(c) In case C, we have r3 < 0.9369 and Â < 0.305. Choosing ε = 0.01 gives r3,ε < 0.94 and
Ĉ3,ε,x < 599(x + 0.3). For x = 1, we obtain

dW(P n
1 (1, ·),π1) ≤ 12980 ∗ 0.94n for n ≥ 1 in case C.

Therefore, dW(P n
1 (1, ·),π1) < 0.01 for n ≥ 228 in case C.

(4) (K = 0) Consider the three cases of Table 1, but now using the prior distribution with
K = 0. Table 2 gives the calculations of Propositions 10(i) and 11(i) (note that r1 = 1/[2α +J −
2]); the last column is the bound on the Wasserstein distance from equilibrium after n iterations,
started from x = 1. We find that dW(P n

0 (1, ·),π0) < 0.01 for n ≥ 5 in case A and for n ≥ 6 in
cases B and C.

4. From Wasserstein distance to total variation distance

4.1. One-shot coupling

In this section, we present Theorem 12, our main tool for converting Wasserstein convergence
rates to total variation convergence rates. Various methods of coupling have been used for proving
convergence in TV distance [5,13,19]. Although not explicit in the final formulation, the idea
behind this theorem is a certain kind of coupling method, called one-shot coupling, which has
been successfully applied to iterated function systems by Roberts and Rosenthal [18] (see also
[2,12]). We describe this method now.

We shall consider two copies of a Markov chain, running simultaneously. Let S0 and S̃0 be
two initial values for this chain (possibly random with some joint distribution). Let {ft } be a
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sequence of i.i.d. random maps that defines this Markov chain. Define

St = ft (St−1) and S̃t = ft (S̃t−1) for t = 1, . . . , n − 1.

That is, we use the same realization of the functions ft on both copies of the chains, up to
time n − 1. Suppose, at time n, we can find two copies f̂n and ˆ̂

fn of fn, that are independent
from everything earlier (but not independent of each other), such that, with high probability, we
have f̂n(Sn−1) = ˆ̂

fn (S̃n−1). (The name “one-shot coupling” refers to the fact that we only try to
coalesce the two copies of the chain at the single time n.) By the representation (13), this would
imply that Sn and S̃n are close to each other in TV distance. Two conditions help us to find such
f̂n and ˆ̂

fn: first, Sn−1 and S̃n−1 need to be reasonably close; second, the density functions of
the two random variables ft (x) and ft (y) need to have a large overlap when x and y are close.
Theorem 12 is a precise refinement of this argument.

In what follows, let (χ,ρ) be a complete separable metric space and let P be a transition
probability operator on the state space χ . Assume that P has a density p with respect to some
reference measure λ (that is, P(x,dz) = p(x, z)λ(dz)). Let μ be any probability distribution
on χ and let π be a stationary probability distribution for P .

Theorem 12. (a) Assume that there is a constant A such that∫
χ

|p(x, z) − p(y, z)|λ(dz) ≤ Aρ(x, y) for all x, y ∈ χ. (30)

Then

dTV(μP n,π) ≤ A

2
dW(μP n−1,π) for all n ≥ 1.

(b) Assume the following conditions hold:

(i) there exists a function h > 0 on χ such that∫
χ

|p(x, z) − p(y, z)|λ(dz) ≤ ρ(x, y)

max{h(x),h(y)} for all x, y ∈ χ ; (31)

(ii) there exist positive constants B , q and ε0 such that

π
({y :h(y) < ε}) ≤ Bεq for all ε in (0, ε0). (32)

Let C̃ = (2q)−q/(1+q) max{(q + 1)B1/(1+q), (Bqε0)
−1/(1+q)}. Then

dTV(μP n,π) ≤ C̃[dW(μP n−1,π)]q/(1+q) for all n ≥ 1. (33)

Remarks. (1) If we also know lim supn→∞[dW(μP n,π)]1/n ≤ ρ < 1, then the conditions of
Theorem 12(b) imply that lim supn→∞[dTV(μP n,π)]1/n ≤ ρq/(1+q).
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(2) Observe that condition (30) should not be expected to hold uniformly for x and y near 0
in the random logistic model. Indeed, as x decreases to 0, the density of ft (x) becomes more
and more peaked near 0. Essentially, this is because 0 is a fixed point of the continuous random
function ft . The same thing happens in the Gibbs sampler example when K is 0.

(3) Lemma 3 will be useful in obtaining bounds of the form (30) or (31).

Our first step in proving the above theorem is the following calculation.

Lemma 13. Let η and ν be probability measures on χ . Let � be a probability measure in
Joint(η, ν). Then

dTV(ηP, νP ) ≤ 1

2

∫
x

∫
y

∫
z

|p(x, z) − p(y, z)|λ(dz)�(dx,dy). (34)

Proof. Since (ηP )(dz) = (
∫
x
η(dx)p(x, z))λ(dz) and similarly for νP , we apply equation (14)

to obtain

dTV(ηP, νP ) = 1

2

∫
z

∣∣∣∣
∫

x

η(dx)p(x, z) −
∫

y

ν(dy)p(y, z)

∣∣∣∣λ(dz)

= 1

2

∫
z

∣∣∣∣
∫

x

∫
y

p(x, z)�(dx,dy) −
∫

x

∫
y

p(y, z)�(dx,dy)

∣∣∣∣λ(dz)

≤ 1

2

∫ ∫ ∫
|p(x, z) − p(y, z)|λ(dz)�(dx,dy). �

Proof of Theorem 12. We shall apply Lemma 13 with η = μP n−1 and ν = π (= πP ). Recall
from Section 2 that there is a probability measure � ≡ �η,ν in Joint(η, ν) such that dW(η, ν) =∫
x

∫
y
ρ(x, y)�(dx,dy). The proof of part (a) follows immediately.

For part (b), let ε > 0. Observe that the left-hand side of equation (31) is never greater than 2.
Lemma 13 and the assumption (31) then imply that

dTV(ηP, νP ) ≤ IA + IB, (35)

where

IA = 1

2

∫ ∫
{x,y : max{h(x),h(y)}≥ε}

ρ(x, y)

max{h(x),h(y)}�(dx,dy)

and

IB =
∫ ∫

{x,y : max{h(x),h(y)}<ε}
1�(dx,dy).

Note that

IA ≤ 1

2

∫ ∫
{x,y : max{h(x),h(y)}≥ε}

ρ(x, y)

ε
�(dx,dy) ≤ dW(μ, ν)

2ε
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and IB ≤ π({y :h(y) < ε}). Combining these bounds with the assumption (32) tells us that

dTV(μP n,π) ≤ dW(μP n−1,π)

2ε
+ Bεq for all ε ∈ (0, ε0).

Let An = dW(μP n−1,π) and consider the function Gn(ε) = An/(2ε) + Bεq . Simple calculus
shows that Gn is minimized at εn := ( An

2Bq
)1/(1+q) and the minimum value of the function is

Gn(εn) = CBqA
q/(1+q)
n , where CBq = (q + 1)(Bq−q2−q)1/(1+q). Let α0 = 2Bqε

1+q

0 . If An <

α0, then εn < ε0, so dTV(μP n,π) ≤ Gn(εn). If An ≥ α0, then, trivially, dTV(μP n,π) ≤ 1 ≤
α

−q/(1+q)

0 A
q/(1+q)
n . Thus equation (33) holds with C̃ = max{CBq,α

−q/(1+q)

0 }. �

4.2. Example 1: Normal Gibbs sampler

We return to the Gibbs sampler example described in Section 1. Recall that we write PK , pK

and πK to denote the corresponding transition kernel, density and stationary distribution, where
K ∈ {0,1}, without loss of generality.

Proposition 14. Let μ be an arbitrary initial probability distribution on (0,∞). Then

dTV(μP n
1 ,π1) ≤ J

2

(
1 + |Ȳ |√

2π

)
dW(μP n−1

1 ,π1) for n = 1,2, . . . (36)

and

dTV(μP n
0 ,π0) ≤ C̃dW(μP n−1

0 ,π0)
w for n = 1,2, . . . , (37)

where

w = 2α + J − 1

2α + J + 1

and

C̃ =
(

α + J + 1

2

)
e(1−w)�0(2α + J − 1)−w.

Before proceeding, let us revisit the numerical examples of Table 1, as discussed in the remarks
following Proposition 11.

(a) (K = 1) If dW(μP n
1 ,π1) ≤ QSn for some constants Q and S, then dTV(μP n

1 ,π1) ≤
J
2 (1 + |Ȳ |/√2π)(Q/S)Sn. Thus, for the case where μ is the point mass at x = 1, we obtain
the following upper bounds on dTV(μP n

1 ,π1): 63.3(5/6)n in case A, 443(0.705)n in case B and
48,294(0.94)n in case C. Hence, the total variation distance to equilibrium is less then 0.01 when
n ≥ 49 in case A, when n ≥ 31 in case B and when n ≥ 249 in case C.

(b) (K = 0) We have w = 11/13 in case A and w = 3/4 in cases B and C. Numeri-
cal values for C̃ (rounded up) are 8722 in case A, 3.642 in case B and 20.96 in case C. If
we know that dW(μP n

0 ,π0) ≤ QSn, then we obtain dTV(μP n
0 ,π0) ≤ C̃(Q/S)w(Sw)n. Thus,

for the case where μ is the point mass at x = 1, we obtain the following upper bounds on
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dTV(μP n
0 ,π0): 5,958,000(0.144)n in case A, 174.6(0.338)n in case B and 1624(0.314)n in

case C. Therefore, dTV(P n
0 (1, ·),π0) < 0.01 for n ≥ 11 in cases A and C, and for n ≥ 10 in

case B.
Logically, the proof of this proposition belongs at the end of this section since it relies on

several lemmas that have not yet been proven. However, we shall present the proof now since it
serves as a guide for what is to come.

Proof of Proposition 14. Equation (36) follows from Theorem 12(a) and Lemma 16 below.
Equation (37) follows from Theorem 12(b) and Lemmas 17 and 18 below. In Theorem 12(b), we
use q = α + (J − 1)/2, B = e�0 and ε0 = 1 (all courtesy of Lemma 18), and it is not hard to
check that, in the definition of C̃, the first term inside the ‘max’ exceeds the second. �

The proof of Lemma 18 relies on our knowledge of the explicit form of the equilibrium dis-
tribution (which is known in many MCMC problems). The proofs of Lemmas 16 and 17 rely
heavily on Lemma 3, together with the following technical lemma.

Lemma 15. Let Z be a standard Normal random variable:

(a) Let a and b be positive constants. Then dTV( Z√
a
, Z√

b
) ≤ |a − b|/max{a, b}.

(b) Let t be a real constant. Then dTV(Z,Z + t) ≤ |t |/√2π.

Proof. For positive x, let φx(·) be the probability density function of Z/
√

x, that is, φx(t) =√
x

2π
e−xt2/2 (t ∈ R).

(a) Without loss of generality, assume that 0 < a < b. Using equation (15) and e−at2/2 >

e−bt2/2, we obtain

dTV

(
Z√
a
,

Z√
b

)
=

∫
t : φb(t)>φa(t)

(√
b

2π
e−bt2/2 −

√
a

2π
e−at2/2

)
dt

<

∫
t : φb(t)>φa(t)

(√
b

2π
e−bt2/2 −

√
a

2π
e−bt2/2

)
dt

≤ (√
b − √

a
)∫ ∞

−∞
1√
2π

e−bt2/2 dt

= (√
b − √

a
) 1√

b
≤ |b − a|

b
.

Since b = max{a, b}, this proves part (a).
(b) Let φ = φ1, the probability density function of Z. Then φ(· − t) is the probability den-

sity function of Z + t . By symmetry, we can assume that t > 0. Observe that the function
min{φ(u),φ(u− t)} equals φ(u) for u ≥ t/2 and is symmetric (with respect to u) about u = t/2.
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Using this observation with equation (16) shows that

dTV(Z,Z + t) = 1 −
∫ ∞

−∞
min{φ(u),φ(u − t)}du

= 1 − 2
∫ ∞

t/2
φ(u)du =

∫ t/2

−t/2
φ(u)du ≤ t√

2π
,

where we have used the bound φ(u) ≤ 1/
√

2π for all u. This proves part (b). �

Lemma 16 (K = 1). For all positive x and y,

dTV(P1(x, ·),P1(y, ·)) ≤ J |x − y|(1 + |Ȳ |/√2π
)
.

Proof. For given s > 0, p1(s, ·) is the probability density function of (8) with K = 1 and ξ = 0.
Therefore, Lemma 3 implies that

dTV(P1(x, ·),P1(y, ·)) ≤ dTV

(
Z√
a

− Ȳ

a
,

Z√
b

− Ȳ

b

)
,

where a = xJ + 1, b = yJ + 1 and Z ∼ N(0,1). We then have

dTV(P1(x, ·),P1(y, ·)) = dTV

(
Z√
a

,
Z√
b

+ Ȳ

[
1

a
− 1

b

])

≤ dTV

(
Z√
a

,
Z√
b

)
+ dTV

(
Z√
b
,

Z√
b

+ Ȳ

[
b − a

ab

])

= dTV

(
Z√
a

,
Z√
b

)
+ dTV

(
Z,Z + Ȳ

[
b − a

a
√

b

])

≤ |b − a|
max{a, b} + |Ȳ ||b − a|√

2πa
√

b
(by Lemma 15).

Finally, since |a − b| = J |x − y| and a, b ≥ 1, the lemma follows. �

Lemma 17 (K = 0). For all positive x and y,

dTV(P0(x, ·),P0(y, ·)) = 1

2

∫ ∞

0
|p0(x, z) − p0(y, z)|dz ≤ |x − y|

max{x, y} .

Proof. The equality in the lemma comes from equation (14). Recall from equation (9) that
p0(x, ·) is the probability density function of G/(�0 + 1

2 [Z/
√

x]2), where G has a particular
Gamma distribution and Z has the standard Normal distribution. Therefore, Lemma 3 implies
that dTV(P0(x, ·),P0(y, ·)) ≤ dTV( Z√

x
, Z√

y
) and Lemma 15(a) completes the proof. �

Lemma 18 (K = 0). π0([0, ε]) ≤ e�0εα+(J−1)/2 for all ε in (0,1].
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Proof. The density π0(s) is the integral over θ of the posterior density p(θ, s|Y), which is given
by equation (2) with K = 0. Using equation (5), we see that

p(θ, s|Y) = 1

ζ
sα−1+J/2 exp[−sJ (Ȳ − θ)2/2]e−s�0 for s > 0 and θ ∈ R,

where ζ = ζ(α, J,�0, Y ) is the normalizing constant. Truncating the double integral that defines
ζ shows that

ζ ≥ e−�0

∫ 1

0

∫ ∞

−∞
sα−1+J/2 exp[−sJ (Ȳ − θ)2/2]dθ ds.

Therefore, for ε in (0,1],

π0([0, ε]) ≤ 1

ζ

∫ ε

0

∫ ∞

−∞
sα−1+J/2 exp[−sJ (Ȳ − θ)2/2]dθ ds

≤ e�0

∫ ε

0 sα−3/2+J/2 ds∫ 1
0 sα−3/2+J/2 ds

= e�0εα−1/2+J/2,

using
∫ ∞
−∞ exp[−sJ (Ȳ − θ)2/2]dθ = (2πJ s)−1/2 in the second inequality. �

Remark. Although we did not do it, one can compute ζ exactly when K = 0. In most practical
MCMC applications, the normalizing constant is hard to evaluate or even estimate – which is one
reason that people use MCMC instead of numerical analysis. In general, finding constants B and
ε0 for equation (32) can be hard. The above proof suggests one way to approach the challenge.

4.3. Example 2: Random logistic maps

Recall that we are considering i.i.d. random maps f1, f2, . . . on [0,1] defined by

fi(x) = 4Bix(1 − x),

where Bi ∼ Beta(a + 1
2 , a − 1

2 ) [a > 1
2 ], and that the Beta(a, a) distribution is the unique sta-

tionary distribution for the iterated function system.
In this subsection, we prove Theorem 1. The proof of this theorem is similar to the proof of

the ‘K = 1’ part of Proposition 14.
We begin with some notation. Let b(t) be the density of the Bi ’s, that is,

b(t) =
{

Kat
a−1/2(1 − t)a−3/2 for 0 ≤ t ≤ 1,

0 otherwise,

where Ka = �(2a)/�(a + 1
2 )�(a − 1

2 ). Let

Q(x) = 4x(1 − x) for 0 ≤ x ≤ 1.
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Observe that 0 ≤ Q(x) ≤ 1 for 0 ≤ x ≤ 1. For a given x ∈ (0,1), let bx(·) be the probability
density function of BiQ(x), that is,

bx(z) =
{

1

Q(x)
b

(
z

Q(x)

)
for 0 ≤ z ≤ Q(x),

0 otherwise.

Next, let p(x, z) denote the transition density of the Markov chain corresponding to the iterated
logistic maps. We then have

p(x, z) = bx(z) for x, z ∈ [0,1]. (38)

Lemma 19. For the iterated logistic maps with a > 1/2, we have

1

2

∫ 1

0
|p(x, z) − p(y, z)|dz ≤ 8a|y − x|

max{Q(x),Q(y)} for x, y ∈ (0,1).

Proof. Without loss of generality, assume that 0 < Q(x) ≤ Q(y). By equation (38), Proposi-
tion 2 and some calculation similar to that which was involved in the proof of Lemma 15, we
have

1

2

∫ 1

0
|p(x, z) − p(y, z)|dz

=
∫

{z : bx(z)>by(z)}
(
bx(z) − by(z)

)
dz

=
∫

{z : bx(z)>by(z)}
Ka

(
za−1/2(Q(x) − z)a−3/2

Q(x)2a−1
− za−1/2(Q(y) − z)a−3/2

Q(y)2a−1

)
dz

<

∫
{z : bx(z)>by(z)}

Kaz
a−1/2

(
(Q(x) − z)a−3/2

Q(x)2a−1
− (Q(x) − z)a−3/2

Q(y)2a−1

)
dz

(39)
(since Q(y) − z ≥ Q(x) − z ≥ 0)

=
(

1

Q(x)2a−1
− 1

Q(y)2a−1

)∫
{z : bx(z)>by(z)}

Kaz
a−1/2(Q(x) − z

)a−3/2 dz

≤
(

1 −
(

Q(x)

Q(y)

)2a−1)∫ Q(x)

0

Kaz
a−1/2(Q(x) − z)a−3/2

Q(x)2a−1
dz

= 1 −
(

Q(x)

Q(y)

)2a−1

.

We now observe that for p > 0,

vp − up ≤ max{p,1}vp−1|v − u| for v ≥ u ≥ 0 (40)
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(for 0 < p ≤ 1, this is simple algebra and for p > 1, this follows from applying the mean value
theorem to the function t �→ tp). Next, since |Q′(x)| = |4 − 8x| ≤ 4, the mean value theorem
implies that

|Q(y) − Q(x)| ≤ 4|y − x| for x, y ∈ [0,1]. (41)

Finally, for 0 < Q(x) ≤ Q(y), equations (39)–(41) imply that

1

2

∫ 1

0
|p(x, z) − p(y, z)|dz ≤ Q(y)2a−1 − Q(x)2a−1

Q(y)2a−1

≤ max{(2a − 1),1}|Q(y) − Q(x)|
Q(y)

≤ [(2a − 1) + 1]4|y − x|
Q(y)

.

This proves the lemma. �

We can now apply Theorem 12(b) as follows. Let μ = δx (point mass at x) and let πa be
the equilibrium βa,a distribution. Also, let λ be Lebesgue measure and let the function h(·)
be Q(·)/(16a). Lemma 19 then proves condition (i) of Theorem 12(b). For condition (ii), we
need to estimate πa({y ∈ [0,1] : h(y) ≤ ε}) for small positive ε. Let A = 16a. Observe that
if Q(y)/A ≤ ε and 0 ≤ y ≤ 1/2, then Aε ≥ 4y(1 − y) ≥ 4y(1/2), so y ≤ Aε/2. Similarly, if
Q(y)/A ≤ ε and 1/2 ≤ y ≤ 1, then y ≥ 1 − Aε/2. Therefore, for a ≥ 1 and 0 < ε ≤ 1/A, we
have

πa

({y ∈ [0,1] :h(y) ≤ ε})
= πa([0,Aε/2]) + πa([1 − Aε/2,1])
= 2πa([0,Aε/2]) (since πa is symmetric about 1/2)

= K̃a

∫ Aε/2

0
ta−1(1 − t)a−1 dt

(
where K̃a = �(2a)/�(a)2

)
(42)

≤ K̃a

∫ Aε/2

0
ta−1 dt (43)

= K̃a(8aε)a

a
.

Therefore, equation (32) holds with q = a, B = K̃a8aaa−1 and ε0 = 1/(16a). For 1/2 < a < 1,
everything is the same except that we use the bound (1 − t)a−1 ≤ 21−a for 0 < t ≤ 1/2 in the
integrand of (42), obtaining an extra multiplicative factor of 21−a in equation (43) and hence
B = 2K̃a4aaa−1. We have thus shown that Theorem 1 follows from Theorem 12(b).
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