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Expansions are provided for the moments of the number of collisions Xn in the β(2, b)-coalescent re-
stricted to the set {1, . . . , n}. We verify that Xn/EXn converges almost surely to one and that Xn, properly
normalized, weakly converges to the standard normal law. These results complement previously known
facts concerning the number of collisions in β(a, b)-coalescents with a ∈ (0,2) and b = 1, and a > 2 and
b > 0. The case a = 2 is a kind of ‘border situation’ which seems not to be amenable to approaches used
for a �= 2.
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1. Introduction and main results

Let E denote the set of all equivalence relations (partitions) on N. For n ∈ N, let �n : E → En

denote the natural restriction to the set En of all equivalence relations on {1, . . . , n}. For ξ ∈ En

let |ξ | denote the number of blocks (equivalence classes) of ξ .
Pitman [15] and Sagitov [17] independently introduced coalescent processes with multiple

collisions. These Markovian processes with state space E are characterized by a finite measure
� on [0,1] and hence are also called �-coalescent processes. For a �-coalescent {�t : t ≥ 0}, it
is known that

gnk := lim
t↘0

P{|�n�t | = k}
t

=
(

n

k − 1

)∫
[0,1]

xn−k−1(1 − x)k−1�(dx) (1)

for k,n ∈ N with k < n. Let

gn := lim
t↘0

1 − P{|�n�t | = n}
t

=
n−1∑
k=1

gnk, n ∈ N,

denote the total rates. Recently, there appeared several papers [2–4,6,8–10] dealing with certain
functionals of the restricted coalescent process {�n�t : t ≥ 0} (for some particular choices of �).
Functionals under consideration in these papers are (i) the number Xn of collision events (jumps)
that take place until there is just a single block, and (ii) the total branch length Ln, that is, the sum
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of the length of all branches of the restricted coalescent tree. Such functionals are important for
biological and statistical applications because they are closely related to the number of mutations
on the restricted coalescent tree, if it is assumed that mutations occur independently of the under-
lying genealogical tree (neutrality) on each branch of the tree according to some homogeneous
Poisson process with parameter r > 0 (coalescent with mutation).

In particular, the weak asymptotic behavior of the number of collisions Xn is known for
β(a, b)-coalescents with a ∈ (0,2) and b = 1, and a > 2 and b > 0. We briefly recall the corre-
sponding weak convergence results because they provide insight into the role of the parameter a

of the beta distribution � = β(a, b) in this model.
If 0 < a < 1 and b = 1, then (see [10])

Xn − n(α − 1)

(α − 1)n1/α

d→ X,

where α := 2 − a and X is an α-stable random variable with characteristic function EeitX =
exp(|t |α(cos(πα/2)+ i sin(πα/2) sgn(t))), t ∈ R. Gnedin and Yakubovich ([8], Theorem 9) used
analytic methods to generalize this result to �-coalescents satisfying �([0, x]) = Axa +O(xa+ζ )

as x ↓ 0, where a ∈ (0,1), A > 0 and ζ > max{(2 − a)2/(5 − 5a + a2),1 − a}.
If a = b = 1 (Bolthausen–Sznitman coalescent), then (see [4,9,10])

(logn)2

n
Xn − log(n logn)

d→ X,

where X is a 1-stable random variable with characteristic function EeitX = exp(it log |t | − π
2 |t |),

t ∈ R.
If 1 < a < 2 and b = 1, then (see [10])

Xn

	(2 − α)nα

d→
∫ ∞

0
e−Ut dt,

where α := 2 − a and {Ut : t ≥ 0} is a drift-free subordinator with Lévy measure ν(dt) =
e−t/α/((1 − e−t/α)α+1)dt , t > 0.

If a > 2 and b > 0, then (see [6])

Xn − μ−1
1 logn

(μ2μ
−3
1 logn)1/2

d→ X,

where X is a random variable with the standard normal law, μ1 := �(a − 2 + b) − �(b), μ2 :=
� ′(b) − � ′(a − 2 + b) and �(z) := (d/dz) log	(z) denotes the logarithmic derivative of the
gamma function.

There is also very precise information available concerning the asymptotics of the moments
of Xn for β(a,1)-coalescents with a ∈ (0,1]. For more details, we refer to [10] and [14].

The convergence results above indicate, in particular, that the two special parameter values a =
1 and a = 2 play a kind of threshold role when studying the limiting behavior of Xn. This paper
focuses on the asymptotics of Xn for β(a, b)-coalescents with parameter a = 2 (and arbitrary
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b > 0). To the best of our knowledge, no convergence results have yet been provided for these
particular beta coalescents.

From the structure of the coalescent process, it follows that {Xn :n ∈ N} satisfies the recursion

X1 := 0 and Xn
d= Xn−In + 1, n ∈ {2,3, . . .}, (2)

where In is a random variable independent of X2, . . . ,Xn−1 with distribution P{In = n − k} =
gnk/gn, k ∈ {1, . . . , n − 1}. The random variable n − In is the (random) state of the process
{|�n�t | : t ≥ 0} after its first jump.

As already mentioned above, our aim is to investigate the asymptotic behavior of Xn for
β(2, b)-coalescents with b > 0. In this case, In has distribution

P{In = k} = 	(n − k + b − 1)	(n + 1)

(k + 1)	(n − k)	(n + b)H(n,b)
, k ∈ {1, . . . , n − 1}, (3)

where

H(n,b) := b

b + n − 1
+ �(b + n − 1) − �(b) − 1, n ∈ N, b > 0.

Note that �(b + n − 1) = logn + O(1/n), n → ∞ (see (6.3.18) in [1]) and therefore

H(n,b) = logn − �(b) − 1 + O

(
1

n

)
, n → ∞. (4)

In the proofs, we will need the asymptotics of the total rates

gn = H(n,b)

B(2, b)
∼ logn

B(2, b)
, n → ∞, (5)

where B(x, y) := ∫ 1
0 ux−1(1 − u)y−1 du, x, y > 0, denotes the beta function. Moreover, we will

use the Lévy measure μb on (0,∞) defined via

μb(dt) := e−bt

1 − e−t
dt, t > 0, b > 0. (6)

Note that μb has moments

m(b)
r :=

∫
(0,∞)

t rμb(dt) =
∫

(0,1)

(− log(1 − x)
)r (1 − x)b−1

x
dx

(7)
= 	(r + 1)ζ(r + 1, b), r > 0,

which follows from a Hurwitz identity (see, for example, (23.2.7) in [1]). Here, ζ(z, b) =∑∞
i=0(i + b)−z, Re(z) > 1, is the Hurwitz zeta function. Our first result presents the asymptotic

expansions of the moments of Xn. For convenience, we use the notation logk n := (log(n))k ,
k,n ∈ N.
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Theorem 1.1 (Expansion of moments). As n → ∞, for k ∈ N,

EXk
n = 1

(2m1)k
log2k n + 2k((2k + 1)m2 + 6cm1)

3(2m1)k+1
log2k−1 n + O(log2k−2 n),

where m1 := m
(b)
1 = ζ(2, b) and m2 := m

(b)
2 = 2ζ(3, b) (see (7)), and c := −�(b) − 1. In par-

ticular, the variance DXn has the asymptotic expansion

DXn = m2

3m3
1

log3 n + O(log2 n) = 2ζ(3, b)

3ζ 3(2, b)
log3 n + O(log2 n).

Remark 1.2. Let {St : t ≥ 0} be a drift-free subordinator with Lévy measure (6). For n ∈ N, let Yn

(Zn) be the number of parts (with more than one point) of a regenerative composition arising from
throwing n independent (random) points, which are independent of {St : t ≥ 0} and all uniformly
distributed on [0,1], on the closed range of the multiplicative subordinator {1 − e−St : t ≥ 0}.

According to (19) and (22) in [7], EYn and EY 2
n admit almost the same asymptotic expansions

as EXn and EX2
n, the only difference being that our c equals −�(b) − 1 and their c equals

−�(b). According to (19) and Theorem 14 in [7], EZn admits exactly the same asymptotic
expansion as EXn. According to (24) in [7], DYn has the same asymptotic expansion as DXn.
These observations strongly suggest that Xn and Yn may have a similar asymptotic behavior.

Remark 1.3. For t ≥ 0, let {fi(t) : i ∈ N} be the sequence (in some order) of the asymptotic
frequencies of the random exchangeable partition �t . Note that

∫
[0,1] x

−1�(dx) < ∞ for � =
β(2, b), b > 0. Therefore, by Proposition 26 in [15], {Ŝt := − log(1 − ∑∞

i=1 fi(t)) : t ≥ 0} is a
version of {St : t ≥ 0}. We will come back to this remark later in the proofs.

Corollary 1.4 (Strong law of large numbers). As n → ∞, Xn/ log2 n → 1/(2m1) almost
surely, with m1 defined as in Theorem 1.1.

Our last main result is a central limit theorem for {Xn :n ∈ N}.

Theorem 1.5 (Central limit theorem). As n → ∞, the sequence

Xn − (1/(2m1)) log2 n√
(m2/(3m3

1)) log3 n

weakly converges to the standard normal law, where m1 and m2 are defined as in Theorem 1.1.

Remark 1.6. The proof of Theorem 1.5 presented in Section 3 draws heavily from coalescent
theory and results on random exchangeable partitions. We leave open the question of whether it
is possible to deduce the asymptotic normality of Xn from the recursion (2) alone, that is, without
using pathwise results available in the coalescent setting.
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2. Proofs of Theorem 1.1 and Corollary 1.4

Proof of Theorem 1.1. For k ∈ N, set a
(k)
n := EXk

n. By induction on k, we will prove the as-
ymptotic expansion

a(k)
n = αk log2k n + rk log2k−1 n + O(log2k−2 n), k ∈ N, (8)

where α := (2m1)
−1 and

rk := 2
3kαk+1((2k + 1)m2 + 6cm1

)
. (9)

Recall that m1 = m
(b)
1 = ζ(2, b), m2 = m

(b)
2 = 2ζ(3, b) (see (7)) and c := −�(b) − 1.

For k = 1, write an instead of a
(1)
n , for simplicity. In view of (2), we have

a1 = 0, an = 1 +
n−1∑
i=1

an−iP{In = i}, n ∈ {2,3, . . .}. (10)

Put bn := an − α log2 n, n ∈ N. From (10), it follows that b1 = 0 and

bn = 1 + α

n−1∑
i=1

(
log2(n − i) − log2 n

)
P{In = i} +

n−1∑
i=1

bn−iP{In = i}
(11)

=: cn +
n−1∑
i=1

bn−iP{In = i}, n ∈ {2,3, . . .}.

Using Lemma A.1 (with k = 1 and k = 2), we get

cn = 1 + α

n−1∑
i=1

(
log2(1 − i/n) + 2 logn log(1 − i/n)

)
P{In = i}

= 1 + α

H(n,b)

(
m2 + O

(
log2 n

nb∧1

)
+ 2 logn

(
−m1 + O

(
logn

nb∧1

)))
= 1 − logn

H(n,b)
+ m2

2m1H(n,b)
+ O

(
logn

nb∧1

)
and, by (4),

cn = 1 − H(n,b) + �(b) + 1 + O(1/n)

H(n, b)
+ m2

2m1H(n,b)
+ O

(
logn

nb∧1

)
= m2/(2m1) − �(b) − 1

H(n,b)
+ O

(
logn

nb∧1

)
=: C1

H(n,b)
+ O

(
logn

nb∧1

)
.
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Substituting this relation into (11) yields

bn = C1

H(n,b)
+ O

(
logn

nb∧1

)
+

n−1∑
i=1

bn−iP{In = i}.

Set dn := bn − (C1/m1) logn, n ∈ N. Then, d1 = 0 and

dn = C1

H(n,b)
+ C1

m1

n−1∑
i=1

log(1 − i/n)P{In = i}

+ O

(
logn

nb∧1

)
+

n−1∑
i=1

dn−iP{In = i}, n ∈ {2,3, . . .}.

Another application of Lemma A.1 leads to

dn = C1

H(n,b)
+ C1

m1H(n,b)

(
−m1 + O

(
logn

nb∧1

))

+ O

(
logn

nb∧1

)
+

n−1∑
i=1

dn−iP{In = i}

= O

(
logn

nb∧1

)
+

n−1∑
i=1

dn−iP{In = i}.

By Lemma A.2, dn = O(1). Therefore, an = α log2 n + r1 logn + O(1), and we have already
proven (8) for k = 1.

The induction step from {1, . . . , k} to k + 1 works as follows. Using (2) and dropping terms of
lower orders (which is possible due to the assumption of induction), we get a

(k+1)
1 = 0 and

a(k+1)
n = (k + 1)αk log2k n + (k + 1)rk log2k−1 n

+ O(log2k−2 n) +
n−1∑
j=1

a
(k+1)
n−j P{In = j}, n ∈ {2,3, . . .}.

Put b
(k+1)
n := a

(k+1)
n − αk+1 log2k+2 n, n ∈ N. We then have b

(k+1)
1 = 0 and

b(k+1)
n = c(k+1)

n +
n−1∑
j=1

b
(k+1)
n−j P{In = j}, n ∈ {2,3, . . .}, (12)
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where

c(k+1)
n := αk+1

n−1∑
j=1

(
log2k+2(n − j) − log2k+2 n

)
P{In = j}

+ (k + 1)αk log2k n + (k + 1)rk log2k−1 n + O(log2k−2 n).

Binomial expansion of log2k+2(n − j) = (log(1 − j/n) + logn)2k+2 leads to

c(k+1)
n = (k + 1)αk log2k n + (k + 1)rk log2k−1 n + O(log2k−2 n)

+ αk+1
n−1∑
j=1

P{In = j}
2k+1∑
i=0

(
2k + 2

i

)
log2k+2−i (1 − j/n) logi n

= (k + 1)αk log2k n + (k + 1)rk log2k−1 n + O(log2k−2 n)

+ αk+1
2k+1∑
i=0

(
2k + 2

i

)
logi n

n−1∑
j=1

P{In = j} log2k+2−i (1 − j/n).

Using Lemma A.1 gives

c(k+1)
n = (k + 1)αk log2k n + (k + 1)rk log2k−1 n + O(log2k−2 n)

+ αk+1

H(n,b)

2k+1∑
i=0

(
2k + 2

i

)
logi n

(
(−1)im

(b)
2k+2−i + O

(
log2k+2−i n

nb∧1

))
= (k + 1)αk log2k n + (k + 1)rk log2k−1 n + O(log2k−2 n)

+ αk+1

H(n,b)

(
−m1

(
2k + 2
2k + 1

)
log2k+1 n + m2

(
2k + 2

2k

)
log2k n

)
= (k + 1)αk log2k n

(
1 − logn

H(n,b)

)
+

(
(k + 1)rk + αk+1(2k + 1)(k + 1)m2

logn

H(n,b)

)
log2k−1 n + O(log2k−2 n)

= (k + 1)
(
rk + (2k + 1)αk+1m2 − (

�(b) + 1
)
αk

)
log2k−1 n + O(log2k−2 n)

=: ck log2k−1 n + O(log2k−2 n).

Plugging the last expression into (12) gives b
(k+1)
1 = 0 and

b(k+1)
n = ck log2k−1 n + O(log2k−2 n) +

n−1∑
j=1

b
(k+1)
n−j P{In = j}, n ∈ {2,3, . . .}.
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Set e
(k+1)
n := b

(k+1)
n − Ck log2k+1 n, n ∈ N, where Ck := ck/((2k + 1)m1). The sequence thus

defined is given by the recursion

e(k+1)
n = ck log2k−1 n + O(log2k−2 n)

+ Ck

n−1∑
i=1

(
log2k+1(n − i) − log2k+1 n

)
P{In = i}

+
n−1∑
j=1

e
(k+1)
n−j P{In = j}

= ck log2k−1 n + O(log2k−2 n)

+ Ck

n−1∑
i=1

P{In = i}
2k∑

j=0

(
2k + 1

j

)
logj n log2k+1−j (1 − i/n)

+
n−1∑
j=1

e
(k+1)
n−j P{In = j}.

Again using Lemma A.1 yields

e(k+1)
n = ck log2k−1 n + O(log2k−2 n)

+Ck

log2k n

H(n, b)
(2k + 1)

(
−m1 + O

(
logn

nb∧1

))
+

n−1∑
j=1

e
(k+1)
n−j P{In = j}

= O(log2k−2 n) +
n−1∑
j=1

e
(k+1)
n−j P{In = j},

by the choice of Ck . For sufficiently large n, we can choose Mk > 0 such that the O(log2k−2 n)

term is dominated by

Mk

(
kαk−1 log2k−2 n + krk−1 log2k−3 n + O(log2k−4 n)

)
.

Therefore, for large n, e
(k+1)
n ≤ Mka

(k)
n . By the assumption of induction, a

(k)
n = O(log2k n).

Therefore, e
(k+1)
n = O(log2k n). Setting rk+1 := Ck = ck/((2k + 1)m1), we obtain

a(k+1)
n = αk+1 log2k+2 n + rk+1 log2k+1 n + O(log2k n).

The sequence {rk :k ∈ N} satisfies the recursion

rk+1 = k + 1

(2k + 1)m1

(
rk + (2k + 1)αk+1m2 − (

�(b) + 1
)
αk

)



Number of collisions in beta-coalescents 837

with initial condition

r1 = m2/(2m1) − �(b) − 1

m1
= ζ(3, b)/ζ(2, b) − �(b) − 1

ζ(2, b)
.

The unique solution of this recursion is given by (9). The proof of Theorem 1.1 is thus com-
plete. �

Proof of Corollary 1.4. For n ∈ N and ε > 0, set An(ε) := {|Xn − EXn| ≥ εEXn}. By Cheby-
shev’s inequality, P{An(ε)} ≤ DXn/(εEXn)

2. From Theorem 1.1, it follows that

DXn

(EXn)2
= 4m2

3m1

1

logn
+ O

(
1

log2 n

)
.

Therefore, replacing n by nk := 
exp(k2)�, it follows that
∑∞

k=1 P{Ank
(ε)} < ∞ and hence

Xnk
/EXnk

→ 1 almost surely as k → ∞, by the Borel–Cantelli lemma. Thus, we have already
verified the result along the subsequence {nk :k ∈ N}. For each integer n ≥ n1, there exists a
unique index k = k(n) ∈ N such that nk ≤ n < nk+1. By its definition, the sequence {Xn :n ∈ N}
is almost surely non-decreasing. Therefore, the corollary follows from the standard sandwich
argument

Xnk

EXnk

EXnk

EXnk+1

≤ Xn

EXn

≤ Xnk+1

EXnk+1

EXnk+1

EXnk

almost surely

and from EXnk
/EXnk+1 ∼ log2 nk/ log2 nk+1 ∼ k4/(k + 1)4 → 1. �

3. Proof of Theorem 1.5

We will use Theorem 2.1 of Neininger and Rüschendorf [13], which is written down below in
a modified form suggested by Gnedin, Pitman and Yor [7], Theorem 10. In the following, for
random variables X, we use the notation ‖X‖3 := (E(|X|3))1/3.

Proposition 3.1. Assume that a random sequence {Un :n ∈ N} of scalar random variables satis-
fies the recursion

Un
d= UJn + Vn, n ∈ {n0, n0 + 1, . . .}, (13)

for some n0 ∈ N, where (Jn,Vn) is independent of {Un :n ≥ n0}, Jn takes values in {0,1, . . . , n}
and P{Jn = n} < 1 for each integer n ≥ n0. Suppose, further, that ‖Un‖3 < ∞ and that for some
constants C > 0 and α > 0, the following three conditions hold:

(i) lim supn→∞ E log( Jn∨1
n

) < 0 and supn≥2 ‖ log( Jn∨1
n

)‖3 < ∞;
(ii) for some λ ∈ [0,2α) and some κ > 0, as n → ∞,

‖Vn − μn + μJn‖3 = O(logκ n), DUn = C log2α n + O(logλ n),

where μn := EUn;
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(iii) α > 1/3 + max(κ,λ/2).

Then, as n → ∞, the sequence (Un −μn)/(
√

C logα n) weakly converges to the standard normal
law.

Remark 3.2. The recursion (2) is of the form (13) with random indices Jn := n − In, where In

has distribution (3). By Lemma A.1 and (4),

E log

(
Jn

n

)
=

n−1∑
i=1

log

(
1 − i

n

)
P{In = i} ∼ − m

(b)
1

logn
.

Therefore, limn→∞ E log(Jn/n) = 0. In particular, the first part of condition (i) in Proposition 3.1
is not satisfied. Hence, Proposition 3.1 is not applicable to the recursion (2).

Fix any T > 0. The total number Xn of collisions is the sum of the numbers of collisions occur-
ring during the time intervals [0, T ) (denote this by Xn(T )) and [T ,∞) (denote this by X̂n(T )).

Since the coalescent is a Markov process, X̂n(T )
d= X′|�n�T |, where (Jn,Vn) := (|�n�T |,Xn(T ))

is independent of {X′
n :n ∈ N}, an independent copy of {Xn :n ∈ N}. Thus, we have proven that

{Xn :n ∈ N} satisfies another recursion of the form (13), namely

Xn
d= X|�n�T | + Xn(T ). (14)

Proof of Theorem 1.5. Let us prove that the recursion (14) satisfies all of the conditions of
Proposition 3.1.

Since Xn ≤ n − 1 almost surely, ‖Xn‖3 < ∞.
Recall that Xn(T ) is the number of jumps of the process {�n�t : t ∈ [0, T )}. If � has no

atom at the origin, then any �-coalescent can be constructed from a Poisson point process (see
page 1872 in [15]). From this construction, it follows that with probability one, Xn(T ) is bounded
from above by a random variable with Poisson distribution with parameter T gn. By (5), T gn ∼
(T /B(2, b)) logn. Therefore,

‖Xn(T )‖3 = O(logn), n → ∞. (15)

Let Q(T ) := {f̂i (T ) : i ∈ N} be the decreasing rearrangement of the asymptotic frequencies of
the random exchangeable partition �T . According to Remark 1.3, 1 − ∑∞

i=1 f̂i (T ) = e−ŜT . The
elements of the set Q(T ) ∪ {1 − ∑∞

i=1 f̂i (T )} are the lengths of the intervals (from left to right)
comprising the partition of [0,1]. Let U1, . . . ,Un be independent random variables (points),
uniformly distributed on [0,1] and independent of the lengths of the intervals. Let Wn,i(T ) be
the number of points falling in the interval of length f̂i (T ). Set

ηn(T ) := ∣∣{i ∈ {1, . . . , n} :Ui > 1 − e−ŜT
}∣∣,

ζn(T ) := |{i ≥ 1 :Wn,i(T ) > 0}|, θn(T ) := ζn(T ) + 1{ηn(T )>0}.
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From the paintbox construction [12] of a random exchangeable partition, it follows that

|�n�T | d= ζn(T ) + ηn(T ).

Arguing in the same way as on page 592 in [7], we conclude that as n → ∞, ηn(T )/n → e−ŜT

almost surely, which easily implies that

lim
n→∞

(
− log

(
ηn(T ) ∨ 1

n

))
= ŜT (16)

almost surely and that for each k ∈ N,

lim
n→∞ E

∣∣∣∣(log

(
ηn(T ) ∨ 1

n

))k∣∣∣∣ = EŜk
T . (17)

Note that, in view of (7), the right-hand side is finite for each k ∈ N. Interpreting the inter-
vals as “boxes” and the points as “balls”, the θn(T ) is just the number of occupied boxes in
the classical multinomial occupancy scheme. From the results on page 152 in [5], it follows
that limn→∞ n−1

E(θn(T )|f̂i (T ) : i ∈ N) = 0 almost surely. This fact, together with Proposi-
tion 2 of the same reference (see also Theorem 8 in [11]), leads to limn→∞ θn(T )/n = 0 al-
most surely conditionally on {f̂i (T ) : i ∈ N} and, hence, unconditionally. The latter implies that
limn→∞ |�n�T |/n = e−ŜT almost surely and, hence,

lim
n→∞

(
− log

( |�n�T |
n

))
= ŜT (18)

almost surely. Since

− log

( |�n�T |
n

)
≤ − log

(
ηn(T ) ∨ 1

n

)
almost surely, (16)–(18) together imply that for each k ∈ N,

lim
n→∞ E

∣∣∣∣(log

( |�n�T |
n

))k∣∣∣∣ = EŜk
T , (19)

by a variant of Fatou’s lemma sometimes called Pratt’s lemma (see [16]).
Condition (i) of Proposition 3.1 follows from (19). The estimate ‖μn − μJn‖3 = O(logn)

follows from Theorem 1.1 and (19). In view of this observation, (15) and Theorem 1.1, (ii) holds
with κ = 1, α = 3/2 and λ = 2. Therefore, (iii) also holds. �

Appendix

The proof of Theorem 1.1 relies on the two following technical results.
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Lemma A.1. For all k ∈ N and b > 0, as n → ∞,∣∣∣∣∣H(n,b)

n−1∑
i=1

P{In = i}
(

− log

(
1 − i

n

))k

− m
(b)
k

∣∣∣∣∣ = O

(
logk n

nb∧1

)
, (20)

where H(n,b) is the function defined after (3) and m
(b)
k = k!ζ(k + 1, b) is the kth moment (see

(7)) of the Lévy measure (6).

Proof. We first prove that

Jn(b, k) :=
∣∣∣∣∣
n−1∑
i=1

(
1 − i

n

)b−1 1

i

(
− log

(
1 − i

n

))k

− m
(b)
k

∣∣∣∣∣ = O

(
logk n

nb∧1

)
(21)

and that

Ln(b, k) :=
∣∣∣∣∣
n−1∑
i=1

(
1 − i

n

)b−1 1

i + 1

(
− log

(
1 − i

n

))k

− m
(b)
k

∣∣∣∣∣ = O

(
logk n

nb∧1

)
. (22)

Fix k ∈ N. For b > 1, introduce the continuous non-negative function fb : [0,1] → R via
fb(x) := x−1(1 − x)b−1(− log(1 − x))k for x ∈ (0,1), fb(0) := 1{k=1} and fb(1) := 0. Pick
some δ ∈ (0,1) such that fb is non-increasing on [δ,1]. Then,∣∣∣∣∣1

n

n−1∑
i=[nδ]+1

fb

(
i

n

)
−

∫ 1

δ

fb(x)dx

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑

i=[nδ]+1

∫ (i+1)/n

i/n

(
fb

(
i

n

)
− fb(x)

)
dx −

∫ ([nδ]+1)/n

δ

fb(x)dx

∣∣∣∣∣
≤

n−1∑
i=[nδ]+1

∫ (i+1)/n

i/n

(
fb

(
i

n

)
− fb

(
i + 1

n

))
dx +

∫ ([nδ]+1)/n

δ

fb(x)dx

= O

(
1

n

)
.

It is easily checked that fb is continuously differentiable on (0, δ) with sup0<x<δ |f ′
b(x)| < ∞.

Therefore, exploiting the mean value theorem for differentiable functions, we have∣∣∣∣∣1

n

[nδ]∑
i=1

fb

(
i

n

)
−

∫ δ

0
fb(x)dx

∣∣∣∣∣ = O

(
1

n

)
.

Combining these two pieces and using the equality m
(b)
k = ∫ 1

0 fb(x)dx, we get Jn(b, k) =
O(1/n), which is more than we need.
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Assuming that b ∈ (0,1], an application of the previous result to the function fb+1, which
satisfies

fb+1(x) = (1 − x)b−1(− log(1 − x))k

x
− (1 − x)b−1(− log(1 − x)

)k

for x ∈ (0,1), yields∣∣∣∣∣
n−1∑
i=1

(
(1 − i/n)b−1(− log(1 − i/n))k

i
− (1 − i/n)b−1(− log(1 − i/n))k

n

)
(23)

−
∫ 1

0
fb+1(x)dx

∣∣∣∣∣ = O

(
1

n

)
.

Note that
∫ 1

0 fb+1(x)dx = m
(b)
k − k!/bk+1.

For all n ∈ N with b logn ≥ 1, we now use the inequalities

1

n

n−1∑
i=1

(
i

n

)b−1(
− log

(
i

n

))k

≥
∫ 1

1/n

xb−1(− logx)k dx = k!
bk+1

(
1 − n−b

k∑
i=0

(b logn)i

i!

)

≥ k!
bk+1

− k! logk n

bnb

k∑
i=0

1

i! ≥ k!
bk+1

− k!e logk n

bnb

to conclude that, as n → ∞,∣∣∣∣∣1

n

n−1∑
i=1

(
1 − i

n

)b−1(
− log

(
1 − i

n

))k

− k!
bk+1

∣∣∣∣∣ = O

(
logk n

nb

)
.

Combining this estimate with (23) yields (21).
Let us now prove (22). If k ∈ N \ {1}, then

0 ≤ Mn(b, k)

:=
n−1∑
i=1

(1 − i/n)b−1(− log(1 − i/n))k

i
−

n−1∑
i=1

(1 − i/n)b−1(− log(1 − i/n))k

i + 1

≤
n−1∑
i=1

(1 − i/n)b−1(− log(1 − i/n))k

i2

∼ 1

n

∫ 1

0

(1 − x)b−1(− log(1 − x))k

x2
dx
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and the last integral is finite. Therefore, Mn(b, k) = O(1/n), which, together with (21), proves
(22) under the current assumptions.

If k = 1, then

0 ≤ Mn(b, k)

≤ n(1−b)∨0
n−1∑
i=1

− log(1 − i/n)

i2
= n(1−b)∨0

n−1∑
i=1

1

i2

∞∑
j=1

(i/n)j

j

≤ n(1−b)∨0
n−1∑
i=1

1

i2

∞∑
j=1

(
i

n

)j

= n(1−b)∨0
n−1∑
i=1

1

i2

i/n

1 − i/n

= n(1−b)∨0
n−1∑
i=1

1

i(n − i)
= n(1−b)∨0 1

n

n−1∑
i=1

(
1

i
+ 1

n − i

)
∼ 2 logn

nb∧1
.

This relation, together with (21), proves (22).
For b = 1, the left-hand side of (22) coincides with that of (20). Thus, we only have to check

(20) for b �= 1. To this end, keeping in mind (21) and (22), it suffices to show that∣∣∣∣∣
n−1∑
i=1

(
	(n − i + b − 1)	(n + 1)

	(n − i)	(n + b)
−

(
1 − i

n

)b−1) 1

i + 1

(
− log

(
1 − i

n

))k
∣∣∣∣∣

(24)

= O

(
logk n

nb∧1

)
.

First, we will prove that for any b > 0, there exists a constant M > 0 such that for all n ∈ N and
all j ∈ {1, . . . , n − 1},∣∣∣∣	(n − j + b − 1)	(n + 1)

	(n − j)	(n + b)
−

(
1 − j

n

)b−1∣∣∣∣ ≤ M

n

(
1 − j

n

)b−2

(25)

or, equivalently, ∣∣∣∣	(j + b − 1)	(n + 1)

	(j)	(n + b)
−

(
j

n

)b−1∣∣∣∣ ≤ M

n

(
j

n

)b−2

. (26)

The subsequent argument relies on the following inequality (see (6.1.47) in [1]). For c, d > −1,
there exists Mc,d > 0 such that for all n ∈ N,∣∣∣∣ 	(n + c)

	(n + d)
− nc−d

∣∣∣∣ ≤ Mc,dnc−d−1.
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(26) now follows from the chain of inequalities∣∣∣∣	(j + b − 1)	(n + 1)

	(j)	(n + b)
−

(
j

n

)b−1∣∣∣∣
=

∣∣∣∣(	(j + b − 1)

	(j)
− jb−1

)
	(n + 1)

	(n + b)
+ 	(n + 1)

	(n + b)
jb−1 −

(
j

n

)b−1∣∣∣∣
≤ 	(n + 1)

	(n + b)

∣∣∣∣	(j + b − 1)

	(j)
− jb−1

∣∣∣∣ + jb−1
∣∣∣∣	(n + 1)

	(n + b)
− n1−b

∣∣∣∣
≤ 	(n + 1)

	(n + b)
Mb−1,0j

b−2 + jb−1M1,bn
−b

≤
∣∣∣∣	(n + 1)

	(n + b)
− n1−b

∣∣∣∣Mb−1,0j
b−2 + n1−bMb−1,0j

b−2 + jb−1M1,bn
−b

≤ M1,bMb−1,0

n2

(
j

n

)b−2

+ Mb−1,0

n

(
j

n

)b−2

+ M1,b

n

(
j

n

)b−1

≤ M

n

(
j

n

)b−2

,

where M := M1,bMb−1,0 + Mb−1,0 + M1,b . Plugging (25) into the left-hand side of (24) gives∣∣∣∣∣
n−1∑
i=1

(
	(n − i + b − 1)	(n + 1)

	(n − i)	(n + b)
−

(
1 − i

n

)b−1) 1

i + 1

(
− log

(
1 − i

n

))k
∣∣∣∣∣

≤ M

n

n−1∑
i=1

(
1 − i

n

)b−2 1

i + 1

(
− log

(
1 − i

n

))k

=: Qn(b, k).

For b > 1, the function x �→ x−1(1 − x)b−2 logk(1 − x) is integrable on [0,1], which implies
that the latter sum is bounded and the right-hand side in (24) is O(1/n). If b ∈ (0,1), then noting
that the function x �→ x−1(− log(1 − x))k is non-decreasing on (0,1), we conclude that for
n ∈ {2,3, . . .},

Qn(b, k) = M

nb

n−1∑
i=1

(n − i)b−2 1

(i + 1)/n

(
− log

(
1 − i

n

))k

≤ M

nb

n−1∑
i=1

(n − i)b−2 1

i/n

(
− log

(
1 − i

n

))k

≤ 2M logk n

nb

n−1∑
i=1

(n − i)b−2 = O

(
logk n

nb

)
.

Thus, (24) is established and the proof is complete. �
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Lemma A.2. Fix k ∈ N and b > 0, and suppose that {an :n ∈ N} is some sequence satisfying
an = O(n−b logk n). If the sequence {vn :n ∈ N} is defined recursively by

v1 := 0, vn := an +
n−1∑
i=1

vn−iP{In = i}, n ∈ {2,3, . . .},

where P{In = k} is defined in (3), then vn = O(1).

Proof. Since EIn ∼ n/(b logn), there exists an M > 0 such that for all n ∈ {2,3, . . .},
b

2n1+b/2
EIn ≥ M logk n

nb
. (27)

It suffices to prove the following. If

u1 := 0, un = M logk n

nb
+

n−1∑
i=1

un−iP{In = i}, n ∈ {2,3, . . .},

with M defined in (27), then

un ≤ 2 − n−b/2 for all n ∈ N. (28)

We will use induction. For n = 1, (28) is obviously satisfied as u1 = 0. Assume (28) holds for all
n ∈ {1, . . . ,m − 1}. Then,

um ≤ M logk m

mb
+

m−1∑
i=1

(
2 − (m − i)−b/2)

P{Im = i}.

We will now verify that the right-hand side of the latter inequality is less than or equal to 2 −
m−b/2 or, equivalently, that

m−1∑
i=1

(
(m − i)−b/2 − m−b/2)

P{Im = i} ≥ M logk m

mb
.

The inequality (1 − x)−a ≥ 1 + ax, x ∈ (0,1), a > 0 yields

m−1∑
i=1

(
(m − i)−b/2 − m−b/2)

P{Im = i}

= m−b/2
m−1∑
i=1

(
(1 − i/m)−b/2 − 1

)
P{Im = i}

≥ b

2m1+b/2
EIm ≥ M logk m

mb
,

by (27). �
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