
Bernoulli 15(3), 2009, 687–720
DOI: 10.3150/08-BEJ170

Integrated volatility and round-off error
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We consider a microstructure model for a financial asset, allowing for price discreteness and for a diffusive
behavior at large sampling scale. This model, introduced by Delattre and Jacod, consists in the observation
at the high frequency n, with round-off error αn, of a diffusion on a finite interval. We give from this sample
estimators for different forms of the integrated volatility of the asset. Our method is based on variational
properties of the process associated with wavelet techniques. We prove that the accuracy of our estimation
procedures is αn ∨ n−1/2. Using compensated estimators, limit theorems are obtained.
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1. Introduction

Nowadays, a massive amount of high frequency financial data is available. This large quantity of
data has paradoxically complicated some problems in statistical finance. Among them, one of the
most relevant is the estimation of the integrated volatility of an asset. To fix ideas, let us consider
an asset whose theoretical, efficient price (Xt )t∈[0,1] follows an Itô process of the form

dXt = μt dt + σt dWt,

where Wt is a Brownian motion, μt the drift process and σ 2
t the instantaneous volatility. From

market price observations, we wish to estimate the quantity∫ 1

0
g(Xt )

2σ 2
t dt,

where g is a known deterministic function. The case g(x) = 1 corresponds to the absolute inte-
grated volatility of the asset and the case g(x) = 1/x to its relative integrated volatility, that is,
the integral of the squared diffusion coefficient of the logarithmic price.1 Assume first that we
observe the efficient price data with frequency n, that is, the sample

(Xi/n, i = 0, . . . , n).

In this setting, a common convergent estimator of the integrated volatility, with rate n−1/2 and
feasible asymptotic theory, is given by the realized volatility, that is, for the absolute integrated

1Note that the usual notion of integrated volatility refers to the relative integrated volatility.
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volatility

n∑
i=1

(
Xi/n − X(i−1)/n

)2

and for the relative integrated volatility

n∑
i=1

(
log(Xi/n) − log

(
X(i−1)/n

))2
,

see Jacod and Protter [16], Barndorff-Nielsen and Shephard [7], Meddahi [22] and Gonçalves
and Meddahi [12].

However, it is a well-known fact that high frequency financial data do not behave like an Itô
process. In the literature, this gap is often considered to be a “contamination” of the theoretical,
efficient price and is called microstructure noise. This microstructure noise increases with the
sampling frequency and is due to several reasons, one of the most obvious being price discrete-
ness.

To get rid of this noise, the first solution is to sample our data over a longer period. But,
if we imagine we collect one unit of data per second and consider five minutes as the finest
period we can tolerate to make the noise insignificant, we throw away a lot of data, which is
hardly acceptable. Consequently, dealing with these high frequency noisy data has become a
challenging issue. Many recent papers treat this problem, especially for the purpose of estimating
the integrated volatility; see in particular Barndorff-Nielsen et al. [6]; Bandi and Russell [4];
Jacod et al. [15]; Zhang [30]; Zhang, Mykland and Aït-Sahalia [31]; Hansen and Lunde [13];
Aït-Sahalia, Mykland and Zhang [1]; and Gloter and Jacod [11]. For a comparison between
several estimators, see Andersen, Bollerslev and Meddahi [3]; Bandi, Russel and Yang [5]; and
Gatheral and Oomen [23].

In most of these works, one observes at some deterministic times tni , i = 0, . . . , n, a log-price
Ỹtni

composed of a theoretical, efficient log-price X̃tni
, coming from the classical continuous-time

mathematical finance theory, contaminated by an additive microstructure noise εn
tni

, that is,

Ỹtni
= X̃tni

+ εn
tni

,

where X̃t is, for example, an Itô process. In these additive microstructure noise models, the
developed technologies often aim at reducing the impact of the noise.

Nevertheless, although price discreteness is largely accepted as one of the main reasons for
microstructure noise, these models rarely allow for it; see Large [19] and Robert and Rosenbaum
[25,26] for models considering discrete prices. In this paper, we study the problem of estimating
the integrated volatility of an asset when assuming that the efficient price data are observed with
round-off error.



Integrated volatility and round-off error 689

2. Model and results

2.1. Description of the model

We consider the model of a diffusion observed with round-off error. Let αn be a positive decreas-
ing sequence tending to zero as n goes to infinity and βn = αn

√
n. On a filtered probability space

(�, (Ft )t∈[0,1],P), we consider a one-dimensional Brownian semi-martingale (Xt )t∈[0,1], taking
values in an open interval (ν,μ), −∞ ≤ ν < μ ≤ +∞, of the form

Xt = x0 +
∫ t

0
σ(Xs)dWs +

∫ t

0
as ds, (1)

where (Wt)t∈[0,1] is a (Ft )-standard Brownian motion, (at )t∈[0,1] is a progressively measurable
process with respect to (Ft )t∈[0,1], x → σ(x) is a real deterministic function that is not known
and x0 is a real constant. We observe the sample(

X
(αn)
i/n , i = 0, . . . , n

)
, (2)

where

X
(αn)
i/n = αn�Xi/n/αn	.

Thus, X
(αn)
i/n is the observation of Xi/n with round-off error αn. This model has already been

studied by Delattre and Jacod [9] when βn tends to a constant finite value and by Delattre [8] in
the other cases. Based on the sample (2), our goal is to estimate the random parameter

θ =
∫ 1

0
g(Xs)

2σ(Xs)
2 ds,

where g is a known deterministic function on (ν,μ).
Note that for the Black–Scholes specification of the model

σ(x) = σx,

the problem of the estimation of the constant parameter σ has been partially treated by Li and
Mykland [20] in the case where βn tends to zero.

We denote by Ck(I ) the set of k times continuously differentiable functions on I ⊆ R.
We write Ck

b (I ) if all the derivatives are bounded. We will consider the following assump-
tions:

Assumption A.
sup
n≥0

αn(logn)2 < ∞.

Assumption A1. There exists ρ > 0 such that supn≥0 α
1−ρ
n (logn)2 < ∞.
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Assumption B.

(i) For all x ∈ (ν,μ), σ(x) > 0,
(ii) x → σ(x) ∈ C 2((ν,μ)),

(iii)
∫ 1

0 a2
s ds < +∞, almost surely.

Assumption C.

x → g(x) ∈ C 2((ν,μ)) and for all x ∈ (ν,μ), g(x) > 0.

Assumption C1.

(i) x → g(x) ∈ C 2((ν,μ)) and for all x ∈ (ν,μ), g(x) > 0,
(ii) x → g′(x) is of constant sign on (ν,μ) and x → |g′(x)|1/2 ∈ C 2((ν,μ)).

By convention, if x /∈ (ν,μ), we set g(x) = g′(x) = 0.

Note that on (0,+∞), the functions defined by x → 1 and x → 1/x satisfy Assumption C1.
These functions are those respectively associated to the absolute integrated volatility and to the
relative integrated volatility.

2.2. First estimator

Our estimation method is based on the theory of wavelet methods for quadratic functionals es-
timation; see, for example, Gayraud and Tribouley [10]. Throughout the paper, for k ∈ N and
j ∈ N, we set

1jk(s) = 1(k/2j ,k+1/(2j )](s), ψ(s) = −1[0,1/2](s) + 1(1/2,1](s),

ψjk(s) = 2j/2ψ(2j s − k).

We define the coefficients cj0k , j0 ∈ N, k ∈ [0,2j0 − 1] and djk , j ∈ N, k ∈ [0,2j − 1] by

cj0k = 2j0/2
∫

1j0k(s)g(Xs)σ (Xs)ds, djk =
∫

ψjk(s)g(Xs)σ (Xs)ds.

Hence, the cj0k and djk are the coefficients of s → g(Xs)σ (Xs) in the Haar basis. Consequently,
we have

θ =
2j0−1∑
k=0

c2
j0k

+
+∞∑
j=j0

2j −1∑
k=0

d2
jk.

We set

ĉj0k =
√

π
2

2j0/2

√
n

n∑
i=1

1j0k(i/n)g
(
X

(αn)
(i−1)/n

)∣∣X(αn)
i/n − X

(αn)
(i−1)/n

∣∣.
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Thus, in the case g(x) = 1, ĉj0k can be seen as a rescaled local average of the increments of the
rounded diffusion over a window of size 2−j0 . We define our first estimator θ̃n of θ by

θ̃n =
2j0,n−1∑

k=0

ĉ 2
j0,nk

with j0,n = �log2(α
−1
n ∧ √

n)	.

2.3. Convergence in probability

We set rn = αn ∨ n−1/2. We have the following theorem:

Theorem 1 (Convergence in probability). In model (1)–(2), under Assumptions A, B and C,
the sequence

r−1
n (θ̃n − θ)

is tight.

2.4. Compensated estimators

It seems difficult to obtain a central limit theorem for the previous estimator (see the proofs for
details). Consequently, we introduce compensated estimators. We set

Qj =
2j −1∑
k=0

d2
jk

and define

d̂jk =
√

π
2

1√
n

n∑
i=1

ψjk(i/n)g
(
X

(αn)
(i−1)/n

)∣∣X(αn)
i/n − X

(αn)
(i−1)/n

∣∣.
We denote by S the set of all triples (a, (j1,n), (j2,n)), where a is a real number with 0 < a < 1

and (j1,n), (j2,n) are two sequences of integers such that

sup
n

α1−a
n (logn)2 < ∞, rn22j2,n−j1,n → 0, r−1

n 2j1,n/2(α2
n logn + 1/n) → 0,

rn2j1,n → 0, r−1
n 2−3j1,n/2 → 0, 2j2,n−j1,n → 0, r−1

n 2−(j1,n+j2,n/2) → 0.

Under Assumption A1, the set S is not empty. For example, if one takes j1,n = �log2(r
−3/4
n )	

and j2,n = �log2(r
−2/3
n )	, then (ρ, (j1,n), (j2,n)) ∈ S. For S = (a, (j1,n), (j2,n)) ∈ S , we set

Q̂j2,n
=

∑
k

d̂2
j2,nk
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and consider

Rn(S) =
�(1+a) log2 r−1

n 	∑
j=j1,n

2j2,n−j Q̂j2,n
.

For S = (a, (j1,n), (j2,n)) ∈ S , our final estimator of θ is

θ̂n(S) =
2j1,n−1∑

k=0

ĉ2
j1,nk + Rn(S) + αn(1g′≥0 − 1g′≤0)

2j0,n−1∑
k=0

ê2
j0,nk,

where

êj0,nk =
√

π
2

2j0,n/2

√
n

n∑
i=1

1j0,nk(i/n)
∣∣g(

X
(αn)
(i−1)/n

)
g′(X(αn)

(i−1)/n

)∣∣1/2∣∣X(αn)
i/n − X

(αn)
(i−1)/n

∣∣
and 1g′≥0 indicates whether x → g′(x) is non-negative or not.

2.5. Convergence in law

We state in this section some limit theorems. In this context, it is convenient to use the notion
of stable convergence in law; see Rényi [24], Aldous and Eagleson [2], Jacod and Shiryaev [17]
and Jacod [14].

Definition 1 (Stable convergence in law). A sequence of variable (Xn)n∈N converges stably
in law to a variable X (Xn →Ls X) if X is defined on an appropriate extension (�̄, F̄ , P̄) of
(�, F ,P) and if for any F -measurable bounded variable Y and any bounded continuous func-
tion g, E[Yg(Xn)] → Ē[Yg(X)].

For β > 0, we define the function �β by

�β(x) = lim
n

E

[
n−1/2

(
n∑

i=1

Zi

)2]
,

with

Zi = β(π/2)1/2|�{U + β−1σ(x)Wi−1} + β−1σ(x)(Wi − Wi−1)	| − σ(x),

where W is a Brownian motion and U a uniform random variable on [0,1], independent of W .
From Delattre [8], we get that the function �β is well defined. We have the following theorem:

Theorem 2 (Convergence in law). In model (1)–(2), under Assumptions A1, B and C1, for
S ∈ S , we have the following stable convergences in law, where B is a standard Brownian motion,
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independent of F :

if βn → 0,
√

n
(
θ̂n(S) − θ

) →Ls

√
2(π − 2)1/2

∫ 1

0
g(Xt )

2σ(Xt )
2 dBt ,

if βn → β > 0,
√

n
(
θ̂n(S) − θ

) →Ls 2
∫ 1

0
g(Xt )

2σ(Xt )[�β(Xt )]1/2 dBt ,

if βn → +∞, α−1
n

(
θ̂n(S) − θ

) →Ls
2√
3

∫ 1

0
g(Xt )

2σ(Xt )dBt .

3. Discussion

3.1. Comments on the results

• Our microstructure model with round-off error is obviously built to face the problem of price
discreteness. Indeed, market price increments have to be multiples of the tick size. Moreover, it
is striking to see how high frequency financial data do look like diffusions with round-off error;
see, for example, [28]. In particular, the well-known bid-ask bounce is reproduced in this model.
Furthermore, if the sampling period becomes large, the round-off error becomes insignificant.
According to the theory and the empirical studies, this is also the case on the markets where it is
often admitted that low frequency financial data can be modeled as data coming from a diffusion
process. Hence, this model is relevant because it is clearly linked with market observations and
financial theory.
• Our point of view is different from those of an additive microstructure noise. We do not make
assumptions on the difference between the observed log-price and the theoretical log-price but
on the observed price itself. Hence, our method is not a denoising method. We directly use the
properties of the noisy data. Moreover, Li and Mykland [21] have proved that estimators built
for additive noise, like the two scales estimator of Zhang, Mykland and Aït-Sahalia [31], are not
robust in the case of a “quite big” rounding error.
• The estimation rates are the same as those obtained by Delattre [8] for other procedures on this
model. In particular, if the order of magnitude of the round-off error is smaller than n−1/2, we
find the classical parametric rate.
• More general forms of stochastic volatility seem difficult to treat with our wavelet technique.
Indeed, our proof of the central limit theorem relies on the fact that under an equivalent measure,
the process can be written as a function of a Brownian motion, which is not the case for general
stochastic volatility models. Nevertheless, Theorem 1 remains true in the case where the instan-
taneous volatility is of the form σ(x, t) = g1(x)g2(t), with g1 and g2 as two positive functions
such that g1 ∈ C 2(R) and g2 ∈ C 1([0,1]); see [28].
• The integrated volatility cannot be recovered in a pure rounding framework where the sequence
αn is supposed to be constant as n goes to infinity. Nevertheless, it can be done for some particular
rounding procedures; see Jacod et al. [15].
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3.2. Intuition for the results and important ideas

To give some intuition for the results, introduce important ideas used in the proofs, and explain
why methods based on the quadratic variation do not work here, we recall and explain an inspir-
ing result of Delattre [8] when βn tends to infinity.

3.2.1. The behavior of the p-variations

Let h be the density of a standard Gaussian variable and

γp(σ,β) =
∫ 1

0
du

∫
R

dy h(y)
∣∣(βu + σy)(β)

∣∣p.

It is shown in Delattre [8] that if βn tends to infinity, that is, if the round-off error is quite big, for
p > 0, we have

α
−p
n βnn

−1
n∑

i=1

∣∣X(αn)
i/n − X

(αn)
(i−1)/n

∣∣p − β
1−p
n

∫ 1

0
γp(σ (Xs),βn)ds

tends to zero in probability. The stable convergence in law of this sequence normalized by α−1
n

has also been proved in [8].

3.2.2. Remarks and explanations

The point is to remark that if p = 1,

β
1−p
n

∫ 1

0
γp(σ (Xs),βn)ds = (2/π)1/2

∫ 1

0
σ(Xs)ds

and that if p > 0,

β
1−p
n

∫ 1

0
γp(σ (Xs),βn)ds − (2/π)1/2

∫ 1

0
σ(Xs)ds

tends to zero in probability. So, in the case βn tends to infinity, if p is not equal to one, contrary
to what happens when considering non-noisy data, σ(Xt )

p does not appear in the limit of the
sum of the rescaled rounded increments to the power p. Thus, estimating∫ 1

0
σ 2(Xs)ds,

seems more complicated than estimating ∫ 1

0
σ(Xs)ds.
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We now give an intuition for this surprising behavior of the p-variations through a non-rigorous
argument. Introducing several important ideas, we explain why, when βn tends to infinity,

Eσ(X(i−1)/n)

[∣∣X(αn)
i/n − X

(αn)
(i−1)/n

∣∣p] ≈ α
p
n β−1

n (2/π)1/2σ
(
X(i−1)/n

)
,

where Eσ(X(i−1)/n) denotes the expectation conditional on σ(X(i−1)/n). We define the fractional
part of Xt by {Xt } = Xt − �Xt	. First we have to remark that

X
(αn)
i/n − X

(αn)
(i−1)/n = αn

⌊{
X(i−1)/n/αn

} + (
Xi/n − X(i−1)/n

)
/αn

⌋
. (3)

Kosulajeff [18] and Tukey [29] have established that when α is small, {X/α} is almost inde-
pendent of X and approximately follows a uniform law on [0,1]. More precisely, the following
result has been shown by Delattre and Jacod [9].

Lemma 1 (The fractional part of a variable). Let k be a function on R, Cr (r ≥ 1), integrable
with integrable derivatives. Let f be a function on R × [0,1], Cr in the first variable and such

that for 0 ≤ l ≤ r , Ml = supx

∫ 1
0 | ∂l

∂xl f (x,u)|du < +∞. Then∣∣∣∣ ∫
R

k(x)

[
f (x, {x/α}) −

∫ 1

0
f (x,u)du

]
dx

∣∣∣∣ ≤ (2α)r sup
0≤l≤r

Ml sup
0≤l≤r

∫
R

∣∣∣∣ ∂l

∂xl
k(x)

∣∣∣∣dx.

Thus, since

Xi/n − X(i−1)/n ≈ σ
(
X(i−1)/n

)(
Wi/n − W(i−1)/n

)
,

we have

Eσ(X(i−1)/n)

[∣∣X(αn)
i/n − X

(αn)
(i−1)/n

∣∣p] ≈ α
p
n Eσ(X(i−1)/n)

[∣∣⌊U + β−1
n σ

(
X(i−1)/n

)
Y

⌋∣∣p]
,

where U is a uniform variable on [0,1], independent of X, and Y is a standard Gaussian variable,
independent of X and U . Therefore, if βn tends to infinity,

Eσ(X(i−1)/n)

[∣∣X(αn)
i/n − X

(αn)
(i−1)/n

∣∣p] ≈ α
p−1
n Eσ(X(i−1)/n)

[∣∣X(αn)
i/n − X

(αn)
(i−1)/n

∣∣].
We conclude our argument using the simple but nice fact that if U is a uniform variable on [0,1]
and Z is independent of U , with a density with respect to the Lebesgue measure,

E[|�U + Z	|] = E[|Z|].

4. Proofs

In all the proofs we use the previously defined notation. For technical reasons, we suppose with-
out loss of generality that for given j , n2−j is a positive integer. In the following, c and cp denote
constants not depending on n, j or k and that may vary from line to line.
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4.1. Preliminaries for the proofs of Theorems 1 and 2

4.1.1. Localization procedure

We slightly adapt here a classical localization procedure used, for example, in Delattre [8]. It will
enable us to replace Assumptions B, C and C1 with much stronger assumptions in the proofs of
Theorems 1 and 2. We fix two sequences (νq)q≥1 and (μq)q≥1 such that (νq) is strictly decreasing
to ν, (μq) is strictly increasing to μ and (μq − νq) > 0. We also fix a sequence of functions
χq : R → [0,1] such that χq ∈ C 2

b(R), (χq)1/2 ∈ C 2
b(R) and

χq(x) = 1 on [νq,μq ] and χq(x) = 0 on (−∞, νq+1] ∪ [μq+1,+∞).

For q ∈ N, we define on R the real functions σq and gq by

σq(x) = σ(x)χq(x) + (
1 − χq(x)

)
, gq(x) = g(νq) +

∫ x

νq

g′(s)χq(s)ds.

We finally set

Tq = inf

{
t ∈ [0,1],Xt ≤ νq + αq or Xt ≥ μq or

∫ t

0
a2
s ds ≥ q

}
∧ 1.

Under Assumption B, Tq tends almost surely to 1 and P(Tq = 1) → 1 as q → +∞. Let
(W

q
t , t ≥ 0) be defined by W

q
t = W(Tq+t)∧1 − WTq and (Y

q
t )t≥0 be the solution of

dY
q
t = σq(Y

q
t )dW

q
t , Y

q

0 = XTq .

Consider now the process (X
q
t )t∈[0,1] defined by X

q
t = Xt for t ∈ [0, Tq ] and X

q
t = Y

q
t−Tq

for
t ∈ (Tq,1]. This process satisfies

dX
q
t = σq(X

q
t )dWt + a

q
t dt,

where a
q
t = at for t ∈ [0, Tq ] and a

q
t = 0 for t ∈ (Tq,1]. The process Xq coincides with the initial

process X on [0, Tq ]. Let q0 = inf{q,μq > νq + αq}. For q ≥ q0, on [0, Tq ], gq(X
q
t ) coincides

with g(Xt ) and for n ≥ q , gq(X
q(αn)
t ) coincides with g(X

(αn)
t ). Finally, under Assumption C1,

(gq)′ is of constant sign on R, |(gq)′|1/2 ∈ C 2
b(R) and on [0, Tq ], (gq)′(Xq

t ) coincides with g′(Xt ).

Furthermore, for n ≥ q , (gq)′(Xq(αn)
t ) coincides with g′(X(αn)

t ).
Hence it is enough to prove Theorems 1 and 2 for the processes Xq , for all q ≥ q0, and so it

is enough to prove Theorem 1 under Assumptions B′ and C′ instead of Assumptions B and C
and Theorem 2 under Assumptions B′ and C1′ instead of Assumptions B and C1, with Assump-
tions B′, C′ and C1′ defined the following way:

Assumption B′.
(i) There exists c > 0 such that for all x ∈ R, σ(x) ≥ c,

(ii) x → σ(x) ∈ C 2
b(R),

(iii) supω∈�

∫ 1
0 a2

s ds < +∞.
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Assumption C′.

x → g(x) ∈ C 2
b(R) and there exists c > 0 such that for all x ∈ R, g(x) ≥ c.

Assumption C1′.

(i) x → g(x) ∈ C 2
b(R) and there exists c > 0 such that for all x ∈ R, g(x) ≥ c,

(ii) x → g′(x) is of constant sign on R and x → |g′(x)|1/2 ∈ C 2
b(R).

4.1.2. Change of probability

Under Assumption B′, by the Girsanov theorem, we can construct a probability P
′ on (�, F ),

absolutely continuous with respect to P and a Brownian motion under P
′, (W ′

t , t ≥ 0) such that

dXt = σ(Xt )dW ′
t + 1

2
σ(Xt )

∂

∂x
σ(Xt )dt.

Assumption B′ holds for this representation. We define the following supplementary hypothesis:

Assumption D.

at = 1

2
σ(Xt )

∂

∂x
σ(Xt ).

The convergence in probability and the stable convergence in law being preserved by an ab-
solutely continuous change of probability, it is consequently enough to prove Theorem 1 under
Assumptions A, B′, C′ and D and Theorem 2 under Assumptions A1, B′, C1′ and D. Under
Assumptions B′ and D, Xt = h(Wt) with h :x → S−1(x + S(x0)) and

S :x →
∫ x

0

1

σ(y)
dy.

For simplicity, we suppose now that x0 = 0. Note that X is a homogeneous Markov process with
transition densities

pt (x, y) = σ(y)−1(2πt)−1/2 exp
[−(2t)−1(S(y) − S(x)

)2]
.

Moreover, the following inequalities hold; see, for example, Delattre and Jacod [9].∫ ∣∣∣∣ ∂i+j

∂xi ∂xj
pt (x, y)

∣∣∣∣dy ≤ ct−(i+j)/2, i + j ≤ 2, (4)

∫ ∣∣∣∣ ∂i

∂xi
qt (x, y)

∣∣∣∣|y|p dy ≤ cptp/2, i ≤ 2, (5)

with qt (x, y) = pt (x, x + y). We now give the proofs of Theorems 1 and 2.
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4.2. The behavior of the sampling functions

We give in this section a key proposition for the proofs of Theorems 1 and 2. As in Delattre [8],
we consider the following assumption:

Assumption E. Let (x,u, y) → fn(x,u, y) be a sequence of real functions on R × [0,1] × R.
The sequence fn satisfies Assumption E if the functions fn are twice continuously differentiable
with respect to the first variable and if there exists γ > 0 such that for all n ≥ 1,

(i) |fn(x,u, y)| ≤ γ (1 + β2
n)(1 + |y|γ ),

(ii)
∫ 1

0 |fn(x,u, y)|du ≤ γ (1 + |y|γ ),

(iii) | ∂i

∂xi fn(x,u, y)| ≤ γ (1 + β2
n)(1 + |y|γ ), i = 1,2,

(iv)
∫ 1

0 | ∂i

∂xi fn(x,u, y)|du ≤ γ (1 + |y|γ ), i = 1,2.

Notation. For some sequences of real functions x → gn(x) on R and (x,u, y) → fn(x,u, y) on
R × [0,1] × R, we define

V jk(n, gn) = 2j/2

n

n∑
i=1

1jk(i/n)gn

(
X(i−1)/n

)
and

V jk(n,fn) = 2j/2

n

n∑
i=1

1jk(i/n)fn

(
X(i−1)/n,

{
X(i−1)/n/αn

}
,
√

n
[
Xi/n − X(i−1)/n

])
.

Let hσ be the density of a centered Gaussian variable with variance σ 2. For a real function
(x,u, y) → f (x,u, y) on R × [0,1] × R, we set

mf (x,u) =
∫

R

hσ(x)(y)f (x,u, y)dy, Mf (x) =
∫ 1

0
mf (x,u)du.

The following proposition is a general result on the behavior of the sampling functions.

Proposition 1 (Behavior of the sampling functions). Let (x,u, y) → fn(x,u, y) be a sequence
of real functions on R × [0,1] × R satisfying Assumption E. Under Assumptions A, B′ and D,

E

[(
V jk(n,fn) − 2j/2

∫ 1

0
1jk(s)Mfn(Xs)ds

)2]
≤ cr2

n

for 0 ≤ j ≤ �log2 r−1
n 	 and 0 ≤ k ≤ 2j − 1. This holds for 0 ≤ j ≤ �(1 + ρ) log2 r−1

n 	 under
Assumptions A1, B′ and D.
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4.3. Proof of Proposition 1

In this proof, we widely use the methods and results developed by Delattre in [8]. We set ρ to
zero if only Assumptions A, B′ and D are satisfied and write EFt

for the conditional expectation
with respect to Ft .

4.3.1. Fundamental decomposition

Notation. Let sjk = [2−j nk + 1, . . . ,2−j n(k + 1)]. We use the following notation:

mnfn(x,u) =
∫

q1/n(x, y)fn

(
x,u,

√
ny

)
dy, Mnfn(x) =

∫ 1

0
mnfn(x,u)du,

m̄nfn(x) = mnfn(x, {x/αn}) − Mnfn(x), lni fn(x) =
∫

pi/n(x, y)m̄nfn(y)dy.

We set

f n
i+1 = fn

(
Xi/n, {Xi/n/αn},√n

[
X(i+1)/n − Xi/n

])
,

ηn
i (fn) = f n

i − Mnfn

(
X(i−1)/n

)
,

δn
i (f, l) =

n∧(i+l−1)∑
z=i

(
EFi/n

[ηn
z (f )] − EF(i−1)/n

[ηn
z (f )])

and

Mn
jk(fn, l) = 2j/2

n

n∑
i=1

1jk(i/n)δn
i (fn, l),

Hn
jk(fn, l) = 2j/2

n

∑
i∈sjk

[
m̄nfn(Xi/n) − m̄nfn

(
X(i−1)/n

)]

− 2j/2

n

∑
i∈sjk

ln(n−i)∧(l−1)fn

(
X(i−1)/n

)
12≤(n−i)∧(l−1),

Kn
jk(fn, l) = 2j/2

n

∑
i∈sjk

(n−i−1)∧(l−2)∑
z=1

[
lnz fn(Xi/n) − lnz fn

(
X(i−1)/n

)]
.

Remark that for given n and z ∈ sjk ,

Mn
y = 2j/2

n

y∑
i=1

1jk(i/n)δn
i (fn, l)

is a (Ft )-martingale in y. The following fundamental decomposition will be constantly used.
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Proposition 2 (Fundamental decomposition).

V jk(n,fn) − 2j/2
∫ 1

0
1jk(s)Mfn(Xs)ds

= Mn
jk(fn, l) + V jk(n,Mnfn − Mfn)

+ V jk(n,Mfn) − 2j/2
∫ 1

0
1jk(s)Mfn(Xs)ds − Hn

jk(fn, l) − Kn
jk(fn, l).

Proof. We have

δn
i (fn, l) = ηn

i (fn) − Mnfn(Xi/n) + Mnfn

(
X(i−1)/n

) − EF(i−1)/n
[f n

i ] + EFi/n
[f n

i+1]

− EF(i−1)/n
[ηn

i+1(fn)] +
n∧(i+l−1)∑

z=i+2

(
EFi/n

[ηn
z (fn)] − EF(i−1)/n

[ηn
z (fn)]

)
.

Using that

EFi/n
[f n

i+1] =
∫

q1/n(Xi/n, y)fn

(
Xi/n, {Xi/n/αn},√ny

)
dy,

we get

δn
i (fn, l) = ηn

i (fn) + m̄nfn(Xi/n) − m̄nfn

(
X(i−1)/n

) − EF(i−1)/n

[
EFi/n

[ηn
i+1(fn)]

]
+

n∧(i+l−1)∑
z=i+2

(
EFi/n

[
EF(z−1)/n

[ηn
z (fn)]

] − EF(i−1)/n

[
EF(z−1)/n

[ηn
z (fn)]

])
= ηn

i (fn) + m̄nfn(Xi/n) − m̄nfn

(
X(i−1)/n

) − EF(i−1)/n
[m̄nfn(Xi/n)]

+
n∧(i+l−1)∑

z=i+2

(
EFi/n

[
m̄nfn

(
X(z−1)/n

)] − EF(i−1)/n

[
m̄nfn

(
X(z−1)/n

)])
.

Since

EFi/n

[
m̄nfn

(
X(z−1)/n

)] =
∫

p(z−1−i)/n(Xi/n, y)m̄nfn(y)dy,

we obtain

δn
i (fn, l) = ηn

i (fn) + m̄nfn(Xi/n) − m̄nfn

(
X(i−1)/n

)
− ln1 fn

(
X(i−1)/n

) +
(n−i)∧(l−1)∑

z=2

[
lnz−1fn(Xi/n) − lnz fn

(
X(i−1)/n

)]
.
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Thus,

δn
i (fn) = ηn

i (fn) + m̄nfn(Xi/n) − m̄nfn

(
X(i−1)/n

)
− ln(n−i)∧(l−1)fn

(
X(i−1)/n

)
12≤(n−i)∧(l−1)

+
(n−i−1)∧(l−2)∑

z=1

[
lnz fn(Xi/n) − lnz fn

(
X(i−1)/n

)]
.

We finally get

V jk(n,fn) − V jk(n,Mnfn) = 2j/2

n

n∑
i=1

1jk(i/n)ηn
i (fn)

= Mn
jk(fn, l) − Hn

jk(fn, l) − Kn
jk(fn, l). �

4.3.2. Technical lemmas

We prove here some useful lemmas. In particular, they will enable us to control the different
terms of the decomposition. We begin with a usual Riemann approximation.

Lemma 2 (Riemann approximation). Let f ∈ C 1
b and

An = 2j/2

n

n∑
i=1

1jk(i/n)f (Xi/n) − 2j/2
∫ 1

0
1jk(s)f (Xs)ds.

Then,

E[A2
n] ≤ c2−j n−1.

Proof. Let

ξ i
n = 2j/2

∫ i/n

(i−1)/n

[1jk(s)f (Xs) − 1jk(i/n)f (Xi/n)]ds.

We have

|ξ i
n| ≤ 2j/2

∫ i/n

(i−1)/n

|f (Xs) − f (Xi/n)|ds.

Since f ∈ C 1
b , using the Burkholder–Davis–Gundy inequality, we get E[(ξ i

n)
2] ≤ c2j n−3. Now,

An = ∑n
i=1 ξ i

n with n2−j terms in the sum. Thus,

E[A2
n] ≤

n∑
i=1

n∑
i′=1

(
E[(ξ i

n)
2]E[(ξ i′

n )2])1/2 ≤ c2−j n−1.
�

The following lemma is a consequence of Assumption E together with Lemma 1 and inequal-
ities (4) and (5). Details can be found in Delattre [8].
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Lemma 3.

|mnfn(x,u)| ≤ c(1 + β2
n), (6)∫ 1

0

∣∣∣∣ ∂i

∂xi
mnfn(x,u)

∣∣∣∣du +
∣∣∣∣ ∂i

∂xi
Mnfn(x)

∣∣∣∣ ≤ c, 0 ≤ i ≤ 2, (7)

|Mnfn(x) − Mfn(x)| ≤ cn−1/2, (8)

|lni fn(x)| ≤ cα2
n(1 + n/i). (9)

We end this section with the following bounds for Hn
jk and Kn

jk .

Lemma 4.

|Hn
jk(fn, l)| ≤ c2j/2n−1 + c2j/2α2

n[1 + n2−j (l − 1)−1 + (logn)1k=2j −1],
|Kn

jk(fn, l)| ≤ c2j/2α2
n logn.

Proof. From inequalities (6) and (9), we get

n|Hn
jk(fn, l)| ≤ c2j/2(1 + β2

n) + c2j/2α2
n

∑
i∈sjk

n
[
(l − 1)−1 + (n − i)−112≤(n−i)

]
.

We also have

n|Kn
jk(fn, l)| = 2j/2

n∑
z=1

∑
i∈sjk

11≤z≤(n−i−1)∧(l−2)

[
lnz fn(Xi/n) − lnz fn

(
X(i−1)/n

)]

≤ c2j/2α2
n

n∑
z=1

(1 + n/z) ≤ c2j/2α2
nn logn.

�

4.3.3. End of the proof of Proposition 1

Until the end of Section 4.4, we take l = n and omit this index in the notation. We now
bound the different terms of the fundamental decomposition. By Lemma 4, since 0 ≤ j ≤
�(1 + ρ) log2 r−1

n 	, we get

|Hn
jk(fn) + Kn

jk(fn)| ≤ c2j/2(n−1 + α2
n logn) ≤ crn.

Inequality (7) together with Lemma 2 on Riemann approximation give

E

[∣∣∣∣V jk(n,Mfn) − 2j/2
∫ 1

0
1jk(s)Mfn(Xs)

∣∣∣∣2]
≤ c2−j n−1.

Inequality (8) gives

|V jk(n,Mnfn − Mfn)| ≤ 2−j/2n−1/2.
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We now turn to the approximation term Mn
jk(fn). We have

E[Mn
jk(fn)

2] = 2j

n2

∑
i∈sjk

E[δn
i (f )2].

From the results of Delattre [8], Chapters 7 and 8, we can show that

E[δn
i (f )2] ≤ c

(
nα2

n + (1 + β2
n)

(
1 + αn(n/i)1/2)).

Since
∑n

i=1 i−1/2 ≤ 2
√

n, we have

E[Mn
jk(fn)

2] ≤ cα2
n + c(1 + β2

n)(n−1 + 2j/2αnn
−1)

≤ c(α2
n + n−1 + 2j/2αnn

−1 + 2j/2α3
n). (10)

Putting all the inequalities together, we obtain Proposition 1.

4.4. Proof of Theorem 1

Using the remark on the change of probability in Section 4.1.2, the following proposition implies
Theorem 1.

Proposition 3 (L1 convergence, absolute integrated volatility). Let θ̃n be the estimator defined
in Section 2.2. Under Assumptions A, B′, C′ and D,

E[|θ̃n − θ |] ≤ crn,

with c a constant not depending on n.

For expository purposes, we first treat the case g(x) = 1.

4.4.1. Proof of Proposition 3 in the case g(x) = 1

We assume here that g(x) = 1 and set

fn(x,u, y) = (π/2)1/2βn|�u + β−1
n y	|.

This specification implies

Mfn(Xs) = σ(Xs).

We begin with a lemma on the behavior of the wavelet coefficients. Let cj0k , djk and ĉj0k be as
defined in Section 2.2. Thanks to the vanishing moment of ψ , we easily get the following result:

Lemma 5.

c2
j0k

≤ c2−j0, E[d2
jk] ≤ c2−2j .
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Let

Zj =
2j −1∑
k=0

Mn
jk(fn)cjk, Z̃j =

2j −1∑
k=0

Kn
jk(fn)cjk.

We have the following lemma:

Lemma 6. Let 0 ≤ j ≤ �(1 + ρ) log2 r−1
n 	, then

E[|Zj | + |Z̃j |] ≤ crn.

Proof. We have Zj = Zj,1 + Zj,2 with

Zj,1 =
2j −1∑
k=0

2j/2
(∫ (k+1)/2j

k/2j

[σ(Xs) − σ(Xk2−j )]ds

)
Mn

jk,

Zj,2 = 1

n

2j −1∑
k=0

σ(Xk2−j )ds
∑
i∈sjk

δi .

We easily get E[|Zj,1|] ≤ crn. For Zj,2, we have

E[|Zj,2|2] = 1

n2

2j −1∑
k=0

2j −1∑
k′=0

∑
i∈sjk

∑
i′∈sjk′

E[σ(Xk2−j )σ (Xk′2−j )δiδ
′
i].

For i �= i′, conditioning by Fmax (i,i′)−1/n, we get

E[σ(Xk2−j )σ (Xk′2−j )δiδ
′
i] = 0.

Therefore,

E[|Zj,2|2] = 1

n2

2j −1∑
k=0

E

[
σ(Xk2−j )

2
EF

k2−j

[∑
i∈sjk

δ2
i

]]

= 2−j
2j −1∑
k=0

E
[
σ(Xk2−j )

2
EF

k2−j
[Mn2

jk]
] ≤ cr2

n.

For Z̃j , recall that

Kn
jk(fn) = 2j/2

n

∑
i∈sjk

1jk(i/n)δ̃i ,
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with

δ̃i =
n−i−1∑
z=1

[
lnz fn(Xi/n) − lnz fn

(
X(i−1)/n

)]
and that

lnz fn(Xi/n) = EFi/n

[
m̄nfn

(
X(i+z)/n

)]
.

The same method gives the result. �

We now end the proof of Proposition 3. From Proposition 1 and equation (3), we can write

ĉj0,nk = cj0,nk + Mn
j0,nk(fn) + V j0,nk(n,Mnfn − Mfn)

+ V j0,nk(n,Mfn) − 2j0,n/2
∫ 1

0
1j0,nk(s)Mfn(Xs)ds − Hn

j0,nk(fn) − Kn
j0,nk(fn)

and

E[|ĉj0,nk − cj0,nk|2] ≤ cr2
n.

We have

E[|θ̃n − θ |] ≤ cE

[ +∞∑
j=j0,n+1

∑
k

d2
jk +

∣∣∣∣∑
k

cj0,nk Rn
k

∣∣∣∣
]

+ c(rn + 2j0,n r2
n),

where Rn
k is equal to

V j0,nk(n,Mnfn − Mfn) + V j0,nk(n,Mfn) − 2j0,n/2
∫ 1

0
1j0,nk(s)Mfn(Xs)ds − Hn

j0,nk(fn).

By Lemma 5, we have

E

[ +∞∑
j=j0,n

∑
k

d2
jk

]
≤ c2−j0,n .

Moreover, using the preceding computations, it is easy to see that

E

[∣∣∣∣∑
k

cj0,nk Rn
k

∣∣∣∣] ≤ c(2j0,nn−1 + 2j0,nα2
n + n−1/2 + α2

n logn).

The result follows.
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4.4.2. Proof of Proposition 3 in the general case

Let

ĉ∗
j0,nk =

√
π
2

2j0,n/2

√
n

n∑
i=1

1j0,nk(i/n)g
(
X(i−1)/n

)∣∣X(αn)
i/n − X

(αn)
(i−1)/n

∣∣.
We easily get the result in the same way as in the previous proof, remarking that

|ĉj0,nk − ĉ∗
j0,nk| ≤ cαn

√
π
2

2j0,n/2

√
n

n∑
i=1

1j0,nk(i/n)
∣∣X(αn)

i/n − X
(αn)
(i−1)/n

∣∣.
Consequently, using Proposition 1, we obtain

E[|ĉj0,nk − cj0,nk|2] ≤ cE[|ĉj0,nk − ĉ∗
j0,nk|2] + cE[|ĉ∗

j0,nk − cj0,nk|2] ≤ cr2
n

and ∑
k

cj0,nk(ĉj0,nk − cj0,nk) =
∑

k

cj0,nk(ĉ
∗
j0,nk − cj0,nk) + Z,

with E[|Z|] ≤ cαn. The result follows.

4.5. Proof of Theorem 2

In this proof, Assumptions A1, B′ and D are in force for αn and X. We also assume until the end
of Section 4.5.2 that g(x) = 1.

4.5.1. Compensator

We have∑
k

ĉ2
j0k

−
∫ 1

0
σ(Xs)

2 ds =
∑

k

(ĉj0k − cj0k)
2 + 2

∑
k

cj0k(ĉj0k − cj0k) −
∑
j≥j0

∑
k

d2
jk.

The central limit theorems will be derived from the double product term. If, as previously, we
choose j0 such that 2j0 is of order r−1

n , re-normalized by r−1
n , the two other terms do not tend to

zero. Hence, we can either choose 2j > r−1
n and compensate the first term or choose 2j < r−1

n

and compensate the last term. The first method is classical in quadratic functionals estimation.
However, it seems difficult here. Indeed, a compensator of

∑
k(ĉjk − cjk)

2 requires an accurate
enough estimation of the function x → σ(x). Consequently, we compensate the last term. This
is unusual, but possible in our specific setting. Of course, a one-by-one estimation of the coeffi-
cients djk is probably not suitable for building the compensator. This is simply because the error
between the coefficient d2

jk and its estimation is of the same order as the error between the coef-

ficient c2
jk and its estimate. That is why we use here the following scaling property of the wavelet

coefficients.
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Lemma 7. Let

Qj =
∑

k

d2
jk, G(u) =

∫ u

0
ψ(u)du and c(ψ) =

∫ 1

0
G2(u)du.

We have

E

[∣∣∣∣2jQj − c(ψ)

∫ 1

0
h′(Wu)

2 du

∣∣∣∣] ≤ c2−j/2.

Proof. We briefly give the main steps of the proof. Details can be found in Rosenbaum [27].
First we define

d ′
jk =

∫
ψjkWt dt.

We easily get that the d ′
jk are independent centered Gaussian variables such that

E[d ′2
jk] = c(ψ)2−2j .

Let ξ : [0,1] → R be a deterministic bounded function, vanishing outside the interval
[k2−j0, k′2−j0] ⊂ [0,1] and define

�j(ξ) = 2j

T (2j −1)∑
k=0

(
2j d ′2

jk − c(ψ)2−j
)
ξk2−j .

One can show that

E[�j(ξ)2] ≤ c sup
t

(ξ2
t )|k′ − k|2j−j0 .

Using a decomposition of the function h′2 in a wavelet basis, these results enable us to prove that

E

[∣∣∣∣2j
∑

k

(
2j d ′2

jk − c(ψ)2−j
)
h′(Wk2−j )2

∣∣∣∣] ≤ c2j/2. (11)

Since ψ has a vanishing moment,∫
ψjk(t)h(Wt)dt ≈ h′(Wk2−j )

∫
ψjk(t)Wt dt

and so

d2
jk ≈ h′(Wk2−j )2d ′2

jk.

We conclude using equation (11) together with a Riemann-type approximation. �

The following lemma shows that our method enables us to estimate the remaining coefficients
accurately enough.
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Lemma 8. Let S = [a, (j1,n), (j2,n)] ∈ S . Then,

r−1
n

[∑
k

(ĉj1,nk − cj1,nk)
2 −

∑
j≥j1,n

∑
k

d2
jk + Rn(S)

]
→ 0.

Proof. We want to compensate

�(1+a) log2 r−1
n 	∑

j=j1,n

Qj .

We know that for big enough j and j2,n ≤ j , Qj is close to 2j2,n−jQj2,n
. Therefore, we estimate

the preceding quantity by

�(1+a) log2 r−1
n 	∑

j=j1,n

2j2,n−j Q̂j2,n
,

with

Q̂j2,n
=

∑
k

d̂2
j2,nk

for appropriate j1,n and j2,n. Let

Un =
�(1+a) log2 r−1

n 	∑
j=j1,n

Qj −
�(1+a) log2 r−1

n 	∑
j=j1,n

2j2,n−j Q̂j2,n

and Y = c(ψ)
∫ 1

0 h′(Wu)
2 du. We have

Un =
�(1+a) log2 r−1

n 	∑
j=j1,n

(Qj − 2−jY ) + 2−j (Y − 2j2,nQj2,n
) + 2j2,n−j (Qj2,n

− Q̂j2,n
).

Using the same arguments as for Proposition 1, for j1,n ≤ j ≤ �(1 + a) log2 r−1
n 	, we get

E[|d̂jk − djk|2] ≤ cr2
n.

Hence, we also obtain

E[|djk||d̂jk − djk|] ≤ c2−j rn.

Consequently, we have

E[|Un|] ≤ c
(
2−3j1,n/2 + 2−(j1,n+j2,n/2) + 22j2,n−j1,n r2

n + 2j2,n−j1,n rn
)
.
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As a > 0, it is clear that

r−1
n

∑
j>�(1+a) log2 r−1

n 	
Qj → 0.

�

4.5.2. Limit theorems

We prove in this section Theorem 2 in the case g(x) = 1. Let

fn(x,u, y) = (π/2)1/2βn|�u + β−1
n y	|,

qn
i = 1

n
fn

(
X(i−1)/n,

{
X(i−1)/n/αn

}
,
√

n
[
Xi/n − X(i−1)/n

])
and zn

i = qn
i − ∫ i/n

(i−1)/n Mfn(Xs). We begin with some intermediary lemmas.

Lemma 9. Let

T1(jn, n) =
∑

k

[
2jn/2

∫
1jnk(s)[σ(Xs) − σ(Xk2−jn )]ds

][
2jn/2

∑
i∈sjnk

zn
i

]
.

If 2−jn + r−1
n 2jn/2(n−1 + α2

n logn) + 2jnrn → 0, then r−1
n T1(jn, n)

P→ 0.

Proof. We write Mjk(ln) for Mjk(fn, ln), T1 for T1(jn, n) and j for jn. We use the decompo-
sition T1 = T11 + T12 with

T11 =
∑

k

[
2j/2

∫
1jk(s)[σ(Xs) − σ(Xk2−j )]ds

]
Mjk(ln).

We easily get

E[|T12|] ≤ c2−j/2rn + c2j/2(n−1 + α2
n logn + α2

nn2−j / ln).

We take ln = �n/ logn	 and therefore r−1
n E[|T12|] tends to zero. We set F(x) = σ [h(x)].

The term T11 can be written as

T11 =
∑

k

∑
i∈sjk

[
2j

∫
1jk(s)(Ws − Wk2−j )F ′(Wk2−j )

δi(ln)

n
ds

]
+ 2j/2

∑
k

Rk Mjk(ln),

with E[|Rk|2] ≤ 2−4j . Following Delattre [8], Chapters 7 and 8, there exists δ̃i (ln) such that for
ln = �n/ logn	

E[|δi(ln) − δ̃i (ln)|2] ≤ cnr2
n/ logn,

E[δ̃i (ln)
2] ≤ c(1 + β2

n)(1 + αn[n/i]1/2).
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Hence,

E[Mjk(ln)
2] = 2j

n2

∑
i∈sjk

E[δi(ln)
2] ≤ cr2

n.

Consequently, we obtain that the expectation of the second term of T11 is less than 2−j/2rn.
The first term can be written as A1 + A2 + A3 + A4 + A5 with

A1 =
∑

k

∑
i∈sjk

2j

∫ (i−1)/n

k2−j

(Ws − Wk2−j )F
′(Wk2−j )

δi(ln)

n
ds,

A2 =
∑

k

∑
i∈sjk

2j

∫ i/n

(i−1)/n

(Ws − Wk2−j )F
′(Wk2−j )

δi(ln)

n
ds,

A3 =
∑

k

∑
i∈sjk

2j

∫ (k+1)2−j

i/n

(Ws − Wi/n)F
′(Wk2−j )

δi(ln)

n
ds,

A4 =
∑

k

∑
i∈sjk

2j [(k + 1)2−j − i/n](Wi/n − W(i−1)/n

)
F ′(Wk2−j )

δi(ln)

n
ds,

A5 =
∑

k

∑
i∈sjk

2j [(k + 1)2−j − i/n](W(i−1)/n − Wk2−j

)
F ′(Wk2−j )

δi(ln)

n
ds.

We easily get that E[A2
1 + A2

5] ≤ c2−j r2
n . For A2, we have

E[|A2|] ≤ c
2j/2

n

(
sup

i

(E[δi(ln)
2])

)1/2 ≤ c2j/2(1/n + α2
n).

We now turn to A3. We write here δi for δi(ln). We easily obtain that E[A2
3] is equal to

22j
∑

k

∑
i∈sjk

i′∈sjk

∫ (k+1)2−j

i/n

∫ (k+1)2−j

i′/n

E

[
F ′(Wk2−j )2(Ws − Wi/n)(Ws′ − Wi′/n)

δi

n

δi′

n

]
ds ds′.

We consider the quantity

ui = EFi/n

[
F ′(Wk2−j )

2(Ws − Wi/n)(Ws′ − Wi′/n)
δi

n

δi′

n

]
.

Suppose that i ≥ i′ and s′ > i/n. Then

ui = F ′(Wk2−j )2 δi

n

δi′

n
EFi/n

[(Ws − Wi/n)(Ws′ − Wi′/n)]

= F ′(Wk2−j )2 δi

n

δi′

n
E[(Ws − Wi/n)(Ws′ − Wi/n)].
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Suppose that i ≥ i′ and s′ ≤ i/n. Then

ui = F ′(Wk2−j )2 δi

n

δi′

n
EFi/n

[(Ws − Wi/n)(Ws′ − Wi′/n)] = 0.

Finally,

E[A2
3] ≤ c2j

∑
k

∑
i∈sjk

∫ (k+1)2−j

i/n

∫ (k+1)2−j

i/n

E

[
F ′(Wk2−j )2

(
δi

n

)2]
ds ds′.

Hence,

E[A2
3] ≤ c2−j r2

n.

For A4, consider the function ζ defined on [0,1] by ζ(t) = 1 − t and ζjk(t) = 2j/2ζ(2j x − k).
We have

A4 =
∑

k

∑
i∈sjk

2j [(k + 1)2−j − i/n]F ′(Wk2−j )
(
Wi/n − W(i−1)/n

)δi(ln) − δ̃i (ln)

n

+
∑

k

F ′(Wk2−j )
∑
i∈sjk

2−j/2ζjk(i/n)
(
Xi/n − X(i−1)/n

)
σ
(
X(i−1)/n

)−1 δ̃i (ln)

n
+ R,

with E[|R|] ≤ c(1/n + α
3/2
n ). Using that the function fn verifies in our case

|fn(x,u, y)| ≤ c(1 + βn)(1 + |y|),

following Delattre [8], Chapter 6, we can show that the quantity

√
n
(
Xi/n − X(i−1)/n

)
σ
(
X(i−1)/n

)−1
δ̃i (ln)(1 + βn)

−1

can be written as gn(X(i−1)/n, {X(i−1)/nαn},√n[Xi/n − X(i−1)/n]). The function gn satisfies
Assumption E. Therefore, since Mgn(x) = 0, using the same arguments as in the proof of Propo-
sition 1, we can prove that

E

[∣∣∣∣1

n

∑
i∈sjk

ζjk(i/n)gn

(
X(i−1)/n,

{
X(i−1)/nαn

}
,
√

n
[
Xi/n − X(i−1)/n

])∣∣∣∣2]
≤ cr2

n.

Consequently,

E

[∣∣∣∣∑
k

F ′(Wk2−j )
∑
i∈sjk

2−j/2ζjk(i/n)
(
Xi/n − X(i−1)/n

) δ̃i (ln)

n
ds

∣∣∣∣] ≤ c2j/2r2
n.
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For the first term, we use that

1

n2

n∑
i=1

E[|δi(ln) − δ̃i (ln)|2] ≤ cr2
n/ logn

and finally

E

[∣∣∣∣∑
k

∑
i∈sjk

2j [(k + 1)2−j − i/n](Wi/n − W(i−1)/n

)
F ′(Wk2−j )

δi(ln) − δ̃i (ln)

n
ds

∣∣∣∣]
≤ crn(logn)−1/2. �

Lemma 10. Let

T2(n) =
∑

i

∫ i/n

(i−1)/n

[
σ(Xs) − σ

(
X(i−1)/n

)]
Mfn(Xs)ds.

We have r−1
n T2(n)

P→ 0.

Proof. We write T2 for T2(n) and set cη = (2/π)1/2. We have

T2 = cη

∑
i

∫ i/n

(i−1)/n

[
σ(Xs) − σ

(
X(i−1)/n

)]
σ(Xs)ds.

We can write

T2 = cη

∑
i

∫ i/n

(i−1)/n

[
σ(Xs) − σ

(
X(i−1)/n

)]2 ds

+ cη

∑
i

∫ i/n

(i−1)/n

[
σ(Xs) − σ

(
X(i−1)/n

)]
σ
(
X(i−1)/n

)
ds.

Itô’s formula gives

T2 = cη

∑
i

∫ i/n

(i−1)/n

ds σ
(
X(i−1)/n

)∫ s

(i−1)/n

σ ′(Xt )σ (Xt )dWt

+ cη

∑
i

∫ i/n

(i−1)/n

ds σ
(
X(i−1)/n

)∫ s

(i−1)/n

(
1

2
σ ′(Xt )

2σ(Xt ) + 1

2
σ(Xt )

2σ ′′(Xt )

)
dt + R,

with E[|R|] ≤ c/n. Finally, we obtain

T2 = R + cη

∑
i

∫ i/n

(i−1)/n

ds σ
(
X(i−1)/n

)∫ s

(i−1)/n

σ ′(Xt )σ (Xt )dWt + R′,
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with E[|R̃′|] ≤ c/n. Let

ηi =
∫ i/n

(i−1)/n

ds σ
(
X(i−1)/n

)∫ s

(i−1)/n

σ ′(Xt )σ (Xt )dWt.

For i′ < i, EFi′/n
[ηi] = 0. Hence, for given n, Mn

i = ∑i
j=1 ηn

j is a martingale. Consequently,

E[(Mn
i )2] =

n∑
i=1

E[η2
i ].

Since

η2
i ≤ 1

n

∫ i/n

(i−1)/n

ds

(
σ
(
X(i−1)/n

)∫ s

(i−1)/n

σ ′(Xt )σ (Xt )dWt

)2

,

we get

E[(Mn
i )2] ≤ c/n2. �

Lemma 11. Let

T3(jn, n) =
∑

k

∑
i∈sjnk

[
σ(Xk2−jn ) − σ

(
X(i−1)/n

)]
zn
i .

If 2−jn + r−1
n 2jn/2(n−1 + α2

n logn) + 2jnrn → 0, then r−1
n T3(jn, n)

P→ 0.

Proof. We write T3 for T3(jn, n) and j for jn. We have

−T3 =
∑

k

∑
i∈sjk

[
σ
(
X(i−1)/n

) − σ(Xk2−j )
](δi(ln)

n
+ ri + Ri

)
,

with

ri = 1

n

[
m̄nfn(Xi/n) − m̄nfn

(
X(i−1)/n

)]
− 1

n

n−i−1∑
z=1

[
lnz fn(Xi/n) − lnz fn

(
X(i−1)/n

)] − 1

n
lnn−ifn

(
X(i−1)/n

)
1i≤n−2

and |Ri | ≤ cn−3/2. We easily get

E

[∣∣∣∣∑
k

∑
i∈sjk

[
σ
(
X(i−1)/n

) − σ(Xk2−j )
]δi(ln)

n

∣∣∣∣2]

= E

[∣∣∣∣∑
k

∑
i∈sjk

[
σ
(
X(i−1)/n

) − σ(Xk2−j )
]2

(
δi(ln)

n

)2∣∣∣∣] ≤ c2−j r2
n.



714 M. Rosenbaum

The second term of the decomposition can be written as∑
k

∑
i∈sjk

[
σ
(
X(i−1)/n

) − σ(Xk2−j )
]
ri

= B1 + B2 + B3

with

B1 = −
∑

k

∑
i∈sjk

[
σ(Xi/n) − σ

(
X(i−1)/n

)]
ri ,

B2 =
∑

k

[
σ
(
X(k+1)2−j

) − σ(Xk2−j )
] ∑

i∈sjk

ri ,

B3 = −
∑

k

∑
i∈sjk

[
σ
(
X(k+1)2−j

) − σ(Xi)
]
ri .

Using Lemma 4, we obtain

E[|B2|] ≤ 2j/2
(

1

n
+ α2

n logn

)
.

For B1 we consider the decomposition B1 = B11 − B12 with

B11 =
∑

i

[
σ(Xi/n) − σ

(
X(i−1)/n

)]
zn
i ,

B12 =
∑

i

[
σ(Xi/n) − σ

(
X(i−1)/n

)](δi(ln)

n
+ Ri

)
.

Using the same method as for A4, we get E[|B12|] ≤ crn(logn)−1/2. We have for the other
term

B11 =
∑

i

(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)
qn
i

+
∑

i

(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)σ(X(i−1)/n)

n

+ R

with E[|R|] ≤ c/n. Therefore, we easily get that E[|B11|] ≤ crnn
−1/2. We now treat B3.

The quantity∑
k

∑
i∈sjk

[
σ
(
X(k+1)2−j

) − σ(Xi/n)
]1

n

[
m̄nfn(Xi/n) − m̄nfn

(
X(i−1)/n

)]
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can be written as ∑
k

∑
i∈sjk

[
σ
(
X(k+1)2−j

) − σ(Xi/n)
]1

n
m̄nfn(Xi/n)

−
∑

k

∑
i∈sjk

[
σ
(
X(k+1)2−j

) − σ(Xi−1/n)
]1

n
m̄nfn

(
X(i−1)/n

)
+

∑
k

∑
i∈sjk

[
σ(Xi/n) − σ

(
X(i−1)/n

)]1

n
m̄nfn

(
X(i−1)/n

)
.

This is equal to

−
∑

k

[
σ
(
X(k+1)2−j

) − σ(Xk2−j )
]1

n
m̄nfn(Xk2−j )

+
∑

k

∑
i∈sjk

(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)1

n
m̄nfn

(
X(i−1)/n

)
+ R

with E[|R|] ≤ cr2
n . Eventually this term is equal to

R′ +
∑

k

∑
i∈sjk

(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)1

n
m̄nfn

(
X(i−1)/n

) + R,

with E[|R′|] ≤ c2j/2r2
n . The quantity

√
n
(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)
m̄nfn

(
X(i−1)/n

)
(1 + βn)

−1

can be written as gn(X(i−1)/n, {X(i−1)/nαn},√n[Xi/n − X(i−1)/n]). This function satisfies As-
sumption E. Hence, since Mgn(x) = 0, we obtain

E

[∣∣∣∣∑
k

∑
i∈sjk

(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)1

n
m̄nfn

(
X(i−1)/n

)∣∣∣∣]
≤ cr2

n.

We now treat

∑
k

∑
i∈sjk

[
σ
(
X(k+1)2−j

) − σ(Xi/n)
]1

n

(n−i−1)∧(ln−2)∑
z=1

[
lnz fn(Xi/n) − lnz fn

(
X(i−1)/n

)]
.



716 M. Rosenbaum

This can be written as∑
k

∑
z

∑
i∈sjk

[
σ
(
X(k+1)2−j

) − σ(Xi/n)
]1

n
lnz fn(Xi/n)

−
∑

k

∑
z

∑
i∈sjk

[
σ
(
X(k+1)2−j

) − σ(Xi−1/n)
]1

n
lnz fn

(
X(i−1)/n

)
+

∑
k

∑
z

∑
i∈sjk

[
σ(Xi/n) − σ

(
X(i−1)/n

)]1

n
lnz fn

(
X(i−1)/n

)
.

Hence, it is equal to

−
∑

k

∑
z

[
σ
(
X(k+1)2−j

) − σ(Xk2−j )
]1

n
lnz fn

(
X(i−1)/n

)
+

∑
k

∑
z

∑
i∈sjk

(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)1

n
lnz fn

(
X(i−1)/n

) + R,

with E[|R|] ≤ cα2
n logn. This is finally equal to

R′ +
∑

z

∑
k

∑
i∈sjk

(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)1

n
lnz fn

(
X(i−1)/n

) + R,

with E[|R′|] ≤ c2j/2α2
n logn. The quantity

√
n
(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)
lnz fn

(
X(i−1)/n

)
(α2

n[1 + n/z])−1

can be written as gn(X(i−1)/n,
√

n[Xi/n − X(i−1)/n]). This function satisfies Assumption E.
Hence, since Mgn(x) = 0,

E

[∣∣∣∣∑
k

∑
i∈sjk

(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)1

n
lnz fn

(
X(i−1)/n

)∣∣∣∣] ≤ cn−1α2
n(1 + n/z).

Eventually,

E

[∣∣∣∣∑
z

∑
k

∑
i∈sjk

(
Xi/n − X(i−1)/n

)
σ ′(X(i−1)/n

)1

n
lnz fn

(
X(i−1)/n

)∣∣∣∣] ≤ cα2
n(1 + logn).

It is also clear that

E

[∣∣∣∣[σ (
X(k+1)2−j

) − σ(Xi/n)
]1

n
lnn−ifn

(
X(i−1)/n

)∣∣∣∣] ≤ cα2
n(1 + logn). �

We finally have the following result:
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Lemma 12. Let

Cjn =
∑

k

cjnk(ĉjnk − cjnk).

If 2−jn + r−1
n 2jn/2(n−1 +α2

n logn)+ 2jnrn → 0, then we have the following stable convergences
in law, where B is a standard Brownian motion, independent of F :

if βn → 0,
√

nCjn →Ls
1√
2
(π − 2)1/2

∫ 1

0
σ(Xt )

2 dBt ,

if βn → β > 0,
√

nCjn →Ls

∫ 1

0
σ(Xt )[�β(Xt )]1/2 dBt ,

if βn → +∞, α−1
n Cjn →Ls

1√
3

∫ 1

0
σ(Xt )dBt .

Proof. We have∑
k

cjnk(ĉjnk − cjnk) =
∑

k

[
2jn/2

∫
1jnk(s)σ (Xs)ds

][
2jn/2

∑
i∈sjnk

zn
i

]
= T1(jn, n) + T2 + T3(jn, n) + T4(n),

with

T4(n) =
∑

i

σ
(
X(i−1)/n

)
qn
i −

∫
σ(Xs)Mfn(Xs)ds.

We get the result by applying the results of Delattre [8], Chapter 2, to the term T4 and using that
r−1
n (T1 + T2 + T3) tends to zero in probability. �

The proof of Theorem 2 follows using Lemma 8.

4.5.3. Proof of Theorem 2 in the general case

We give a sketch of the proof of the result in the general case. We have the following lemma:

Lemma 13. If 2−jn + r−1
n 2jn/2(n−1 + α2

n logn) + 2jnrn → 0, then we have the following con-
vergences in stable law, where B is a standard Brownian motion, independent of F :

if βn → 0,
√

nCjn →Ls
1√
2
(π − 2)1/2

∫ 1

0
g(Xt )

2σ(Xt )
2 dBt ,

if βn → β > 0,
√

nCjn →Ls −β

2

∫ 1

0
g(Xs)g

′(Xs)σ (Xs)
2 ds

+
∫ 1

0
g(Xt )

2σ(Xt )[�β(Xt )]1/2 dBt ,
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if βn → +∞, α−1
n Cjn →Ls −1

2

∫ 1

0
g(Xs)g

′(Xs)σ (Xs)
2 ds

+ 1√
3

∫ 1

0
g(Xt )

2σ(Xt )dBt .

Proof. In this case, we have by analogy with Section 4.5.2

fn(x,u, y) = (π/2)1/2g(x − αnu)βn|�u + y/βn	|.

Let

f̃n(x,u, y) = (π/2)1/2g(x)βn|�u + y/βn	|.
We have ∑

k

cjnk(ĉjnk − cjnk) =
∑

k

cjnk(ĉ
∗
jnk − cjnk) + Z,

with E[|Z|] ≤ cαn. Hence, we easily get the result when βn tends to zero. We also have

∑
k

cjnk(ĉjnk − cjnk) =
∑

k

cjnk

(
ĉjnk − 2jn/2

∫
1jnk(s)Mfn(Xs)ds

)

+
∑

k

cjnk

(
2jn/2

∫
1jnk(s)[Mfn(Xs) − Mf̃n(Xs)]ds

)
.

A bias is induced by the second term if βn does not tend to zero. Indeed,

α−1
n [Mfn(Xs) − Mf̃n(Xs)] ≈ − 1

2g′(Xs)σ (Xs).

Since

2j0,n−1∑
k=0

ê2
j0,nk

P→
∫ 1

0
|g(Xs)g

′(Xs)|σ(Xs)
2 ds,

we are able to compensate this bias. We conclude the proof of Theorem 2 using that if Un tends
to U in probability on � and Yn tends to Y in stable law, then (Un,Yn) tends to (U,Y ) in stable
law. �

Acknowledgements

I am grateful to Sylvain Delattre, Marc Hoffmann and Christian-Yann Robert for helpful discus-
sions. I also thank the referee whose comments have substantially improved a former version of
this paper.



Integrated volatility and round-off error 719

References

[1] Aït-Sahalia, Y., Mykland, P.A. and Zhang, L. (2005). How often to sample a continuous time process
in the presence of market microstructure noise. Rev. Financial Stud. 18 351–416.

[2] Aldous, D.J. and Eagleson, G.K. (1978). On mixing and stability of limit theorems. Ann. Probab. 6
325–331. MR0517416

[3] Andersen, T., Bollerslev, T. and Meddahi, N. (2006). Realized volatility forecasting and market mi-
crostructure noise. Working paper.

[4] Bandi, F.M. and Russel, J.R. (2008). Microstructure noise, realized variance and optimal sampling.
Rev. Econom. Stud. 75 339–369. MR2398721

[5] Bandi, F.M., Russel, J.R. and Yang, C. (2006). Realized volatility and option pricing. Working paper.
[6] Barndorff-Nielsen, O., Hansen, P., Lunde, A. and Shephard, N. (2008). Designing realised kernels to

measure the ex-post variation of equity prices in the presence of noise. Econometrica 76 1481–1536.
MR2468558

[7] Barndorff-Nielsen, O.E. and Shephard, N. (2002). Econometric analysis of realized volatility and its
use in estimating stochastic volatility models. J. Roy. Statist. Soc. Ser. B 64 253–280. MR1904704

[8] Delattre, S. (1997). Estimation du coefficient de diffusion d’un processus de diffusion avec erreurs
d’arrondi. Ph.D. thesis, University Paris 6.

[9] Delattre, S. and Jacod, J. (1997). A central limit theorem for normalized functions of the increments
of a diffusion process, in the presence of round-off errors. Bernoulli 3 1–28. MR1466543

[10] Gayraud, G. and Tribouley, K. (1999). Wavelet methods to estimate an integrated functional: Adap-
tivity and asymptotic law. Statist. Probab. Lett. 44 109–122. MR1706448

[11] Gloter, A. and Jacod, J. (1997). Diffusions with measurement errors, I. Local asymptotic normality,
II. Optimal estimators. ESAIM PS 5 225–260. MR1875672, MR1875673

[12] Gonçalves, S. and Meddahi, N. (2005). Bootstrapping realized volatility. Econometrica. To appear.
[13] Hansen, P.R. and Lunde, A. (2006). Realized variance and market microstructure noise. J. Bus.

Econom. Statist. 24 127–161. MR2234447
[14] Jacod, J. (1997). On continuous conditional Gaussian martingales and stable convergence in law.

Séminaire de Probabilités (Strasbourg) 31 232–246. MR1478732
[15] Jacod, J., Li, Y., Mykland, P.A., Podolskij, M. and Vetter, M. (2007). Microstructure noise in the

continuous case: The pre-averaging approach. Working paper.
[16] Jacod, J. and Protter, P. (1998). Asymptotic error distributions for the Euler method for stochastic

differential equations. Ann. Probab. 26 267–307. MR1617049
[17] Jacod, J. and Shiryaev, A.N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. New York:

Springer. MR1943877
[18] Kosulajeff, P. (1937). Sur la répartition de la partie fractionaire d’une variable aléatoire. Mat. Sb. (N.S.)

2 1017–1019.
[19] Large, J. (2006). Estimating quadratic variation when quoted prices change by a constant increment.

Working paper.
[20] Li, Y. and Mykland, P. (2006). Determining the volatility of a price process in the presence of rounding

errors. Technical Report 573, Univ. Chicago.
[21] Li, Y. and Mykland, P. (2007). Are volatility estimators robust with respect to modeling assumptions?

Bernoulli 13 601–622. MR2348742
[22] Meddahi, N. (2002). A theoretical comparison between integrated and realized volatility. J. Appl.

Econometrics 17 475–508.
[23] Gatheral, J. and Oomen, R. (2007). Zero-intelligence realized variance estimation. Working paper.
[24] Rényi, A. (1963). On stable sequences of events. Sankhyā Ser. A 25 293–302. MR0170385
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