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We consider the solution {u(t, x); t ≥ 0, x ∈ R} of a system of d linear stochastic wave equations driven by
a d-dimensional symmetric space-time Lévy noise. We provide a necessary and sufficient condition on the
characteristic exponent of the Lévy noise, which describes exactly when the zero set of u is non-void. We
also compute the Hausdorff dimension of that zero set when it is non-empty. These results will follow from
more general potential-theoretic theorems on the level sets of Lévy sheets.
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1. Introduction and main results

Consider the solution u(t, x) := (u1(t, x), . . . , ud(t, x)) to the following system of d linear sto-
chastic wave equations:

∂2ui

∂t2
(t, x) = ∂2ui

∂x2
(t, x) + L̇i(t, x), t ≥ 0, x ∈ R, (1.1)

with initial condition ui(0, x) = ∂tui(0, x) = 0, where i ranges in {1, . . . , d}, and L̇ :=
(L̇1, . . . , L̇d) is a (totally scattered) d-dimensional Lévy noise on R2 with Lévy exponent � .

Stochastic PDEs (SPDEs) that are driven by (non-Gaussian) Lévy noises are beginning to re-
ceive some attention in the literature. We mention, for example, the work of Mueller [28], who
investigates nonlinear heat equations in high space dimensions that are driven by multiplica-
tive space-time stable Lévy noises; see also Mueller, Mytnik and Stan [29] who consider heat
equations with a multiplicative space-dependent stable Lévy noise. The Cauchy problem in high
space dimensions for the linear wave equation driven by a space-time Lévy noise is treated in
Øksendal, Proske and Signahl [30].

We now return to the SPDE (1.1) and define the light cone at (t, x) ∈ R2+ to be the set

C(t, x) := {(s, y) ∈ R2+ : 0 ≤ s ≤ t and x − (t − s) ≤ y ≤ x + (t − s)}. (1.2)
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Then, 1
2 1C(t,x) is the Green function for the wave operator. We follow the approach developed

by Walsh [35] for space-time white noise and can write the solution of (1.1), in mild form, as

u(t, x) = 1
2

∫
R2+

1C(t,x)(s, y)L(ds dy) for all t ≥ 0, x ∈ R, (1.3)

where L denotes the Lévy sheet that corresponds to L̇ := (L̇1, . . . , L̇d) (see Section 2.1), and the
stochastic integral is a Wiener-type integral with respect to L (see Section 2.3).

The aim of this paper is to study the geometry of the zero set

u−1{0} := {(t, x) ∈ R+ × R :u(t, x) = 0} (1.4)

of the solution to (1.1). In particular, we seek to know when u−1{0} is non-void. In order to
describe when u−1{0} �= ∅, we first analyze the zero set of a Lévy sheet. This will be done in a
more general setting. Then, we devise a ‘comparison principle’ to relate the solution of the SPDE
(1.1) to theorems about additive Lévy processes developed earlier in [22,24,25]. This comparison
method might appear somewhat roundabout, but, as it turns out, it is not so easy to work directly
with the solution to (1.1).

In order to state the main result of this paper, we introduce the following regularity conditions
on the characteristic exponent � of the noise L̇; see (2.1) below for a precise definition of � .

A1. L̇ is symmetric. That is, �(ξ) is real and non-negative for all ξ ∈ Rd .
A2. �(λ) < ∞ for all λ > 0, where � is the gauge function defined by

�(λ) := 1

(2π)d

∫
Rd

e−λ�(ξ) dξ for all λ > 0. (1.5)

A3. For all a > 0, there exists a constant Aa > 0 such that

�(aξ) ≥ Aa�(ξ) for all ξ ∈ Rd . (1.6)

Remark 1.1. In order to better understand condition A3, we note that � is non-increasing. There-
fore, in particular, �(2λ) ≤ �(λ) for all λ > 0. Condition A3 implies that a converse holds.
Namely,

lim sup
λ↓0

�(λ)

�(2λ)
< ∞. (1.7)

Unfortunately, (1.7) by itself does not seem to be enough to imply our main result.

Given an analytic Euclidean set A, we let dimH A denote its Hausdorff dimension [21, Appen-
dix C], with the proviso added that the statement “dimH A < 0” means that A is empty.

We are ready to present the main result of this paper; the remainder of the article is dedicated
to proving this fact.

Theorem 1.2. Under conditions A1–A3, the following are equivalent:
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(1) Almost surely, u(t, x) = 0 for some t > 0 and x ∈ R;
(2) with positive probability, u(t, x) = 0 for some t > 0 and x ∈ R;
(3)

∫ 1
0 λ�(λ)dλ < ∞.

In addition, if one of these conditions holds, then

dimH u−1{0} = 2 − ind� a.s., where ind� := lim sup
λ↓0

log�(λ)

log(1/λ)
. (1.8)

In order to better understand Theorem 1.2, let us emphasize the special case where �(ξ) =
1
2‖ξ‖α for all ξ ∈ Rd , and α ∈ (0,2] is a fixed ‘index of stability’. In this case, L̇ is called the
isotropic stable Lévy noise with index α and it is easy to see that �(λ) = const · λd/α . Hence,
Theorem 1.2 yields the following result.

Corollary 1.3. Consider the solution u to (1.1), where L̇ is the isotropic stable Lévy noise with
index α ∈ (0,2]. Then, u has zeros if and only if d < 2α. Moreover, if d < 2α, then dimH u−1{0} =
2 − (d/α) a.s.

When α = 2, L̇ is the standard d-dimensional white noise on R2 and (1.1) simplifies to the
more common form of the linear stochastic wave equation with d independent, identically dis-
tributed components. In that case, there is indeed a large literature on this topic; see, for example,
Dalang [8,9], Dalang and Walsh [11], Cabaña [3,4], Carmona and Nualart [6,7], Gaveau [15,16],
Pyasetskaya [32] and Walsh [35].

One could also consider the case where �(ξ) = ξ ′Qξ , Q := (Qij ) being a non-singular d ×d

covariance matrix. This leads to the weakly interacting system

∂2ui

∂t2
(t, x) = ∂2ui

∂x2
(t, x) +

d∑
j=1

Qij Ẇj (t, x), t ≥ 0, x ∈ R,1 ≤ i ≤ d, (1.9)

with the initial condition ui(x,0) = ∂tui(x,0) = 0. Here, Ẇ := (Ẇ1, . . . , Ẇd) denotes a standard
d-dimensional white noise on R2. Corollary 1.3 holds in this case with α = 2, the result being
that the solution has zeros if and only if d < 4. This result is closely related to a hyperbolic
problem that was solved in Dalang and Nualart [10]. If we apply their characterization to the
problem of the existence of zeros, then we obtain the same critical dimension of four as we do
here. We add that the theorem of Dalang and Nualart [10] also holds in the presence of smooth
multiplicative nonlinearities.

The present paper is organized as follows. In Section 2 we recall Lévy sheets and their asso-
ciated Lévy processes, and present a brief introduction to stochastic integration with respect to a
general Lévy noise. Sections 3, 4 and 5 are devoted to the study of the polar sets of the zero set
of a Lévy sheet and of the random field defined as a sum of a Lévy sheet and an additive Lévy
process, in a general setting. We finally prove Theorem 1.2 in Section 6.

In the rest of this section, we give some notation that will be used throughout. The k-
dimensional Lebesgue measure on Rk is denoted by λk . For all x ∈ Rk , ‖x‖ := (x2

1 +· · ·+x2
k )1/2

denotes the 	2-norm of x and |x| := |x1| + · · · + |xk| its 	1-norm.
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The underlying parameter space is RN , or RN+ = [0,∞)N . A typical parameter t ∈ RN is
written as t = (t1, . . . , tN ). There is a natural partial order 
 on RN . Namely, s 
 t if and only
if si ≤ ti for all i = 1, . . . ,N . When it is the case that s 
 t , we define the interval [s, t] =∏N

i=1[si , ti]. Finally, s ∧ t denotes the N -vector whose ith coordinate is the minimum of si and
ti .

We denote by f̂ the normalized Fourier transform of f ∈ L1(Rd), given by

f̂ (ξ) =
∫

Rd

eix·ξ f (x)dx for all ξ ∈ Rd . (1.10)

2. Lévy sheets and their associated processes

In this section, we study the structure of the distribution function of the noise L̇, which is called
a Lévy sheet. In fact, we proceed by first studying such sheets under greater generality than is
needed for (1.1). This is primarily because we view Lévy sheets as fundamental objects them-
selves.

2.1. Lévy sheets

Let us begin by introducing some notation for N -parameter, d-dimensional Lévy sheets. For
more detailed information, particularly in the two-parameter case, consult Dalang and Walsh
[11], Section 2.

Let L̇ be a totally scattered symmetric d-dimensional random measure on RN that is infinitely
divisible in the following sense:

1. if A and B are disjoint Borel subsets of RN , then L̇(A) and L̇(B) are independent;
2. for every Borel set A ⊂ RN of finite Lebesgue measure, the law of L̇(A) is described by

E[exp{iξ · L̇(A)}] = exp(−λN(A)�(ξ)) for all ξ ∈ Rd , (2.1)

where � is a real (and hence non-negative) negative definite function in the sense of
Schoenberg [34]; see also the following remark.

Remark 2.1. We recall Schoenberg’s theorem: � is negative definite if and only if �(0) ≥ 0 and
ξ 
→ exp(−t�(ξ)) is positive definite in the sense of Herzog and Bochner [1, Theorem 7.8, page
41]. Equivalently, � is negative definite if it satisfies the Lévy–Khintchine formula [2,33]. In the
present case, � is also real-valued and, therefore, �(ξ) ≥ 0 for all ξ ∈ Rd .

The Lévy sheet L with Lévy exponent � is the N -parameter d-dimensional random field
{L(t); t ∈ RN+} defined as

L(t) := L̇([0, t]) for all t := (t1, . . . , tN ) ∈ RN+ . (2.2)

Next, we mention a few commonly used families of Lévy noises and their corresponding Lévy
sheets.
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Example 2.2 (White and stable noises). Choose and fix a constant χ ∈ (0,∞). When �(ξ) =
χ‖ξ‖2 for all ξ ∈ Rd , L̇ is called the d-dimensional white noise on RN and L is called the N -
parameter, d-dimensional Brownian sheet. The noise L̇ is the (usual) standard white noise when
χ = 1/2 and the random field L is then called the (usual) standard Brownian sheet.

More generally, if �(ξ) = χ‖ξ‖α for ξ ∈ Rd , then, by the Lévy–Khintchine formula, α ∈
(0,2] and L̇ is called the d-dimensional isotropic stable noise on RN with index α. In this case,
L is called the N -parameter isotropic stable sheet in Rd with index α; see Ehm [14].

There are other interesting stable noises that are symmetric. For instance, one could consider
�(ξ) = 1

2

∑d
j=1 |ξj |α . This gives rise to the symmetric noise each of whose d components are

independent, identically distributed one-dimensional stable noises on RN with common index α.
The resulting random field is a stable sheet with independent, identically distributed coordinates,
each with the same stability index α.

Example 2.3 (Noises with stable components). Let α1, . . . , αd ∈ (0,2] be fixed, and consider

�(ξ) = χ
∑d

j=1 |ξj |αj , where χ ∈ (0,∞) is fixed. The resulting random noise L̇ has stable
components with index (α1, . . . , αd) and the corresponding random field L is the stable sheet
with stable components. These were introduced in the one-parameter case by Pruitt [31] and
investigated further by Hendricks [17–20].

Let us also mention the following, immediate consequence of Theorem 1.2.

Corollary 2.4. Consider the solution u to (1.1), where L̇ is Lévy noise with stable components
with index (α1, . . . , αd) ∈ (0,2]d . Then, u has zeros if and only if

∑d
j=1(1/αj ) < 2. If and when∑d

j=1(1/αj ) < 2, then

dimH u−1{0} = 2 −
d∑

j=1

1

αj

a.s. (2.3)

2.2. The associated processes

Because � is a Lévy exponent, there exists a d-dimensional Lévy process X := {X(t); t ≥ 0}
whose law is described uniquely by E[eiξ ·X(t)] = e−t�(ξ) for all t ≥ 0 and ξ ∈ Rd . We may refer
to X as the Lévy process associated to L̇.

By the inversion theorem, the transition densities of X are given by

f (t;x) = 1

(2π)d

∫
Rd

cos(x · ξ)e−t�(ξ)dξ for all t ≥ 0, x ∈ Rd . (2.4)

In particular, �(λ) is none other than f (λ;0).
Now, let X1, . . . ,XN be N i.i.d. copies of X. Then, the additive Lévy process associated to L̇

is defined as the d-dimensional N -parameter random field X := {X(t); t ∈ RN+}, where

X(t) := X1(t1) + · · · + XN(tN) for all t ∈ RN+ . (2.5)
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The density function of X(t) at 0 ∈ Rd is �(
∑N

i=1 ti ). This should be contrasted with the fact
that the density function of L(t) at 0 ∈ Rd is �(

∏N
i=1 ti ).

2.3. Stochastic integrals

In this section, we proceed to construct Wiener-type stochastic integrals of the type L̇(ϕ) :=∫
RN ϕ(t)L̇(dt), where ϕ : RN → R is non-random, measurable, bounded and compactly sup-

ported. There exist integration theories that construct L̇(ϕ) abstractly; see, for example, the
Bartle-type integrals of Dunford and Schwartz [13]. But, in order to mention some of the proba-
bilistic properties of these integrals, we opt for a more direct approach that is closer to the original
method of Wiener. As our method uses standard ideas to produce such stochastic integrals, we
will only sketch the main steps.

First, suppose ϕ is a simple function. That is, ϕ(t) = ∑m
j=1 cj 1Aj

, where A1, . . . ,Am are

disjoint Borel sets in RN and c1, . . . , cm are real constants. For such ϕ, we define L̇(ϕ) :=∑m
j=1 cj L̇(Aj ). Because �(0) = 0,

E[exp{iξ · L̇(ϕ)}] = exp

(
−

m∑
j=1

λN(Aj )�(cj ξ)

)

(2.6)

= exp

(
−

∫
RN

�(ϕ(t)ξ)dt

)
.

Next, we consider a bounded, compactly-supported measurable function ϕ : RN → R. Stan-
dard measure-theoretic arguments reveal that we can find simple functions ϕ1, ϕ2, . . . : RN →
R+ and a compact set K ⊂ RN such that: (i) limn→∞ ϕn = ϕ pointwise; (ii) R :=
supn≥1 supt∈RN |ϕn(t)| < ∞; and (iii) ϕn(t) = 0 for all t /∈ K and all n ≥ 1.

By linearity, and since � is real and nonnegative,

1 ≥ lim inf
n,m→∞ E

[
exp

(
iξ · {L̇(ϕn) − L̇(ϕm)})]

(2.7)

≥ exp

(
− lim sup

n,m→∞

∫
K

�
({ϕn(t) − ϕm(t)}ξ)

dt

)
.

Let c := R max1≤j≤d |ξj | and note that � is uniformly continuous on [−c, c]d . Therefore,

limn,m→∞ E[exp(iξ · {L̇(ϕn)− L̇(ϕm)})] = 1. Consequently, the sequence {L̇(ϕn)}n≥1 is Cauchy

in L0(P), and hence L̇(ϕn) converges in probability. The limit is denoted by L̇(ϕ) and has the
following properties. As they can be proven directly from the preceding construction, we list
them below without proof.

Proposition 2.5. Let B denote the algebra of all non-random, bounded, compactly supported
measurable functions from RN to R. Then, there is an ‘iso-Lévy’ process {L̇(ϕ)}ϕ∈B with the
following properties:
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(i) E[exp{iξ · L̇(ϕ)}] = exp(− ∫
RN �(ϕ(t)ξ)dt) for all ξ ∈ Rd and ϕ ∈ B;

(ii) if ϕ1, ϕ2 ∈ B, then L̇(ϕ1 + ϕ2) = L̇(ϕ1) + L̇(ϕ2) a.s.;
(iii) if a ∈ R and ϕ ∈ B, then L̇(aϕ) = aL̇(ϕ) a.s.

That is, L̇ defines a random linear functional, in the sense of Minlos [26,27]. Alternatively,
one might write

∫
ϕ dL in place of L̇(ϕ).

3. The image of a Lévy sheet

Theorem 1.2 is a consequence of the more general results of this section. Before we describe
them, we need to introduce some notation.

Throughout the rest of the paper, {L(t); t ∈ RN+} denotes a d-dimensional N -parameter Lévy
sheet whose Lévy exponent � satisfies the symmetry condition A1 and whose gauge function �

satisfies the regularity conditions A2 and A3. Occasionally, we need the corresponding Lévy
noise, which we denote by L̇. Note that the Lévy sheet that arises from the SPDE (1.1) is one
such random field with N = 2.

We assume that the underlying sample space � is the collection of all (N -parameter) cadlag
functions ω : RN+ 
→ Rd . That is, ω ∈ � if and only if:

1. for any net of elements {tα}α∈R in RN+ such that tα 
 tβ whenever α ≤ β , and tα converges
to some t ∈ RN+ as α → ∞, we have limα→∞ ω(tα) = ω(t);

2. for any net of elements {tα}α∈R in RN+ such that tα 
 tβ whenever α ≥ β , it is the case that
limα→∞ ω(tα) exists.

We say that the Lévy process L is in canonical form if

L(t)(ω) = ω(t) for all ω ∈ � and t ∈ RN+ . (3.1)

Throughout, we will assume that our Lévy process L is in canonical form under a fixed prob-
ability measure P. This assumption is made tacitly and does not incur any loss of generality.

Define Px to be the law of the process x +L for every x ∈ Rd . That is, for every Borel subset A

of �,

Px{ω ∈ � :ω ∈ A} = P{ω ∈ � :x + ω ∈ A}. (3.2)

Let Ex denote the corresponding expectation operator. We will be primarily interested in the
σ -finite (but infinite) measure

Pλd
(•) :=

∫
Rd

Px(•)dx. (3.3)

We will write Eλd
for the corresponding ‘expectation operator’. That is,

Eλd
(Z) :=

∫
�

Z(ω)Pλd
(dω) =

∫
Rd

Ex(Z)dx for all Z ∈ L1(Pλd
). (3.4)
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Let P (G) denote the collection of all probability measures on any Euclidean set G and define,
for all μ ∈ P (RN+),

I(μ) :=
∫ ∫

�(‖s − t‖)μ(dt)μ(ds). (3.5)

For all compact sets G ⊂ RN+ , we also consider the capacity of G,

Cap(G) :=
[

inf
μ∈P (G)

I(μ)

]−1

, (3.6)

where inf∅ := ∞ and 1/∞ := 0. Let L(G) := ⋃
t∈G{L(t)} denote the range of G under the

random map t 
→ L(t). The following is the main result of this section.

Theorem 3.1. Let G be a non-random compact subset of (0,∞)N . There then exists a positive
and finite constant c = c(G) such that

c−1 Cap(G) ≤ Pλd
{0 ∈ L(G)} = E[λd(L(G))] ≤ c Cap(G). (3.7)

Moreover, c depends on G only through infx∈G |x| and supx∈G |x|.

As a consequence of this theorem and Theorem 5.1 of Khoshnevisan and Xiao [23], we have
the following equivalence theorem between the Lévy sheets of this paper and their associated
additive Lévy processes.

Corollary 3.2. Let {X(t); t ∈ RN+} denote the additive Lévy process associated to L. Then, for
all non-random compact sets G in RN+ , there exists a positive and finite constant c = c(G) such
that

c−1E[λd(X(G))] ≤ E[λd(L(G))] ≤ cE[λd(X(G))]. (3.8)

Moreover, c depends only on G through infx∈G |x| and supx∈G |x|.

Example 3.3. Suppose L is an isotropic α-stable Lévy sheet. Then, we can either calculate
directly, or apply the preceding together with Corollary 5.4 of Khoshnevisan and Xiao [23], to
find that

E[λd(L(G))] > 0 ⇔ Cap(G) > 0 ⇔ Cd/α(G) > 0, (3.9)

where Cβ denotes the standard β-dimensional Riesz capacity; see [21], Appendix D. �

Example 3.4. Suppose L is a Lévy sheet with stable components of index (α1, . . . , αd) ∈ [0,2)d .
Then,

E[λd(L(G))] > 0 ⇔ Cap(G) > 0 ⇔ C∑d
j=1(1/αj )

(G) > 0, (3.10)

where Cβ is as in the previous example.
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Our proof of Theorem 3.1 proceeds by first establishing an elementary lemma.

Lemma 3.5. For all f ∈ L1(Rd) and t ∈ RN+ ,

Eλd
[f (L(t))] =

∫
Rd

f (x)dx. (3.11)

Proof. Because f is measurable and integrable, Fubini’s theorem applies and we have

Eλd
[f (L(t))] = E

[∫
Rd

f
(
x + L(t)

)
dx

]
, (3.12)

this being manifestly equal to
∫

Rd f (x)dx. �

The next lemma is nearly as simple, but particularly useful to us.

Lemma 3.6. If f and g are two probability densities on Rd such that f̂ , ĝ ∈ L1(Rd), then

Eλd
[f (L(t))g(L(s))] = 1

(2π)d

∫
Rd

e−	(s,t)�(ξ)ĝ(ξ)f̂ (ξ)dξ, (3.13)

where 	 is the symmetric function

	(s, t) := λN([0, s]�[0, t]) for all s, t ∈ RN+ . (3.14)

Proof. We write

Eλd
[f (L(t))g(L(s))] = E

[∫
Rd

f
(
x + L(t)

)
g
(
x + L(s)

)
dx

]

=
∫

Rd

f (y)E
[
g
(
y + L(s) − L(t)

)]
dy (3.15)

=
∫

Rd

f (y)

∫
Rd

g(y − z)μs,t (dz)dy,

where μs,t denotes the distribution of L(t)−L(s). By the inversion theorem of Fourier analysis,

Eλd
[f (L(s))g(L(t))] = 1

(2π)d

∫
Rd

dy f (y)

∫
Rd

μs,t (dz)

∫
Rd

e−i(y−z)·ξ ĝ(ξ)dξ

(3.16)

= 1

(2π)d

∫
Rd

μ̂s,t (ξ)ĝ(ξ)f̂ (ξ)dξ.

In order to compute the Fourier transform of μs,t , we first note that

L(t) − L(s) = L̇([0, t]) − L̇([0, s])
(3.17)

= L̇([0, t] \ [0, s]) − L̇([0, s] \ [0, t]).
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The last two random variables are independent of one another. Moreover, by symmetry,
−L̇([0, s] \ [0, t]) has the same distribution as L̇([0, s] \ [0, t]). Therefore, L(t) − L(s)

has the same distribution as L̇([0, s]�[0, t]). From this and (2.1), it follows that μ̂s,t (ξ) =
exp(−	(s, t)�(ξ)). We plug this into (3.16) in order to conclude the proof. �

Next, we recall a well-known estimate for the function 	 that was defined in (3.14); see [21],
Lemma 1.3.1, page 460, for a proof.

Lemma 3.7. If u 
 v are in (0,∞)N , then there exist positive and finite constants a and b such
that

a‖s − t‖ ≤ 	(s, t) ≤ b‖s − t‖ for all s, t ∈ [u,v]. (3.18)

Lemma 3.8. If G ⊂ RN+ is compact and non-random, then

Pλd
{0 ∈ L(G)} ≥ const · Cap(G). (3.19)

Moreover, the constant depends on G only through infx∈G |x| and supx∈G |x|.

Proof. Without loss of generality, we assume that Cap(G) > 0; otherwise there is nothing to
prove. In that case, there exists μ ∈ P (G) such that

I(μ) ≤ 2

Cap(G)
< ∞. (3.20)

We choose and fix this μ throughout.
For all probability density functions f on Rd , define the random variable

J (f ;μ) :=
∫

RN+
f (L(t))μ(dt). (3.21)

By Lemma 3.5, Eλd
[J (f ;μ)] = 1. On the other hand, by Lemma 3.6,

Eλd
(|J (f ;μ)|2) = 1

(2π)d

∫ ∫
(RN+ )2

μ(ds)μ(dt)

∫
Rd

e−	(s,t)�(ξ)|f̂ (ξ)|2 dξ

(3.22)

≤ 1

(2π)d

∫ ∫
(RN+ )2

μ(ds)μ(dt)

∫
Rd

e−	(s,t)�(ξ) dξ.

We now apply Lemma 3.7 to see that there exists a positive and finite constant a – depending on
G only through infx∈G |x| and supx∈G |x| – such that

Eλd
(|J (f ;μ)|2) ≤ 1

(2π)d

∫ ∫
�(a‖s − t‖)μ(ds)μ(dt)

(3.23)

≤ AaI(μ) ≤ 2Aa

Cap(G)
.
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The second bound follows from A3 and the third from (3.20).
By the Paley–Zygmund inequality, [21], Lemma 1.4.1, Chapter 3, can be applied to the σ -finite

measure Pλd
and this implies that

Pλd
{J (f ;μ) > 0} ≥ |(Eλd

[J (f ;μ)]|2
Eλd

(|J (f ;μ)|2) ≥ Cap(G)

2Aa

. (3.24)

Let f be a probability density function on B(0;1), where B(x; r) denotes the open (Euclid-
ean) ball of radius r > 0 centered at x ∈ Rd . For all δ > 0, define fδ(x) := δ−df (x/δ) as x

varies over Rd . Note that fδ is a probability density on B(0; δ). Furthermore, if ω is such that
J (fδ;μ)(ω) > 0, then there exists t ∈ G such that L(t)(ω) ∈ B(0; δ). Hence, it follows that

Pλd
{L(G) ∩ B(0; δ) �= ∅} ≥ Cap(G)

2Aa

. (3.25)

From here, we can deduce the lemma by letting δ tend to zero. �

For all t ∈ RN+ , we denote by F 0(t) the σ -algebra generated by {L(s); s 
 t}. Let F 1(t)

denote the completion of F 0(t) with respect to Px for all x ∈ Rd . Finally, define

F (t) :=
⋂
u�t

F 1(u). (3.26)

In the language of the general theory of random fields, F := {F (t); t ∈ RN+} is the augmented
N -parameter filtration of L.

The following is an analogue of the ‘Markov property’ in the present setting.

Proposition 3.9. If s 
 t are in RN+ , then for all measurable functions f : Rd 
→ R+,

Eλd
[f (L(t))|F (s)] = (T L

s,tf )(L(s)), (3.27)

where

(T L
s,tf )(y) := E

[
f

(
L(t) − L(s) + y

)]
for all y ∈ RN+ . (3.28)

Proof. Consider measurable functions f,g,h1, . . . , hm : Rd 
→ R+ and times t, s, s1, . . . , sm ∈
RN+ such that t � s � sj , for all j = 1, . . . ,m. Because L̇(A) and L̇(B) are independent when
A ∩ B = ∅,

Eλd

[
f (L(t)) · g(L(s)) ·

m∏
j=1

hj (L(sj ))

]

=
∫

Rd

E

[
f

(
L(t) + x

) · g(
L(s) + x

) ·
m∏

j=1

hj

(
L(sj ) + x

)]
dx (3.29)
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=
∫

Rd

E
[
f

(
L(t) − L(s) + y

)]
E

[
m∏

j=1

hj

(
L(sj ) − L(s) + y

)]
g(y)dy.

Set f = h1 = · · · = hm ≡ 1 to see that Pλd
{L(s) ∈ •} = λd(•), and the desired result follows. �

The next result is Cairoli’s maximal inequality. This inequality is proved as a consequence of
the commuting property of the N -parameter filtration F .

Proposition 3.10. For all Y ∈ L2(Pλd
), there exists a modification of t 
→ Eλd

[Y |F (t)] that is
right-continuous in every variable, uniformly in the remaining N − 1 variables, and satisfies

Eλd

(
sup
t∈RN+

|Eλd
[Y |F (t)]|2

)
≤ 4N Eλd

[Y 2]. (3.30)

Remark 3.11. It might help to recall that a function F : RN+ → R is right-continuous in each
variable, uniformly in all its other variables, if and only if for all j = 1, . . . ,N and tj ∈ R+,

lim
sj ↓tj

sup |F(s) − F(t)| = 0, (3.31)

where the supremum is taken over all si = ti ∈ R+ (1 ≤ i �= j ≤ N ).

Proof of Proposition 3.10. When L is the Brownian sheet and the infinite measure Pλd
is re-

placed by the probability measure P, this result follows from Cairoli’s maximal inequality and
the Cairoli–Walsh commutation theorem; see Chapter 7 of Khoshnevisan [21], Section 2.

In order to prove the present form of the proposition, we need to replace the Gaussian Brown-
ian sheet with the more general random field L and, more significantly, P with Pλd

. Fortunately,
none of this requires us to introduce too many new ideas. Therefore, we merely outline the req-
uisite changes in the existing theory to accomodate the present formulation of this proposition.

We appeal to a close analogy with the usual N -parameter theory of processes and say that F
is a commuting N -parameter filtration with respect to Pλd

if for all s, t ∈ RN+ and every F (s)-
measurable random variable Y ∈ L2(Pλd

),

Eλd
[Y |F (t)] = Eλd

[Y |F (s ∧ t)], (3.32)

off a Pλd
-null set. In the case that N = 2 and Pλd

is replaced by P, (3.32) essentially reduces
to hypothesis (F4) of Cairoli and Walsh [5]. The general case [P] is studied – using the same
methods as Cairoli and Walsh – in Chapter 7 of Khoshnevisan [21], Section 2.1, among other
places. The same methods also prove (3.32) for Pλd

. We will not reproduce these steps, as they
are standard.

It is known that (3.32) implies the ‘Cairoli maximal inequality’ announced in the statement
of the proposition. In the case that Pλd

is replaced everywhere by P, this is covered by Theorem
2.3.2 of [21], page 235. One adapts the proof so that the result continues to holds for Pλd

. This
proves the proposition. �
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Lemma 3.12. If G is a non-random compact set in RN+ , then

Pλd
{0 ∈ L(G)} ≤ const · Cap(G). (3.33)

Moreover, the constant depends on G only through the quantities supx∈G |x| and infx∈G |x|.
Proof. Without loss of generality, we may assume that

Pλd
{0 ∈ L(G)} > 0. (3.34)

Otherwise, there is nothing to prove.
Let f be a probability density on Rd and consider an arbitrary μ ∈ P (G). In accordance with

Proposition 3.9, for all s ∈ G,

Eλd
[J (f ;μ)|F (s)] ≥

∫
t�s

(T L
s,tf )(L(s))μ(dt) Pλd

-a.s., (3.35)

where J (f ;μ) is defined in (3.21). The two sides of (3.35) are right-continuous in s, both coordi-
natewise; see Dalang and Walsh [11], and also Ehm [14]. Therefore, for all probability densities
f on Rd such that f̂ ∈ L1(Rd), and for all μ ∈ P (G), the following statement holds.

There exists one null set off which (3.35) holds for all s ∈ G. (3.36)

Path regularity of L implies the existence of a random variable σ with values in G ∪ {ρ} –
where ρ is an abstract ‘cemetery’ point not in G – which has the following properties:

1. σ = ρ if and only if L(s) �= 0 for every s ∈ G;
2. L(σ) = 0 on {σ �= ρ}.
For all integers k ≥ 1 and all Borel sets E ⊂ RN+ , define

μk(E) := Pλd
{σ ∈ E,σ �= ρ, |L(0)| ≤ k}
Pλd

{σ �= ρ, |L(0)| ≤ k} . (3.37)

Thanks to (3.34) and the monotone convergence theorem,

lim
k→∞ Pλd

{σ �= ρ, |L(0)| ≤ k} = Pλd
{0 ∈ L(G)} > 0. (3.38)

Therefore, there exists k0 > 0 such that μk is well defined for all k ≥ k0. In fact, μk is a proba-
bility measure on G, provided that k ≥ k0.

Define, for all k ≥ k0 and all probability densities f on Rd ,

Qk(f ) := sup
u∈G

Eλd
[J (f ;μk)|F (u)]. (3.39)

Then, thanks to (3.35) and (3.36), and because L(σ) = 0 a.s. on {σ �= ρ},
Qk(f ) ≥ Eλd

[J (f ;μk)|F (s)]|s=σ · 1{σ �=ρ}
(3.40)

≥ 1{σ �=ρ,|L(0)|≤k} ·
∫

t�σ

(T L
σ,tf )(0)μk(dt) Pλd

-a.s.,
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provided that f̂ ∈ L1(Rd). (Specifically, (3.36) ensures that we can apply (3.35) with the choice
s := σ(ω) for every ω such that σ(ω) �= ρ.) We can square both sides and integrate [Pλd

] to find
that

Eλd
(|Qk(f )|2)

(3.41)

≥ Pλd
{σ �= ρ, |L(0)| ≤ k} ·

∫
RN+

(∫
t�s

(T L
s,tf )(0)μk(dt)

)2

μk(ds).

Since μk is a probability measure on G [k ≥ k0], the Cauchy–Schwarz inequality implies that

Eλd
(|Qk(f )|2) ≥ �2Pλd

{σ �= ρ, |L(0)| ≤ k}, (3.42)

where

� :=
∫

RN+

∫
t�s

(T L
s,tf )(0)μk(dt)μk(ds). (3.43)

Suppose also that f̂ (ξ) ≥ 0 for all ξ ∈ Rd . Because f, f̂ ∈ L1(Rd), we can apply the inversion
theorem to f – in the same manner as in the proof of Lemma 3.6 – to find that for all s, t ∈ G

with s 
 t ,

(T L
s,tf )(0) = 1

(2π)d

∫
Rd

e−	(s,t)�(ξ)f̂ (ξ)dξ

(3.44)

≥ 1

(2π)d

∫
Rd

e−b‖s−t‖�(ξ)f̂ (ξ)dξ.

Here, b is a positive and finite constant that depends only on the distance between G and the axes
of RN+ , as well as supx∈G |x|; see Lemma 3.7. Consequently,

� ≥ 1

2N(2π)d

∫ ∫
(RN+ )2

μk(ds)μk(dt)

∫
Rd

e−b‖s−t‖�(ξ)f̂ (ξ)dξ. (3.45)

According to A3, b�(ξ) ≤ �(ξ/A1/b). Therefore, the preceding implies that

� ≥ Ad
1/b

2N(2π)d

∫ ∫
(RN+ )2

μk(ds)μk(dt)

∫
Rd

e−‖s−t‖�(ξ)f̂ (ξA1/b)dξ. (3.46)

Now, thanks to Proposition 3.10 and (3.22),

Eλd
(|Qk(f )|2) ≤ 4NEλd

(|J (f ;μk)|2)

≤ 4N

(2π)d

∫ ∫
(RN+ )2

μk(ds)μk(dt)

∫
Rd

e−	(s,t)�(ξ)|f̂ (ξ)|2 dξ.
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Therefore, Lemma 3.7 implies that there exists a positive and finite constant a that depends only
on the distance between G and the axes of RN+ , as well as supx∈G |x|, such that

Eλd
(|Qk(f )|2) ≤ 4N

(2π)d

∫ ∫
(RN+ )2

μk(ds)μk(dt)

∫
Rd

e−a‖s−t‖�(ξ)|f̂ (ξ)|2 dξ

≤ 4N

(2π)dAd
a

∫ ∫
(RN+ )2

μk(ds)μk(dt)

∫
Rd

e−‖s−t‖�(ξ)|f̂ (ξ/Aa)|2 dξ ;

see A3 for the last inequality. This, (3.42) and (3.46) together imply that

c

∫ ∫
(RN+ )2

μk(ds)μk(dt)

∫
Rd

e−‖s−t‖�(ξ)|f̂ (ξ/Aa)|2 dξ

≥
(∫ ∫

(RN+ )2
μk(ds)μk(dt)

∫
Rd

e−‖s−t‖�(ξ)f̂ (ξA1/b)dξ

)2

(3.47)

× Pλd
{σ �= ρ, |L(0)| ≤ k},

where c := 16N(2π)d/(AaA
2
1/b)

d .

The preceding is valid for every probability density f on Rd whose Fourier transform is in-
tegrable and nonnegative. We now make a particular choice of f . Namely, we replace f by fη,
where fη(x) := η−dg(x/η), for η > 0, and g is the density function of an isotropic stable random
variable of index α ∈ (0,2] satisfying

1

α
≥ log2(AaA1/b). (3.48)

Note that ĝ(ξ) = exp(−‖ξ‖α) for all ξ ∈ Rd . Hence, as f̂η(ξ) = exp(−ηα‖ξ‖α) for all ξ ∈ Rd ,
we have

|f̂η(ξ/Aa)|2 = exp

(
−2ηα‖ξ‖α

Aα
a

)
≤ exp(−ηα‖ξ‖αAα

1/b) = f̂η(ξA1/b). (3.49)

Thus, we find that

Pλd
{σ �= ρ, |L(0)| ≤ k}

(3.50)

≤ c

[∫ ∫
‖s−t‖≥θ

μk(ds)μk(dt)

∫
Rd

e−‖s−t‖�(ξ) exp

(
−2ηα‖ξ‖α

Aα
a

)
dξ

]−1

,

where θ > 0 is an arbitrary parameter. Consequently, for all k ≥ k0,

Pλd
{0 ∈ L(G), |L(0)| ≤ k}

(3.51)

≤ c̃

[∫ ∫
‖s−t‖≥θ

�(‖s − t‖)μk(ds)μk(dt)

]−1

.
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We may observe that {μk}k≥k0 is a collection of probability measures, all of which are supported
on the same compact set G. Therefore, by Prohorov’s theorem, we can extract a subsequence of
k’s along which μk converges weakly to some μ∗ ∈ P (G). Because � is uniformly continuous
on [θ,∞), it follows that

lim inf
k→∞ Pλd

{0 ∈ L(G), |L(0)| ≤ k}
(3.52)

≤ c̃

[∫ ∫
‖s−t‖≥θ

�(‖s − t‖)μ∗(ds)μ∗(dt)

]−1

.

By the monotone convergence theorem, the left-hand side is precisely Pλd
{0 ∈ L(G)}. Finally, let

θ ↓ 0 and appeal to the monotone convergence theorem once again to find that Pλd
{0 ∈ L(G)} ≤

c̃/I(μ∗). This is at most c̃ Cap(G) by the definition of Cap(G). This concludes the proof. �

We conclude this section by proving Theorem 3.1.

Proof of Theorem 3.1. First note that

Pλd
{0 ∈ L(G)} =

∫
Rd

P{−x ∈ L(G)}dx

(3.53)
= E[λd(L(G))].

This proves the identity in Theorem 3.1. Moreover, Lemma 3.12 proves that the preceding is at
most c Cap(G), whence follows the upper bound of the theorem.

Similarly,

Pλd
{0 ∈ L(G)} = E[λd(L(G))]. (3.54)

But the set-difference between L(G) and its Euclidean closure is a denumerable union of sets,
each of which is at most (d − 1)-dimensional. See Dalang and Walsh [11], Proposition 2.1, for
the case N = 2; the general case is proved similarly. It follows that

E[λd(L(G) \ L(G))] = 0. (3.55)

Thus,

Pλd
{0 ∈ L(G)} = E[λd(L(G))]

= E[λd(L(G))] (3.56)

= Pλd
{0 ∈ L(G)}.

Apply Lemma 3.8 to complete the proof. �
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4. A perturbed random field

Let X be a d-dimensional N -parameter additive Lévy process with Lévy exponent ν� , where
ν ∈ (0,∞) is fixed. We also assume that X is independent of L. Define

F(t) := L(t) + X(t) for all t ∈ RN+ . (4.1)

The following proves that the contents of Theorem 3.1 remain unchanged if L is replaced by the
perturbed random field F .

Theorem 4.1. Let G denote a non-random compact subset of (0,∞)N . There then exists a pos-
itive and finite constant c = c(G,ν) such that

c−1 Cap(G) ≤ Pλd
{0 ∈ F(G)} = E[λd(F (G))] ≤ c Cap(G). (4.2)

Moreover, c depends on G only through infx∈G |x| and supx∈G |x|.

Proof. Write Pz for the law of z + F , and Pλd
:= ∫

Rd Pz dz, as before. Also, Eλd
denotes the

corresponding expectation operator. As in Lemma 3.5, if f ∈ L1(Rd) and t ∈ RN+ , then

Eλd
[f (F (t))] =

∫
Rd

f (x)dx. (4.3)

Also, the proof of Lemma 3.6 implies that if f and g are two probability densities on Rd such
that f̂ , ĝ ∈ L1(Rd), then for all s, t ∈ RN+ ,

Eλd
[f (F (t))g(F (s))] = 1

(2π)d

∫
Rd

e−(	(s,t)+c
∑N

j=1 |tj −sj |)�(ξ)
ĝ(ξ)f̂ (ξ)dξ. (4.4)

Finally, as in Proposition 3.9, we have

Eλd
[f (F (t))|F (s)] = (T F

s,tf )(F (s)), (4.5)

valid for all s, t ∈ RN+ and all measurable functions f : Rd → R+. Here,

(T F
s,tf )(y) := E

[
f

(
F(t) + y

)]
for all s, t ∈ RN+ , y ∈ Rd, (4.6)

and F denotes now the filtration of F . As the filtration of X is also commuting [23], Lemma 4.2
and its proof, the remainder of the proof of Theorem 3.1 goes through in the present case without
any drastic changes. �

5. Polar sets for the level sets

The aim of this section is to compute the Hausdorff dimension of the zero set L−1{0} of an N -
parameter, d-dimensional Lévy sheet L, provided that Conditions A1, A2 and A3 are assumed
throughout.
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Recall that a non-random set G is polar for a random set S if P{S ∩ G �= ∅} = 0. We begin by
describing all sets that are polar for the level sets of the random field L and its perturbation F .

Theorem 5.1. Let G be a non-random compact subset of (0,∞)N . The following are then equiv-
alent:

(1) P{L−1{0} ∩ G �= ∅} > 0;
(2) P{F−1{0} ∩ G �= ∅} > 0;
(3) Cap(G) > 0.

We can apply the preceding, together with Corollary 2.13 of Khoshnevisan and Xiao [23], in
order to deduce the following equivalence theorem between the Lévy sheets of this paper and
their associated additive Lévy processes.

Corollary 5.2. Let {X(t)}t∈RN+ denote the additive Lévy process associated to L. Then, for all

non-random compact sets G in (0,∞)N , there exists a positive and finite constant c such that

c−1P{X−1{0} ∩ G �= ∅} ≤ P{L−1{0} ∩ G �= ∅} ≤ cP{X−1{0} ∩ G �= ∅}.

Moreover, c depends on G only through infx∈G |x| and supx∈G |x|.

Proof of Theorem 5.1. There exists α > 0 such that G ⊆ (α,1/α)N . Therefore, if t ∈ G, then
Px -a.s. for all x ∈ Rd ,

L(t) = L(a) + L̇([0, t] \ [0, a]), (5.1)

where a := (α, . . . , α) ∈ (0,∞)N and the two terms on the right-hand side describe independent
random fields. We can decompose the rightmost term as

L̇([0, t] \ [0, a]) =
N∑

j=1

Lj
(
πj (t − a)

) + L̃(t − a), (5.2)

where:

(1) L1, . . . ,LN, L̃ are totally independent d-dimensional random fields;
(2) each Lj is an (N − 1)-parameter Lévy sheet with Lévy exponent �;
(3) L̃ is an N -parameter Lévy sheet with Lévy exponent �;
(4) πj maps t ∈ RN+ to πj t ∈ RN−1+ , which is the same vector as t , but with tj removed.

This identity is valid Px -a.s. for all x ∈ Rd . But, because we can choose path-regular versions of
L1, . . . ,LN and L̃, it follows that Px -a.s. for all x ∈ Rd ,

L(t) = L(a) +
N∑

j=1

Lj
(
πj (t − a)

) + L̃(t − a) for all t ∈ G. (5.3)
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Moreover, the N + 2 processes on the right-hand side (viewed as random fields indexed by t ) are
totally independent under Px for all x ∈ Rd . Note that

P{L−1{0} ∩ G �= ∅}
= P{∃t ∈ G :L(t) = 0}

(5.4)

=
∫

Rd

P

{
∃t ∈ G :

N∑
j=1

Lj
(
πj (t − a)

) + L̃(t − a) = −x

}
P{L(a) ∈ dx}

=
∫

Rd

P

{
∃t ∈ G :

N∑
j=1

Lj
(
πj (t − a)

) + L(t − a) = −x

}
P{L(a) ∈ dx}.

Thanks to (1.5) and the inversion theorem,

P{L(a) ∈ dx}
dx

= 1

(2π)d

∫
Rd

exp
(−ix · ξ − αN�(ξ)

)
dξ (5.5)

and this is bounded above, uniformly for all x ∈ Rd , by the positive and finite constant c :=
c(α) := (2π)−d

∫
Rd exp(−αN�(ξ))dξ . Consequently,

P{L−1{0} ∩ G �= ∅}

≤ c

∫
Rd

P

{
∃t ∈ G :

N∑
j=1

Lj
(
πj (t − a)

) + L(t − a) = −x

}
dx (5.6)

= cE[λd(W(G � {a}))],
where W := ∑N

j=1(L
j ◦ πj ) + L and G � {a} := {t − a; t ∈ G}. Because G � {a} is a non-

random compact subset of (0,∞)N , one can prove – in exactly the same manner that we proved
Theorem 4.1 – that E[λd(W(G�{a}))] ≤ const ·Cap(G�{a}), where the constant depends only
on G and α. We omit the details. Because I(μ) is convolution-based, G 
→ Cap(G) is translation
invariant, whence we have Cap(G � {a}) = Cap(G). This proves that (1) implies (3).

Next, we prove that (3) implies (1). As above, let α > 0 be such that G ⊂ (α,1/α)N . For any
ε > 0 and μ ∈ P (RN+), we define a random measure on RN+ by

Jε(B) = 1

(2ε)d

∫
B

1B(0,ε)(L(t))μ(dt) for all Borel sets B ⊂ RN+ . (5.7)

We shall need the following two lemmas.

Lemma 5.3. For every μ ∈ P (G), lim infε→0+ E[Jε(G)] > 0.

Proof. By Fatou’s lemma,

lim inf
ε→0+ E[Jε(G)] = lim inf

ε→0+

∫
G

P{|L(t)| ≤ ε}
(2ε)d

μ(dt)
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(5.8)

≥
∫

G

p(t)μ(dt),

where p(t) denotes the density function of L(t) at zero. By the inversion theorem, p(t) =
�(

∏N
j=1 tj ) and this is strictly positive uniformly for all t ∈ G. This implies the desired result. �

Lemma 5.4. Let K : RN+ ×RN+ 
→ R+ be a measurable function. There then exists a finite positive
constant c, depending only on G, such that for every μ ∈ P (G) and all ε > 0,

E

[∫ ∫
G×G

K(s, t)Jε(ds)Jε(dt)

]
≤ c

∫ ∫
G×G

K(s, t)�(‖s − t‖)μ(dt)μ(ds).

In particular,

E(|Jε(G)|2) ≤ cI(μ). (5.9)

Proof. By Fubini’s theorem,

E

[∫ ∫
G×G

K(s, t)Jε(ds)Jε(dt)

]
(5.10)

= 1

(2ε)2d

∫ ∫
G×G

K(s, t)P{|L(s)| ≤ ε, |L(t)| ≤ ε}μ(dt)μ(ds).

We define

N1(s, t) := L(s) − L(s ∧ t),
(5.11)

N2(s, t) := L(t) − L(s ∧ t).

Clearly,

P{|L(s)| ≤ ε, |L(t)| ≤ ε} ≤ P{|L(s ∧ t) + N1(s, t)| ≤ ε, |L(t) − L(s)| ≤ 2ε}.
Note that L(s ∧ t), N1(s, t) and N2(s, t) are mutually independent; this follows immediately by
considering the representation of L via L̇. Thus,

P{|L(s)| ≤ ε, |L(t)| ≤ ε} ≤ sup
x∈Rd

Px{|L(s ∧ t)| ≤ ε} × P{|L(t) − L(s)| ≤ 2ε}.

Because of symmetry, L(s ∧ t) is a 16d -weakly unimodal random vector [23], Corollary 2.2.
That is,

sup
x∈Rd

Px{|L(s ∧ t)| ≤ ε} ≤ 16dP{|L(s ∧ t)| ≤ ε}. (5.12)

But, if s, t ∈ G, then s ∧ t is also in [α,1/α]N . Hence, by (5.5), the density of L(s ∧ t) is bounded,
uniformly in s and t in G. Consequently, we can find a positive and finite constant c2 = c2(α)
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such that

sup
x∈Rd

Px{|L(s ∧ t)| ≤ ε} ≤ c2(2ε)d for all ε > 0, s, t ∈ G. (5.13)

Consequently,

E

[∫ ∫
G×G

K(s, t)Jε(ds)Jε(dt)

]
≤ c3

∫ ∫
G×G

K(s, t)p(s, t)μ(dt)μ(ds),

where p(s, t) is the density of L(t) − L(s) at zero. By the inversion theorem,

p(s, t) = 1

(2π)d

∫
Rd

e−	(s,t)�(ξ) dξ

(5.14)

≤ 1

(2π)d

∫
Rd

e−a‖s−t‖�(ξ) dξ,

where a ∈ (0,∞) depends only on G; see Lemma 3.7. Thanks to A3, we can write

p(s, t) ≤ 1

(2π)d

∫
Rd

e−‖s−t‖�(Aaξ) dξ

(5.15)

= 1

Ad
a

�(‖t − s‖),

and this concludes the proof. �

Let us now continue the proof that (3) implies (1). Note that (3) implies the existence of
μ ∈ P (G) such that I(μ) < ∞. There then exists a continuous function ρ : RN 
→ [1,∞) such
that lims 
→s0 ρ(s) = ∞ for every s0 ∈ RN with at least one coordinate equalling 0 and such that∫ ∫

G×G

ρ(s − t)�(‖s − t‖)μ(dt)μ(ds) < ∞; (5.16)

see Khoshnevisan and Xiao [22], page 73, for a construction of ρ.
Consider now the sequence of random measures {Jε}ε>0. It follows from Lemmas 5.3, 5.4 and

a second-moment argument that we can extract a subsequence {Jεn}n∈N – converging weakly to
a random measure J – such that

P{J(G) > 0} ≥ (inf0<ε<1 E[Jε(G)])2

supε>0 E(|Jε(G)|2) > 0; (5.17)

see Khoshnevisan and Xiao [22], proof of Lemma 3.6, and Khoshnevisan, Xiao and Shieh [25],
page 26. Moreover,∫ ∫

G×G

ρ(s − t)J(dt)J(ds) ≤ c

∫ ∫
G×G

ρ(s − t)�(‖s − t‖)μ(dt)μ(ds). (5.18)
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This and (5.16) together imply that a.s.,

J{s ∈ G : sj = a for some j} = 0 for all a ∈ R+. (5.19)

In order to deduce (1), it suffices to prove that the random measure J is supported on L−1{0}∪
G. For this purpose, it suffices to prove that for every δ > 0, J(D(δ)) = 0 a.s., where D(δ) :=
{s ∈ G : |L(s)| > δ}. Because of (5.19), the proof of this fact follows exactly the arguments of
Khoshnevisan and Xiao [22], page 76.

The equivalence of (2) and (3) is proved in exactly the same way and is therefore omitted. �

Next, we derive our first dimension result.

Theorem 5.5. Let G be a non-random compact subset of RN+ . Then, almost surely on {L−1{0} ∩
G �= ∅},

dimH(L−1{0} ∩ G) = sup
{
q ∈ (0,N) : I(q)(μ) < ∞ for some μ ∈ P (G)

}
,

where

I(q)(μ) :=
∫ ∫

�(‖t − s‖)
‖t − s‖q

μ(ds)μ(dt). (5.20)

Corollary 5.6. Almost surely on {L−1{0} �= ∅}, dimH L−1{0} = N − ind�.

Example 5.7. If L is an isotropic stable Lévy sheet of index α ∈ (0,2], then we can com-
bine Corollary 5.6 with Example 3.5 of Khoshnevisan, Xiao and Shieh [25] to find that a.s. on
{L−1{0} ∩ G �= ∅},

dimH(L−1{0} ∩ G) = dimH G − d

α
. (5.21)

Also, dimH L−1{0} = N − (d/α) a.s. on {L−1{0} �= ∅}. This last fact was first proven in [14].

It is not easy to produce a direct proof of Theorem 5.5. Therefore, we instead use a ‘comparison
principle’ to deduce the theorem from an analogous (known) result on the associated additive
Lévy process.

Proof of Theorem 5.5. Let X denote the additive Lévy process associated to L and choose and
fix an integer M ≥ 1 and a real number α ∈ (0,2]. Consider M independent isotropic stable Lévy
processes of index α, S1, . . . , SM , all taking values in RN . We assume that {S1, . . . , SM,L,X}
are independent. Consider the M-parameter, N -valued additive stable Lévy process,

S(u) := S1(u1) + · · · + SM(uM) for all u ∈ RM+ . (5.22)

Suppose N > αM . Then, by Propositions 4.7 and 4.8 of Khoshnevisan, Shieh and Xiao [25],
we deduce that

P
{
X−1{0} ∩ G ∩ S(RM+ ) = ∅

}
> 0 ⇔ inf

μ∈P (G)
I(N−αM)(μ) < ∞. (5.23)
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A standard approximation argument can be used in conjunction with Theorem 5.1 to deduce
that for all non-random analytic sets F ⊂ RN+ ,

P
{
X−1{0} ∩ F = ∅

}
> 0 ⇔ P

{
L−1{0} ∩ F = ∅

}
> 0. (5.24)

Thanks to the independence properties of S, we can apply the preceding with F := G ∩ S(RM+ )

(first condition on S and then take expectations). Consequently, (5.23) implies that

P
{
L−1{0} ∩ G ∩ S(RM+ ) = ∅

}
> 0 ⇔ inf

μ∈P (G)
I(N−αM)(μ) < ∞. (5.25)

The rest proof of the proof of Theorem 5.5 now follows exactly as the proof of Theorem 3.2 of
Khoshnevisan and Xiao [23] and is therefore omitted. �

We use a similar comparison principle to deduce Corollary 5.6.

Proof of Corollary 5.6. Let X denote the additive Lévy process associated to L and assume that
L and X are independent. Thanks to Theorem 5.5, and Theorem 3.2 of Khoshnevisan and Xiao
[25], the following holds with probability one:

dimH(L−1{0} ∩ G)1{L−1{0}∩G�=∅} = dimH(X−1{0} ∩ G)1{X−1{0}∩G�=∅}.

Now, consider a non-random upright cube G ⊂ (0,∞)N , that is, a closed set G of the form
G = ∏N

i=1[ai, bi]. The proof of Theorem 1.1 of [25] then states that dimH(X−1{0} ∩ G) = N −
ind� almost surely on {X−1{0} ∩ G �= ∅}.

Hence, dimH(L−1{0} ∩ G) = N − ind� almost surely on {L−1{0} ∩ G �= ∅}. Because we
need to consider only upright cubes that have rational coordinates, a limiting argument finishes
the proof. �

6. Proof of Theorem 1.2

We now return to the problem in the Introduction and study the SPDE (1.1).
Let x0 ∈ R be fixed and let S(x0) be the collection of all (t, x) ∈ R+ ×R such that t ≥ |x −x0|.

Elementary geometric considerations lead us to the following equivalent formulation:

S(x0) = {(t, x) ∈ R+ × R : (x0,0) ∈ C(t, x)}. (6.1)

We will need the following well-known result; see, for example, the Introduction of Dalang and
Walsh [11] for the case x0 = 0.

Lemma 6.1. Let x0 ∈ R be fixed. We can then write

u(t, x) = 1
2 F̃ (t − x, t + x) for all (t, x) ∈ S(x0), (6.2)

where F̃ is a copy of the perturbed random field F of Section 4 with N = 2 and ν = 1
2 .
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Our proof of Theorem 1.2 requires two more simple lemmas.

Lemma 6.2. Let x0 ∈ R be fixed and let G be a non-random compact subset of (0,∞)2 ∩S(x0).
Then,

P{u−1{0} ∩ G �= ∅} > 0 ⇔ Cap(G) > 0. (6.3)

Proof. Define the rotation map ρ : R2 → R2 by ρ(t, x) := (t − x, t + x). Its inverse is described
by ρ−1(u, v) = 1

2 (v + u,v − u). According to Lemma 6.1,

u = 1
2 (F̃ ◦ ρ) on S(x0). (6.4)

Now the process 1
2F is the perturbed version of 1

2L and the latter is a Lévy sheet with Lévy
exponent ξ 
→ �(ξ/2). Thanks to Theorem 5.1, the restriction of F−1{0} to S(x0) has the same
polar sets as the restriction of L−1{0} to S(x0). Consequently, if G is any non-random compact
subset of S(x0) ∩ (0,∞)2, then

P{u−1{0} ∩ G �= ∅} > 0 ⇔ Cap(ρ−1G) > 0. (6.5)

Note that if μ ∈ P (G), then μ◦ρ ∈ P (ρ−1G) and I(μ) = I(μ◦ρ). Consequently, Cap(ρ−1G) =
Cap(G) and the lemma follows. �

Lemma 6.3. Let G be a non-random compact subset of (0,∞)2. Then,

P
{
u−1{0} ∩ G �= ∅

}
> 0 ⇔ Cap(G) > 0. (6.6)

Proof. If P{u−1{0} ∩ G �= ∅} is positive, then there must exist x0 ∈ R such that P{u−1{0} ∩ G ∩
S(x0) �= ∅} is positive. Lemma 6.2 then implies that Cap(G ∩ S(x0)) > 0. Because Cap(G) ≥
Cap(G ∩ S(x0)), this proves the ‘⇒’ portion of the lemma.

The converse is proved similarly. Indeed, it can be shown that Cap is a Choquet capacity,
whence Cap(G) = supx0∈R Cap(G ∩ S(x0)), thanks to Choquet’s capacitability theorem [12],
Theorem 28, page 52-III. �

Finally, we prove Theorem 1.2 via a comparison argument.

Proof of Theorem 1.2. Let X be the 2-parameter d-dimensional additive Lévy process that is
associated to L. Lemma 6.3, used in conjunction with Theorem 5.1 and Corollary 5.2, implies
that the zero sets of u and X have the same polar sets. Consequently, for all integers n ≥ 1,

P
{
u−1{0} ∩ [−n,n] × [0, n] �= ∅

}
> 0

(6.7)
⇔ P

{
X−1{0} ∩ [−n,n] × [0, n] �= ∅

}
> 0.

Let n tend to infinity to find that

P
{
u−1{0} �= ∅

}
> 0 ⇔ P

{
X−1{0} �= ∅

}
> 0. (6.8)



The stochastic wave equation 923

According to Proposition 3.1 of [22], this last condition holds if and only if∫
[0,1]2

�(‖z‖)dz < ∞. (6.9)

Integration in polar coordinates proves ‘(2) ⇔ (3)’ in Theorem 1.2. Since ‘(1) ⇒ (2)’ holds
tautologically, in order to prove that (1) and (3) are equivalent, it suffices to prove that if u−1{0}
is non-empty with positive probability, then it is non-empty a.s.

With this in mind, let us assume that P{u−1{0} �= ∅} > 0. There then exists an integer n ≥ 1
large enough such that

P
{
u−1{0} ∩ C(n,0) �= ∅

}
> 0. (6.10)

Thanks to (1.3), u(t, x) = 1
2 L̇(C(t, x)). We observed in Proposition 2.5 that L̇ has the fol-

lowing two properties: (i) for all a ∈ R2 and A ⊂ R2 Borel-measurable, L̇(a + A) has the same
law as L̇(A); (ii) L̇(A) and L̇(B) are independent whenever A and B are disjoint measurable
subsets of R2. It follows from this that {u−1{0} ∩ C(n,2kn)}∞k=0 are i.i.d. random sets. Used in
conjunction with (6.10) and the Borel–Cantelli lemma for independent events, this implies that

P

{
u−1{0} ∩

∞⋃
k=0

C(n,2kn) �= ∅

}
= 1. (6.11)

Because
⋃∞

k=0 C(n,2kn) ⊂ R+ × R, this proves that (2) ⇒ (1).

In order to complete the proof of Theorem 1.2, we assume that
∫ 1

0 λ�(λ)dλ is finite and
proceed to compute the Hausdorff dimension of u−1{0}. A comparison argument, similar to the
one employed at the beginning of this proof, shows that if G is a non-random compact subset of
(0,∞)2, then a.s.,

dimH(u−1{0} ∩ G)1{u−1{0}∩G�=∅} = dimH(X−1{0} ∩ G)1{X−1{0}∩G�=∅}.

Let G = [0, n] × [−n,n] and then let n → ∞ to find that a.s.,

dimH(u−1{0})1{u−1{0}�=∅} = dimH(X−1{0})1{X−1{0}�=∅}. (6.12)

Because we have assumed that
∫ 1

0 λ�(λ)dλ < ∞, the already proven equivalence of (1)–(3)
shows that 1{u−1{0}�=∅} = 1 a.s. Therefore, Theorem 1.1 of Khoshnevisan, Shieh and Xiao [25],
(1.11), implies the stated formula for the Hausdorff dimension of u−1{0}. �
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