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Under left truncation, data (Xi,Yi) are observed only when Yi ≤ Xi . Usually, the distribution function F of
the Xi is the target of interest. In this paper, we study linear functionals

∫
ϕ dFn of the nonparametric max-

imum likelihood estimator (MLE) of F , the Lynden-Bell estimator Fn. A useful representation of
∫

ϕ dFn

is derived which yields asymptotic normality under optimal moment conditions on the score function ϕ. No
continuity assumption on F is required. As a by-product, we obtain the distributional convergence of the
Lynden-Bell empirical process on the whole real line.
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1. Introduction and main results

In this paper, we provide some further methodology for statistical analysis of data which are trun-
cated from the left. To be more specific, let (Xi, Yi),1 ≤ i ≤ N , denote a sample of independent
bivariate data such that, for each i, Xi is also independent of Yi . Denote by F and G, respectively,
the unknown distribution functions of X and Y . Typically, F is the target of interest. Now, under
left truncation, Xi is observed only when Yi ≤ Xi . As a consequence, the empirical distribution
of the X’s is unavailable and cannot serve as a basic process to compute other statistics.

The nonparametric maximum likelihood estimator of F for left-truncated data was first de-
rived by Lynden-Bell (1971). Its first mathematical investigation may be attributed to Woodroofe
(1985), who also reviewed some examples of truncated data from astronomy and economics; see
also Wang (1989) for applications in the analysis of AIDS data.

Now, denoting by n the number of data which are actually observed, we have, by the strong
law of large numbers (SLLN),

n

N
→ α ≡ P(Y ≤ X) as N → ∞ with probability one.

Without further mention, we shall assume that α > 0 because, otherwise, nothing will be ob-
served. Of course, α will be unknown. Conditionally on n, the observed data are still indepen-
dent, but the joint distribution of Xi and Yi becomes

H ∗(x, y) = P(X ≤ x,Y ≤ y|Y ≤ X) = α−1
∫

(−∞,x]
G(y ∧ z)F (dz).
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The marginal distribution of the observed X’s thus equals

F ∗(x) ≡ α−1
∫

(−∞,x]
G(z)F (dz). (1.1)

It may be consistently estimated by the empirical distribution function of the known X’s:

F ∗
n (x) = 1

n

n∑
i=1

1{Xi≤x}, x ∈ R.

The problem, however, is one of reconstructing F and not F ∗ from the available data
(Xi, Yi),1 ≤ i ≤ n. A crucial quantity in this context is the function

C(z) = P(Y ≤ z ≤ X|Y ≤ X) = α−1G(z)[1 − F(z−)], (1.2)

where

F(z−) = lim
x↑z

F (x)

is the left-continuous version of F and F {z} = F(z) − F(z−) is the F -mass at z. The function
C may be consistently estimated by

Cn(z) = n−1
n∑

i=1

1{Yi≤z≤Xi }.

It is very helpful to express the cumulative hazard function of F ,

�(x) =
∫

(−∞,x]
F(dz)

1 − F(z−)
,

in terms of estimable quantities. For this, let

aG = inf{x :G(x) > 0}
be the largest lower bound for the support of G. Similarly for F . From (1.1) and (1.2), we obtain∫

(aG,x]
F(dz)

1 − F(z−)
=

∫
(aG,x]

F ∗(dz)

C(z)
. (1.3)

Provided that aG ≤ aF and F {aF } = 0, the left-hand side equals �(x). Otherwise, this is no
longer true and, as Woodroofe (1985) pointed out, F cannot be fully recovered from the available
data. The situation is similar for right-censored data; see Stute and Wang (1993) for a detailed
discussion for (upper) boundary effects there.

Throughout the paper, we shall therefore assume that

aG ≤ aF and F {aF } = 0. (1.4)
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If aG < aF , the second assumption is superfluous, while it is automatically satisfied when F is
continuous. For the moment, however, no other assumptions such as continuity of F or G will
be needed.

In differential terms, equation (1.3) leads to

F(dx) = (
1 − F(x−)

)F ∗(dx)

C(x)
. (1.5)

The Lynden-Bell (1971) estimator Fn of F is obtained as the solution of the so-called self-
consistency equation, that is, as the solution of (1.5) after having replaced F ∗ and C with F ∗

n and
Cn, respectively:

Fn(dx) = (
1 − Fn(x−)

)F ∗
n (dx)

Cn(x)
. (1.6)

Solving for Fn yields the product integral representation of Fn:

1 − Fn(x) =
∏

distinct Xi≤x

[
1 − F ∗

n {Xi}
Cn(Xi)

]
. (1.7)

If there are no ties among the X’s, (1.7) simplifies to become

1 − Fn(x) =
∏

Xi≤x

[
nCn(Xi) − 1

nCn(Xi)

]
. (1.8)

Note that nCn(Xi) ≥ 1, so each ratio is well defined. Since, in this paper, our objective will be
to study general linear statistics based on Fn, namely Lynden-Bell integrals

∫
ϕ dFn, we also

introduce the Lynden-Bell weights Win attached to each datum in the X-sample. For this, denote
by X1:n < · · · < Xm:n the m distinct order statistics, with m possibly strictly less than n.

From (1.7), we obtain

Win ≡ Fn{Xi:n} = [1 − Fn(Xi−1:n)]F
∗
n {Xi:n}

Cn(Xi:n)
(1.9)

and ∫
ϕ dFn =

m∑
i=1

Winϕ(Xi:n). (1.10)

For ϕ = 1(−∞,x], we are back at Fn(x). As for other ϕ’s, we refer to Stute and Wang (1993) or
Stute (2004), who considered possible applications of empirical integrals in the context of right-
censored data. More general statistical functionals often admit expansions, in which the leading
term is of the form

∫
ϕ dFn, with ϕ denoting the associated influence function. Since, for a fully

observable data set with Fe
n being the classical empirical distribution function,

∫
ϕ dFe

n is just
a sample mean to which, under a second moment assumption, the central limit theorem (CLT)
applies, distributional convergence of

∫
ϕ dFn therefore constitutes an extension of the CLT to
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the left-truncation case. The corresponding SLLN has been studied in papers by He and Yang
(1998a, 1998b). The CLT for censored data is due to Stute (1995).

In the present situation, the CLT is much more elusive than for randomly censored data. In the
censored data case, the right tails create technical difficulties, but not the left. For left truncation,
however, both sides create problems. This is already seen via the functions C and Cn which
decrease to zero on the left and on the right tail, and with Cn appearing in denominators. The only
trivial bound is nCn(Xi) ≥ 1, which keeps everything from being “not well defined”. Moreover,
C and Cn are not monotone, again contrary to the censored data case, where the role of the C’s
is played by survival functions. This non-monotone feature of Cn creates additional technical
complications for truncated data. Worse than that, Cn may also become zero between the data
points in the central part. Keiding and Gill (1990), who recognized the danger of these sets, have
called these holes the “empty inner risk sets”. Not all authors seem to know about these problems
since a detailed study of the Cn process is sometimes missing. A consequence of these empty
inner risk sets, as revealed by the representation (1.7), is the loss of mass of Fn after the first such
hole. More specifically, suppose that, in terms of Keiding and Gill (1990), a risky hole exists
at Xj . This means that Xj is not covered by any other pair (Xi, Yi). Hence, nCn(Xj ) = nF ∗

n {Xj }.
From (1.7), we get that all data points right to Xj have mass zero under Fn. In proofs, this
disallows the incorporation of exponential representations of the weights. To circumvent this
difficulty, we first study an asymptotically equivalent estimator F̂n. This estimator is defined via

∫
ϕ dF̂n =

m∑
i=1

ϕ(Xi:n)F ∗
n {Xi:n}

Cn(Xi:n)

i−1∏
j=1

[
1 − nF ∗

n {Xj :n}
nCn(Xj :n) + 1

]
. (1.11)

The extra summand 1 in the denominator allows for contributions from data which have holes
on their left. As we shall see in a small simulation study, it may have a robustifying effect,
resulting in smaller mean squared error (MSE) for small sample sizes. Asymptotically,

∫
ϕ dFn

and
∫

ϕ dF̂n are equivalent at the n1/2-rate, which facilitates the asymptotic theory for
∫

ϕ dFn.
Another technical problem is caused by possible ties. In such a situation, (1.8) does not apply.
Lemma 1.1 will show how the general case covered by (1.7) and (1.9) may be traced back to the
case of a continuous F ∗.

The main result of this paper, Theorem 1.1, provides a representation of
∫

ϕ dFn as a sum of
i.i.d. random variables under minimal assumptions on ϕ and the truncation mechanism. Usually,
linear i.i.d. representations of complicated estimators will include the Hájek projection of the
statistic of interest. In the case of (1.10), however, this projection can be computed only up to
remainders, and this is exactly what Theorem 1.1 does. More precisely, the proof of Theorem 1.1
proceeds in two steps. In the first step we have to identify all error terms which are negligible.
The leading terms will turn out to be V-statistics; see Serfling (1980). Finally, an application of
the Hájek projection to the leading terms yields the desired i.i.d. representation. Needless to say,
asymptotic normality follows immediately. We shall also add some interesting comments on a
so-called uniform representation. Proofs will be given in Section 3.

Theorem 1.1 will hold under the following two assumptions:

(A) (i)
∫

ϕ2/GdF < ∞;
(ii)

∫ dF
G

< ∞.
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Condition (ii) already appeared in Woodroofe (1985) in his study of the Lynden-Bell process,
that is, when he considered indicators ϕ = 1(−∞,x0]. Non-technically speaking, it is needed to
guarantee enough information in the left tails to estimate F at the rate n−1/2. Under slightly
stronger assumptions, Stute (1993) obtained an almost sure representation with sharp bounds on
the remainder, again for indicators; see also Chao and Lo (1988). Condition (i) guarantees, among
other things, that the leading terms in the i.i.d. representation admit a finite second moment so that
asymptotic normality holds. Since G ≤ 1, it implies

∫
ϕ2 dF < ∞, which is the standard finite

moment assumption when no truncation occurs. When ϕ has a finite second F -moment and is
locally bounded in a neighborhood of aG, then (i) is implied by (ii). Note also that (i) and (ii) are
always satisfied when aG < aF and

∫
ϕ2 dF < ∞. A CLT for truncated data is also contained

in Sánchez Sellero et al. (2005). Apart from continuity assumptions, they also need conditions
which, in our notation, require finiteness of the integral∫

ϕ2
0(x)

(
1 − F(x)

)−5
F(dx),

where |ϕ| ≤ ϕ0. Since, however, this integral equals infinity for constant ϕ0, their result is not
applicable to bounded ϕ’s, not to mention ϕ’s which increase to infinity as x → ∞. Rather,
finiteness of the above integral is only obtained for ϕ0’s which converge to zero fast enough in
the right tails.

The focus of this paper is, however, on distributional convergence for which (A) will suffice.
Theorem 1.1 is formulated for the case when F is continuous. This guarantees that among the
observed X’s, there will be no ties, with probability one. In such a situation, we obtain∫

ϕ dF̂n =
∫

ϕ(x)γn(x)

Cn(x)
F ∗

n (dx), (1.12)

with

γn(x) = exp

{
n

∫ x−

−∞
ln

[
1 − 1

nCn(y) + 1

]
F ∗

n (dy)

}
. (1.13)

At the end of this section, we shall show how general Lynden-Bell integrals may be traced back
to the present case.

Theorem 1.1. Under Assumptions (A) and (1.4), assume that F is continuous. We then have∫
ϕ[dFn − dF ] =

∫
ψ(y)

C(y)
[F ∗

n (dy) − F ∗(dy)]

−
∫

Cn(y) − C(y)

C2(y)
ψ(y)F ∗(dy) + oP(n−1/2),

where

ψ(y) = ϕ(y)
(
1 − F(y)

) −
∫

{y<x}
ϕ(x)(1 − F(x))

C(x)
F ∗(dx) =

∫
{y<x}

[ϕ(y) − ϕ(x)]F(dx).
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For indicators ϕ = 1(−∞,x0], the leading term already appears in Theorem 2 in Stute (1993).

Remark 1.1. If one checks the proof of Theorem 1.1 step by step, the following fact will be
revealed. If, rather than a single ϕ, one considers a collection {ϕ}, then the error terms are uni-
formly small in the sense that the remainder is oP(n−1/2) uniformly in ϕ, provided that |ϕ| ≤ ϕ0

for some ϕ0 satisfying
∫ ϕ2

0
G

dF < ∞. Actually, all remainders may be bounded from above in
absolute value by replacing |ϕ| by ϕ0. Compared with Sánchez Sellero et al. (2005), no VC prop-
erty for the ϕ’s is needed for a representation as a V-statistic process. For the i.i.d. representation,
one has to guarantee that the errors in the Hájek projection are also uniformly small. These er-
rors, however, form a class of degenerate U-statistics. This kind of process was studied in Stute
(1994) and the achieved bounds are useful for handling the error terms in the second half of the
proof. Details are omitted.

Corollary 1.1. Under the assumptions of Theorem 1.1, we have

n1/2
∫

ϕ[dFn − dF ] →N (0, σ 2) in distribution,

with

σ 2 = Var

{
ψ(X)

C(X)
−

∫ X

Y

ψ(y)

C2(y)
F ∗(dy)

}
.

It is not difficult to see that σ 2 < ∞ under (A).
Finally, if, in Remark 1.1, we take for {ϕ} the class of all indicators ϕ = 1(−∞,x] and set

ϕ0 ≡ 1, we obtain the following corollary.

Corollary 1.2. Under
∫ dF

G
< ∞ and (1.4), and for a continuous F , we have

Fn(x) − F(x) =
∫

ψx

C
[dF ∗

n − dF ∗]

−
∫

Cn − C

C2
ψxF

∗(dy) + oP(n−1/2)

uniformly in x, where ψx is the ψ belonging to ϕ = 1(−∞,x].

Remark 1.2. To make the point clear, Corollary 1.2 provides a representation which holds
uniformly on the whole real line and not only on subintervals (−∞, b] with b < bF =
sup{x :F(x) < 1}, as is usually the case in the literature.

A major technical problem for proving Theorem 1.1 for a general F is caused by the fact
that for discontinuous F , ties may arise. As before, denote by X1:n < · · · < Xm:n the m ordered
distinct data in the observed X-sample. To circumvent ties, one may use the fact that each Xi may
be written in the form Xi = F ∗−1(Ui), where U1, . . . ,Un is a sample of independent random
variables with a uniform distribution on (0,1) and F ∗−1 is the quantile function of F ∗. The
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construction of the U ’s is similar to the construction in Lemma 2.8 of Stute and Wang (1993),
with H there replaced by F ∗ here.

For the following, recall that a quantile function is continuous from the left. Furthermore, with
probability one, F ∗−1 is also right-continuous at each Ui . With this in mind, one can see that
the corresponding truncating sample for the Ui ’s consists of F ∗(Yi−),1 ≤ i ≤ n. If we denote
by CU

n the Cn-function corresponding to the pseudo-observations (Ui,F
∗(Yi−)),1 ≤ i ≤ n, and

if we let Ui1:n < · · · < Uidi :n denote the ordered U ’s that satisfy F ∗−1(Uij :n) = Xi:n, with di =
nF ∗

n {Xi:n}, then

nCU
n (Ui1:n) = nCn(Xi:n) (1.14)

and

nCU
n (Uij :n) = nCU

n (Ui,j−1:n) − 1 for 2 ≤ j ≤ di . (1.15)

Also, note that the Lynden-Bell estimator FU
n for the pseudo-observations satisfies (1.8), that is,

1 − FU
n (u) =

∏
Ui≤u

[
nCU

n (Ui) − 1

nCU
n (Ui)

]
.

Introducing the function ϕ∗ = ϕ ◦ F ∗−1, the analog of (1.10) becomes

∫
ϕ∗ dFU

n =
m∑

i=1

di∑
j=1

ϕ(F ∗−1(Uij :n))
1 − FU

n (Uij :n−)

nCU
n (Uij :n)

=
m∑

i=1

ϕ(Xi:n)
di∑

j=1

1 − FU
n (Uij :n−)

nCU
n (Uij :n)

.

In Lemma 1.1, we will show that for each 1 ≤ i ≤ m and every 1 ≤ j ≤ di , we have

1 − FU
n (Uij :n−)

nCU
n (Uij :n)

= 1 − Fn(Xi−1:n)
nCn(Xi:n)

, (1.16)

where X0:n = −∞. It follows from (1.9), (1.10) and (1.16) that∫
ϕ∗ dFU

n =
∫

ϕ dFn with probability one.

In conclusion, the study of Lynden-Bell integrals may be traced back to the case when the vari-
ables of interest are uniform on (0,1) and, therefore, with probability one, have no ties. At the
same time, our handling of ties does not require external randomization, but maintains the prod-
uct limit structure of the weights and hence of the estimators.

Lemma 1.1. For each 1 ≤ i ≤ m and 1 ≤ j ≤ di , equation (1.16) holds.
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2. Simulations

It is interesting to compare the small sample size behaviors of Fn and F̂n. In a simulation study,
we considered ϕ(x) = x, that is, the target was the mean lifetime of X. This ϕ is the canonical
score function in the classical CLT. Recall that via truncation, there is a sampling bias which
would result in an upward bias if we were to take the empirical distribution function of the X’s
and not Fn or F̂n. Introducing more or less complicated weights has the effect, among other
things, that compared with the empirical distribution function, the bias is reduced.

In the following, we report on some simulation results which are part of a much more extensive
study. Typically, for this ϕ,

∫
ϕ dF̂n outperforms

∫
ϕ dFn in terms of the MSE when 10 ≤ n ≤ 40

and truncation is heavy. For larger n (n ≥ 40), the difference is negligible. MSE was computed
via Monte Carlo. See Table 1 for details.

In the simulations, both X and Y were exponentially distributed with parameter 1.

3. Proofs

To prove Theorem 1.1, note that under continuity of F , (1.8) applies. Also, we may assume,
without loss of generality, that all data are non-negative. Hence, all integrals appearing hereafter
will be over the positive real line.

In our first lemma, we provide a bound for the function C/Cn. This will be needed in proofs
to handle negligible terms. Although, by Glivenko–Cantelli, Cn − C → 0 uniformly, bounding
the ratio is more delicate in view of possible holes and the non-monotonicity of C and Cn.

Lemma 3.1. Assume F is continuous. For any λ such that αλ ≥ 1, one has

P

(
sup

Xi :Xi≥b

C(Xi)

Cn(Xi)
≥ λ

)
≤ λe2 exp[−G(b)αλ].

Table 1. Comparison of MSE

Sample size MSE(
∫

ϕ dFn) MSE(
∫

ϕ dF̂n)

n = 10 0.93 0.56
n = 20 0.45 0.39
n = 30 0.38 0.32
n = 40 0.35 0.31
n = 50 0.29 0.27
n = 60 0.26 0.24
n = 70 0.24 0.23
n = 80 0.22 0.22
n = 90 0.22 0.21
n = 100 0.20 0.19
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Proof. The proof is similar to that of Lemma 1.2 in Stute (1993), which provides an exponential
bound for the supremum extended over the left tails Xi ≤ b rather than the right tails. �

Together with the aforementioned bound from Stute (1993), Lemma 3.1 immediately implies

sup
1≤i≤n

C(Xi)

Cn(Xi)
= OP(1) as n → ∞. (3.1)

Assertion (3.1) will be of some importance in forthcoming proofs as it will allow us to replace
the random Cn appearing in denominators with the deterministic C.

We are now ready to expand
∫

ϕ dF̂n. By (1.12) and (1.13),

∫
ϕ dF̂n =

∫ ∞

0

ϕ(x)

Cn(x)
exp

{
n

∫ x−

0
ln

[
1 − 1

nCn(y) + 1

]
F ∗

n (dy)

}
F ∗

n (dx)

≡
∫ ∞

0

ϕ(x)

Cn(x)
γn(x)F ∗

n (dx).

Set

γ (x) = 1 − F(x) = exp

{
−

∫ x

0

F ∗(dy)

C(y)

}
.

From Taylor’s expansion, we obtain

γn(x) = γ (x) + e	n(x)[Bn(x) + Dn1(x) + Dn2(x)],
where

Bn(x) = n

∫ x−

0
ln

[
1 − 1

nCn(y) + 1

]
F ∗

n (dy) +
∫ x−

0

F ∗
n (dy)

Cn(y) + 1/n
,

Dn1(x) = −
∫ x−

0

F ∗
n (dy) − F ∗(dy)

C(y)
,

Dn2(x) =
∫ x−

0

[Cn(y) + 1/n − C(y)]
[Cn(y) + 1/n]C(y)

F ∗
n (dy)

and 	n(x) is between the exponents of γn(x) and γ (x). Particularly, we have 	n(x) ≤ 0. Setting

Sn1 =
∫ ∞

0

ϕ(x)

Cn(x)
e	n(x)Bn(x)F ∗

n (dx),

Sn2 =
∫ ∞

0

ϕ(x)γ (x)

Cn(x)
F ∗

n (dx),

Sn3 =
∫ ∞

0

ϕ(x)

Cn(x)
e	n(x)Dn1(x)F ∗

n (dx)
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and

Sn4 =
∫ ∞

0

ϕ(x)

Cn(x)
e	n(x)Dn2(x)F ∗

n (dx),

we thus get ∫
ϕ dF̂n = Sn1 + Sn2 + Sn3 + Sn4. (3.2)

In the next lemma, we study the functions Dn1 and Dn2 more closely. To motivate the following,
note that for each fixed x0 such that F(x0) < 1,

Dn1(x0) → 0 with probability one.

Actually, by standard Glivenko–Cantelli arguments,

Dn1(x) → 0 with probability one uniformly on x ≤ x0.

Similarly, when we consider the standardized processes x → n1/2Dn1(x), it is easy to show
their distributional convergence in the Skorokhod space D[0, x0]. Things change, however, if we
study Dn1 on the whole support of F ∗. Since

∫ ∞

0

F ∗(dy)

C(y)
= ∞,

we cannot expect uniform convergence on the whole support of F ∗. The situation is similar for
the cumulative hazard function �, where uniform convergence of the Nelson–Aalen estimator
�n may be obtained only on compact subsets of the support of F .

When one evaluates these processes at x = Xi , though, it is known that the uniform deviation
between �n and � does not got to zero, but remains at least bounded; see Theorem 2.1 in Zhou
(1991). Similar things turn out to be true for Dn1 and Dn2, as Lemma 3.2 will show. Our proofs
are different, though, since compared with Zhou (1991), we shall apply a truncation technique
which in proofs guarantees that the suprema of Dn1 and Dn2 are bounded on large, but not too
large, sets.

Lemma 3.2. We have

sup
1≤i≤n

|Dn1(Xi)| = OP(1) (3.3)

and

sup
1≤i≤n

|Dn2(Xi)| = OP(1). (3.4)

Proof. Assume, without loss of generality, that F ∗ has unbounded support on the right. Other-
wise, replace ∞ by b∗

F = sup{x :F ∗(x) < 1}. For a given ε > 0, one may find some small c = cε
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and a sequence an → ∞ such that 1 − F ∗(an) = c
n

and P(Xn:n ≤ an) ≥ 1 − ε. Actually, this
follows from

P(Xn:n ≤ an) =
[

1 − c

n

]n

→ exp(−c).

It therefore suffices to bound Dn1 and Dn2 on (−∞, an]. By Lemma 3.1, we may replace Cn in
the denominator by C. Hence, with large probability and up to a constant factor, (3.4) is bounded
from above by ∫ an

0

|Cn(y) − C(y)|
C2(y)

F ∗
n (dy) + 1

n

∫ an

0

F ∗
n (dy)

C2(y)
.

Using (ii) of (A), it is easily seen that the expectation of the second term is bounded as n → ∞.
The expectation of the first term is less than or equal to

∫ an

0

E|Cn−1(y) − C(y)| + 1/n

C2(y)
F ∗(dy)

≤
∫ an

0

(1/
√

n − 1)C1/2(y) + 1/n

C2(y)
F ∗(dy) = O(1).

This proves (3.4). As for Dn1, we already mentioned that Dn1 converges to zero with probability
one uniformly on each interval [0, x0] with F(x0) < 1. Also, for each fixed x, we have

EDn1(x) = 0 and VarDn1(x) ≤ 1

n

∫ x

0

F ∗(dy)

C2(y)
.

Moreover, by the construction of an and the definitions of F ∗ and C, we have

VarDn1(an) = O(1).

We conclude that Dn1(an) = OP(1). Applying standard tightness arguments for the (non-
standardized) process Dn1 (see Billingsley (1968), page 128), we get that Dn1 is uniformly
bounded on [0, an]. This, however, implies (3.3) and completes the proof of Lemma 3.2. �

Our next lemma implies that Sn1 is negligible.

Lemma 3.3. Under the assumptions of Theorem 1.1, we have

Sn1 = oP(n−1/2).

Proof. We first bound Bn(x). Since, for 0 ≤ x ≤ 1
2 , we have

−x − x2 ≤ −x − x2

2(1 − x)
≤ ln(1 − x) ≤ −x,
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we obtain

−n−1
∫ x−

0

F ∗
n (dy)

C2
n(y)

≤ −n

∫ x−

0

F ∗
n (dy)

[nCn(y) + 1]2
≤ Bn(x) ≤ 0. (3.5)

Recall that nCn ≥ 1 on the support of F ∗
n , so the above integrals are all well defined. We conclude

from (3.5) that

|Sn1| ≤ n−1
∫ ∞

0

|ϕ(x)|
Cn(x)

e	n(x)

∫ x−

0

F ∗
n (dy)

C2
n(y)

F ∗
n (dx).

Now, as in the proof of Lemma 3.2, for a given ε > 0, we may choose some small c = cε and a
sequence an → ∞ such that 1 − F ∗(an) = c

n
and P(Xn:n ≤ an) ≥ 1 − ε. Hence, on this event,

F ∗
n has all of its mass on [0, an] and integration with respect to F ∗

n may thus be restricted to
0 ≤ x ≤ an. Furthermore, by Lemmas 3.1 and 3.2, the processes C/Cn and Dn1 + Dn2 remain
stochastically bounded when restricted to the support of F ∗

n as n → ∞. Together with Bn(x) ≤ 0,
it therefore suffices to show that

n−1/2
∫ an

0

|ϕ(x)|γ (x)

C(x)

∫ x−

0

F ∗
n (dy)

C2(y)
F ∗

n (dx) = oP(1).

The expectation of the left-hand side is less than or equal to

n−1/2
∫ an

0

|ϕ(x)|γ (x)

C(x)

∫ x−

0

F ∗(dy)

C2(y)
F ∗(dx).

For any fixed x0 with F(x0) < 1, the integral∫ x0

0

|ϕ(x)|γ (x)

C(x)

∫ x−

0

F ∗(dy)

C2(y)
F ∗(dx)

is finite since 1 − F(y) is bounded away from zero there and, by assumption,∫
F ∗(dy)

G2(y)
= α−1

∫
dF

G
< ∞.

The same holds true for the integral∫ an

x0

|ϕ(x)|γ (x)

C(x)

∫ x0−

0

F ∗(dy)

C2(y)
F ∗(dx).

It remains to study ∫ an

x0

|ϕ(x)|γ (x)

C(x)

∫ x

x0

F ∗(dy)

C2(y)
F ∗(dx).

This integral is bounded from above, however, by

G−1(x0)

∫ an

x0

|ϕ(x)|F(dx)

1 − F(x)
.
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Now apply Cauchy–Schwarz to get

∫ an

x0

|ϕ(x)|F(dx)

1 − F(x)
≤

[∫ ∞

x0

ϕ2(x)F (dx)

]1/2[∫ an

0

F(dx)

[1 − F(x)]2

]1/2

.

The second integral is less than or equal to [1 − F(an)]−1. Since

c

n
= 1 − F ∗(an) = α−1

∫ ∞

an

G(z)F (dz) ≤ α−1(1 − F(an)
)
,

the second square root is O(n1/2). On the other hand, the first integral can be made arbitrarily
small by choosing x0 large enough. This concludes the proof of Lemma 3.3. �

Next, we study Sn2. For this, the following lemma will be crucial.

Lemma 3.4. Under the assumptions of Theorem 1.1, we have

In ≡
∫ |ϕ|γ [C − Cn]2

C2Cn

dF ∗
n = oP(n−1/2).

Proof. As in the proof of Lemma 3.3, we have Xi ≤ an for all i = 1, . . . , n with large probability.
Similarly, consider a sequence bn > 0 such that

F ∗(bn) = c

n
, c sufficiently small,

such that Xi ≥ bn for i = 1,2, . . . , n with large probability. In other words, up to an event of small
probability, we may restrict integration in In to the interval [bn, an]. Also, in view of Lemma 3.1,
the Cn in the denominator may be replaced by C (times a constant), with large probability. Hence,
on a set with large probability, we have

In = n−1
n∑

i=1

|ϕ(Xi)|γ (Xi)1{bn≤Xi≤an}
C2(Xi)Cn(Xi)

×
[

1

n

∑
j 
=i

(
1{Yj ≤Xi≤Xj } − C(Xi)

) + 1

n

(
1 − C(Xi)

)]2

(3.6)

≤ 2

n

n∑
i=1

|ϕ(Xi)|γ (Xi)1{···}
C3(Xi)

{
1

n

∑
j 
=i

(
1{···} − C(Xi)

)}2

+ 2

n3

n∑
i=1

|ϕ(Xi)|γ (Xi)1{···}
C2(Xi)Cn(Xi)

.
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The first sum has an expectation not exceeding

2

n

∫ an

bn

|ϕ(x)|γ (x)

C2(x)
F ∗(dx).

Fix a small positive x1 and, as in the previous proof, a large x0. Assume, without loss of gener-
ality, that bn ≤ x1 ≤ x0 ≤ an. The integral

∫ x0

x1

|ϕ|γ
C2

dF ∗

is finite. So, the middle part contributes an error O( 1
n
), which is smaller than desired. The upper

part,
∫ an

x0
. . . , is dealt with as in the proof of Lemma 3.3, yielding a bound o(n1/2) as x0 gets

large. The same holds true for the lower part. Finally, the second sum in (3.6) may be studied
along the same lines as was the first, by starting with the inequality nCn(Xi) ≥ 1. The proof is
thus complete. �

Corollary 3.1. Under the assumptions of Theorem 1.1, we have

Sn2 =
∫ ∞

0

ϕγ

C
dF ∗

n +
∫ ∞

0

ϕγ [C − Cn]
C2

dF ∗
n + oP(n−1/2).

We shall come back to Sn2 later, but first proceed to Sn3. Recalling Dn1, we have

Sn3 = −
∫ ∞

0

ϕ(x)e	n(x)

Cn(x)

∫ x−

0

F ∗
n (dy) − F ∗(dy)

C(y)
F ∗

n (dx).

To get an expansion for Sn3, the next lemma will be crucial.

Lemma 3.5. Under the assumptions of Theorem 1.1, we have

IIn ≡
∫ ∞

0

ϕ(x)γ (x)

Cn(x)

[
e	n(x)+∫ x−

0
F∗(dy)
C(y) − 1

] ∫ x−

0

F ∗
n (dy) − F ∗(dy)

C(y)
F ∗

n (dx)

= oP(n−1/2).

Proof. By Cauchy–Schwarz, on a set with large probability,

nII2
n ≤ n1/2

∫ an

0

|ϕ(x)|γ (x)

Cn(x)

[∫ x−

0

F ∗
n (dy) − F ∗(dy)

C(y)

]2

F ∗
n (dx)

× n1/2
∫ an

0

|ϕ(x)|γ (x)

Cn(x)

[
e	n(x)+∫ x−

0
F∗(dy)
C(y) − 1

]2
F ∗

n (dy).

(3.7)
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By Lemma 3.1, we may again replace Cn by C. The expectation of the resulting first integral is
then less than or equal to

n−1/2
∫ an

0

|ϕ(x)|γ (x)

C(x)

∫ x−

0

F ∗(dy)

C2(y)
F ∗(dx),

which was already shown to be o(1) in the proof of Lemma 3.3. It therefore remains to show that
the second factor in (3.7) is also oP(1). Putting

zn(x) = 	n(x) +
∫ x−

0

F ∗(dy)

C(y)
,

we may write [
ezn(x) − 1

]2 = z2
n(x)e2z̃n(x),

where z̃n(x) is between zero and zn(x). Recalling that 	n(x) is between the first integral in
Bn(x) and − ∫ x−

0
F ∗(dy)
C(y)

, and that Bn(x) ≤ 0, we may infer that z̃n(x) is uniformly bounded
from above in probability, on the support of F ∗

n , as n → ∞. Hence, it suffices to bound the term

n1/2
∫ an

0

|ϕ(x)|γ (x)z2
n(x)

C(x)
F ∗

n (dx),

which, in turn, is less than or equal to

n1/2
∫ an

0

|ϕ(x)|γ (x)

C(x)
[Bn(x) + Dn1(x) + Dn2(x)]2F ∗

n (dx)

≤ n1/22
∫ an

0

|ϕ(x)|γ (x)

C(x)

[
B2

n(x) + (
Dn1(x) + Dn2(x)

)2]
F ∗

n (dx).

By (3.5),∫ an

0

|ϕ(x)|γ (x)B2
n(x)

C(x)
F ∗

n (dx) ≤ n−2
∫ an

0

|ϕ(x)|γ (x)

C(x)

[∫ x−

0

F ∗
n (dy)

C2
n(y)

]2

F ∗
n (dx).

To bound the right-hand side, first replace Cn with C. The squared term may then be viewed as
a V-statistic, of which the leading term is a U-statistic. Its expectation is

n − 1

n

[∫ x−

0

F ∗(dy)

C2(y)

]2

.

Thus, we have to show that

n−2
∫ an

0
|ϕ(x)|

[∫ x−

0

F ∗(dy)

C2(y)

]2

F(dx) = o(n−1/2).

This follows as in the proof of Lemma 3.3. Only the powers of 1−F(x) are different. Finally, the
error terms involving Dn1 and Dn2 may be dealt with similarly. The proof is thus complete. �
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Lemma 3.6. Under the assumptions of Theorem 1.1, we have∫
ϕγ [Cn − C](x)

CCn(x)

∫ x−

0

F ∗
n (dy) − F ∗(dy)

C(y)
F ∗

n (dx) = oP(n−1/2).

Proof. As above. �

Lemmas 3.5 and 3.6 immediately imply the following corollary, which brings us to the desired
representation of Sn3.

Corollary 3.2. Under the assumptions of Theorem 1.1, we have the representation

Sn3 = −
∫ ∞

0

ϕ(x)γ (x)

C(x)

∫ x−

0

F ∗
n (dy) − F ∗(dy)

C(y)
F ∗

n (dx) + oP(n−1/2).

We now proceed to Sn4. As a first step to get the desired representation, we shall need the
following lemma.

Lemma 3.7. Under the assumptions of Theorem 1.1, Sn4 admits the expansion

Sn4 =
∫ ∞

0

ϕ(x)e	n(x)

Cn(x)

∫ x−

0

Cn(y) + 1/n − C(y)

C2(y)
F ∗

n (dy)F ∗
n (dx)

+ oP(n−1/2).

(3.8)

Proof. Recalling the definition of Dn2, the difference between Sn4 and the leading term in (3.8)
becomes

−
∫ ∞

0

ϕ(x)e	n(x)

Cn(x)

∫ x−

0

[Cn(y) + 1/n − C(y)]2

C2(y)[Cn(y) + 1/n] F ∗
n (dy)F ∗

n (dx).

Taking Lemma 3.1 into account, the last expression is bounded in absolute values from above,
with large probability, by∫ ∞

0

|ϕ(x)|e	n(x)

C(x)

∫ x−

0

[Cn(y) + 1/n − C(y)]2

C3(y)
F ∗

n (dy)F ∗
n (dx).

In the proof of Lemma 3.5, we argued that

zn(x) = 	n(x) +
∫ x−

0

F ∗(dy)

C(y)

is uniformly bounded from above, on the support of F ∗
n , as n → ∞, with probability one. Con-

sequently, we may replace exp(	n(x)) by γ (x). Also, we may wish to extend the integral only
up to an. The expectation of the resulting term then does not exceed∫ an

0
|ϕ(x)|

∫ x−

0

(2/(n − 1))C(y) + 4/n2

C3(y)
F ∗(dy)F (dx).
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These terms already appeared in the proof of Lemma 3.3 and were there shown to be o(n−1/2).
The proof is therefore complete. �

In the following, we shall omit the summand 1
n

in (3.8), since its contribution is also negligible.
The next lemma will enable us to replace exp(	n(x)) by γ (x).

Lemma 3.8. Under the assumptions of Theorem 1.1, we have

IIIn ≡
∫ ∞

0

ϕ(x)γ (x)

Cn(x)

[
e	n(x)+∫ x−

0
F∗(dy)
C(y) − 1

] ∫ x−

0

Cn − C

C2
dF ∗

n F ∗
n (dx)

= oP(n−1/2).

Proof. Cauchy–Schwarz leads to a bound for nIII2
n similar to (3.7) for nII2

n. The second factor
is exactly the same as before. The first factor is dealt with in the following lemma. �

Lemma 3.9. Under the assumptions of Theorem 1.1, we get

∫ ∞

0

|ϕ(x)|γ (x)

C(x)

[∫ x−

0

Cn(y) − C(y)

C2(y)
F ∗

n (dy)

]2

F ∗
n (dx) = oP(n−1/2).

Proof. As in previous proofs, it is enough to extend the x-integral up to an. It is then easily
checked that the expectation of the resulting term is less than or equal to (when n > 3)

∫ an

0
|ϕ(x)|

∫ x−

0

∫ x−

0

1
(n−3)α

G(y ∧ z)(1 − F(y ∨ z)) + 4/n2

C2(y)C2(z)
F ∗(dy)F ∗(dz)F (dx),

where

y ∧ z = min(y, z) and y ∨ z = max(y, z).

Neglecting 4n−2 for a moment, the rest equals

2

(n − 3)α

∫ an

0
|ϕ(x)|

∫ x−

0

∫ x−

y

G(y)(1 − F(z))

C2(y)C2(z)
F ∗(dy)F ∗(dz)F (dx)

= 2

(n − 3)

∫ an

0
|ϕ(x)|

∫ x−

0

1

(1 − F(y))2

∫ x−

y

1

C(z)
F (dz)F (dy)F (dx)

= 2

n − 3

∫ an

0
|ϕ(x)|

∫ x−

0

1

C(z)

∫ z

0

1

(1 − F(y))2
F(dy)F (dz)F (dx)

≤ 2

n − 3

∫ an

0
|ϕ(x)|

∫ x−

0

1

C(z)(1 − F(z))
F (dz)F (dx).

The last integral already appeared in the proof of Lemma 3.3 and was shown to be o(n1/2). The
error term 4

n2 yields similar bounds, so the proof is complete. �
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In the final step, Cn in the denominator of (3.8) may be replaced by C. The details are omitted.
Hence, we arrive at the following representation of Sn4.

Corollary 3.3. Under the assumptions of Theorem 1.1, we have

Sn4 =
∫ ∞

0

ϕ(x)γ (x)

C(x)

∫ x−

0

Cn(y) − C(y)

C2(y)
F ∗

n (dy)F ∗
n (dx)

+ oP(n−1/2).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Corollaries 3.1, 3.2 and 3.3 yield representations of the relevant terms
Sn2, Sn3 and Sn4 as V-statistics. As is known (see Serfling (1980)), a V-statistic equals a U-
statistic, up to an error oP(n−1/2). If, in Sn2, Sn3 and Sn4, we replace F ∗

n by F ∗, we come up
with degenerate U-statistics which are all of the order oP(n−1/2). Collecting the leading terms
and applying Fubini’s theorem then yields the proof of Theorem 1.1 with F̂n instead of Fn.

As for Fn, apply the inequality∣∣∣∣∣
i−1∏
j=1

aj −
i−1∏
j=1

bj

∣∣∣∣∣ ≤
i−1∑
j=1

|aj − bj |, |aj |, |bj | ≤ 1,

to the weights of Fn and F̂n. It follows that

∣∣∣∣
∫

ϕ dF̂n −
∫

ϕ dFn

∣∣∣∣ ≤ n−3
n∑

i=1

|ϕ(Xi:n)|
Cn(Xi:n)

i−1∑
j=1

1

C2
n(Xj :n)

= n−1
∫ |ϕ(x)|

Cn(x)

∫ x−

0

1

C2
n(y)

F ∗
n (dy)F ∗

n (dx).

Use Lemma 3.1 again to replace Cn with C and apply the SLLN (for U-statistics) to get that the
last term is OP(n−1). This completes the proof of Theorem 1.1. �

Proof of Lemma 1.1. The proof proceeds by induction on i. For i = 1 and j = 1, the left-
hand side of (1.16) equals 1/nCU

n (U11:n), as does the right-hand side. The assertion then follows
from (1.14). For i = 1 and j = 2, the left-hand side of (1.16) equals, by (1.8) and (1.15),

(nCU
n (U11:n) − 1)/(nCU

n (U11:n))
nCU

n (U12:n)
= 1

nCU
n (U11:n)

= 1

nCn(X1:n)
.

For i = 1 and j > 2, the proof follows the same pattern, by repeated use of (1.15). Hence, the
assertion of Lemma 1.1 holds true for i = 1. Assuming that (1.16) holds true for all indices less
than or equal to i, we obtain, by (1.7),

1 − Fn(Xi:n) = 1 − FU
n (Uidi :n).
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This may be used as a starting point to show (1.16) for i + 1. Again, make repeated use of (1.14)
and (1.15). �
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